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Eduard Benet and Franck J. Vernerey

The mechanics of blister delamination and growth plays a major role in a diversity of areas includ-
ing medicine (skin pathology, mechanics of cell membrane), materials (adhesive and fracture) or
soft robotics (actuation and morphing). The behavior of blister in these context is typically difficult
to grasp as it arises from the interplay of two highly nonlinear and time-dependent processes:
membrane attach and decohesion from a substrate. In the present work, we device a simpli-
fied approach, based on experimental systems, to predict the deformation path of a blister under
various conditions. For this, we consider the problem of a growing blister made of rubber-like
membrane adhered on a rigid substrate, and develop a theoretical and experimental framework
to study its stability and growth. We start by constructing a theoretical model of viscoelastic blister
growth which we later validate with an experimental setup. We show that a blister growth is con-
trolled by the competition between two instabilities: one inherent to the rubber, and a second one
pertaining to the adhesion with the substrate. Using these concepts, we show that a "targeted"
stable blister shape can be achieved by controlling two parameters: the thickness of the film and
the inflation rate.

1 Introduction
The study of blisters is often associated with pathologies of mul-
tilayered materials where one layer loses the cohesion that keeps
it attached to its substrate. Indeed, blisters are a symptom of
skin diseases such as burns1, and of poorly adhered industrial
films such as paint2 or paper3. Consequently, blistering and peel-
ing tests are mostly used as a method of measuring the adhesion
between two materials4,5, and have a high impact on the pack-
aging of food and medical industries6 7. However, a variety of
systems take advantage of the morphology change that blisters
provide and use them as an active mechanism. In nature, for
instance, the finite deformation of membranes in the form of blis-
ters is seen in the vocal sac of frogs8 and in the skin papillae of
some species of arthropods9. While it does not involve the de-
lamination between two membranes, these skin morphing mech-
anisms are indeed based on the finite inflation of a constrained
membrane. At a different scale, cellular blebbing is a process in
which the outer lipid membrane of animal cells partially detaches
from the inner cortex10,11 and produces a blister that can be used
as a motion mechanism12. This same concept has been studied
and applied in the context of skin diseases13, where authors used
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a membrane inflation technique to induce the detachment and
growth of new skin. Despite their disparity, controlling and har-
vesting those behaviors requires a deep understanding of a com-
mon problem defined by the finite inflation and delamination of
a thin, viscoelastic membrane. While the mechanics of blisters
have been well-studied in the elastic case, the role of viscous ef-
fects influence these processes is still poorly understood. Hence,
the objective of this paper is to develop a theoretical framework
to study the stability of blister growth and its impact on shape
morphing technologies.

From a theoretical viewpoint, modeling the adhesion mechan-
ics of viscoelastic blister is a problem that requires the combina-
tion of three topics: the mechanics of membranes under finite
strain, the mechanics of adhesion, and delamination dynamics.
While only the second part is genuinely novel in a viscoelastic sys-
tem, the problem can not be explained without accounting for all
three elements. First of all, understanding the adhesion stability
of a membrane requires precise knowledge of its internal stresses
as they are ultimately responsible for the pulling force that even-
tually breaks the adhesion14,15. However, while membrane the-
ory is well-known in finite elasticity16,17, viscoelastic models are
scarce in the literature. Furthermore, most common approaches,
such such as the Christensen model18–21 are phenomenological
and thus provide little information on the molecular mechanisms
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driving these behaviors. To maintain a closer connection with
the underlying physics, this paper follows the recent approach by
Benet et al. where the viscoelastic response of polymer mem-
branes was modeled from the perspective of transient network
theory (TNT)22,23. Second, these stresses must be translated
into quantifiable adhesion energy, which determines the condi-
tions for delamination. In the case of stretchable membranes,
the problem was initially approached from a small strain perspec-
tive. Authors such as Williams24 developed analytical expressions
to compute the energy released during membrane delamination.
This approach was later extended to finite elasticity, where au-
thors such as Nadler25 and Long26 stressed the importance of
nonlinear terms. However, despite extensive follow-up work in
understanding27–30 and measuring31–33 the different aspects of
the adhesion of shells and membranes in finite strain, the role of
viscosity in this process remains poorly understood. To best of
our knowledge, only the work of Srivastava34 has discussed the
viscous effects during the contact mechanics of a membrane, but
a depth study on how they affect the energy release rate is still
missing. Finally, this energy is used to construct a model that
explains the spreading dynamics. In this paper, we build upon
existing, well-accepted models35 and implicitly incorporate the
viscous effects through the previous two areas of study.

Overall, the main contribution of this paper relies on providing,
for the first time, a combined model of a spreading viscous mem-
brane which we use to study how the viscoelasticity affects the
delamination of membranes. The results show that the growth of
an elastic blister is a problem driven by competition between two
known instabilities: one inherent to the rubber36, and a second
one pertaining to the adhesion with the substrate37. Interestingly,
the meeting of these two processes enables obtaining a variety of
stable blister profiles by only adjusting the thickness of the film
and the inflation rate. The paper is organized as follows. On sec-
tion 2, we discuss the mechanics of a viscoelastic, axisymmetric
membrane. Section 3, derives an expression for the energy re-
lease rate, which is used in section 4 to discuss the spreading of
a blister. Finally, section 5 shows an experimental validation and
provides a discussion of the results.

2 Model

2.1 Equilibrium of a blister under finite deformation.

To construct a viscoelastic model of a blister, we begin with a few
notions on the theory of membranes used to derive its governing
equations. A membrane is defined as a three-dimensional solid
that has one dimension (its thickness h) significantly smaller than
the others. This entails the following approximations: (a) stresses
and strains are constant across the membrane thickness, (b) the
stresses normal to the thickness can be neglected (plane stress as-
sumption) and (c) bending moments are negligible compared to
in-plane stresses. Mathematically, a membrane can therefore be
described by its mid-plane surface, parameterized with two coor-
dinates ξ α (α = 1,2) immersed in a three-dimensional space. On
this surface, internal forces are represented by a two-dimensional
stress tensor σσσ whose components σαβ represent the thickness
average of the tangent Cauchy stress38. A similar thickness av-

erage of the balance of linear momentum then leads to the well-
known governing equation of the mid-plane of a membrane16

(see Appendix A for details):

σ
αβ

∣∣∣
β
+ f α = 0 σ

αβ
καβ + f n = 0 (1)

where καβ is the curvature tensor, and f α , f n correspond to the
external pressures applied tangent and normal to the membrane,
respectively. We here concentrate on the inflation of an axisym-
metric blister (Fig. 1a) whose reference state is an unstretched
circular membrane of radius R and thickness h0. In these axisym-
metric conditions, the blister can first be parameterized by the ar-
clength s of its cross-section and the revolution angle φ (details on
Appendix B), such that only two components of the stress tensor
are non-zero: the longitudinal stress σ s, and the hoop stress σφ

(Fig. 1a). The position of the membrane at φ = 0 can, therefore,
be described by the radius r(s) and the height z(s) with respect
to the center of the reference circle, and the governing equations
(1) simplify to:

(σ s)′+
r′

r

(
σ

s−σ
φ
)
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f α =0 (2a)

σ
s
κ
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κ

2
2 + f n =0 (2b)

where the apostrophes indicate a derivative with respect to s,
and κα

β
are the components of the mixed form of the curvature

tensor (see details on Appendix A). For an axisymmetric surface,
these curvatures relate to the mean curvature H by H = 1

2 (k
1
1+k2

2).
Thus, Eq. (2b) can be understood by making an analogy to the
Laplace law in fluid-fluid interfaces; i.e., both equations use cur-
vature (k1

1, k2
2) to relate internal pressure ( f n) and surface tension

(σ s, σφ ). In other words, this relationship represents the equilib-
rium of normal ( f n) and tangential forces ( f α ) acting along the
membrane.

2.2 Viscoelastic constitutive relation

The viscoelastic constitutive relation of a polymer is then intro-
duced by means of the TNT22,39, an approach where the macro-
scopic response is derived based on the statistical description of
the molecular chains and their degree of cross-linking. This the-
ory conceptualizes a polymer as the superposition of N molecular
networks, which are classified into two different types: perma-
nent and dynamic (Fig. 1c). Permanent networks are character-
ized by permanent cross-links and thus display an elastic macro-
scopic response. By contrast, dynamic networks possess cross-
links that constantly detach and reconnect at rates ka and kd ,
respectively. Macroscopically, such networks have the response
of elastic fluids; i.e., they respond elastically to fast loading, but
relax and flow like a fluid at longer time scales. For the time,
let us consider a single network, whose chain density is denoted
by C. When the network is dynamic, only a fraction of these
chains is fully connected to the network (and thus participate
in the network’s mechanical response) at any given time. If the
chain dynamics follow first order kinetics, the concentration c of
connected chains can be determined at all time by the evolution
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Fig. 1 (a) Scheme of the blister inflation problem. A polymer membrane is attached to a rigid substrate with a circular hole of radius R0. The injection
of a liquid at a rate of V̇ creates an internal pressure P, which not only inflates the blister, but it detaches it from the substrate increasing its neck radius
R. (b) To determine the variation in energy release rate during a differential increment in radius dR, the membrane is divided into two zones. Zone I
corresponds to a new configuration of the previously detached membrane. Zone II corresponds to the portion of the newly detached membrane, and it
is measured by the position vector ~dd′. (c) TNT-based schematic of a viscoelastic polymer membrane. The material is assumed to be made of two
different types of molecular entanglements. Permanent networks (left) have fixed cross-links, and dynamic networks (right) have transient links
attaching and detaching at rates ka and kd respectively. Macroscopically, the membrane is described by the statistical distribution of the direction and
stretch of the polymer chains which is encapsulated in the tensor µµµ

equation39:
ċ = ka (C− c)− kdc, (3)

While the concentration c gives us an indication about the stiff-
ness of the polymer, additional information about the deforma-
tion state (and elastic force) of each chain in the network is
needed to evaluate the stress state at a point. We have shown
in earlier work that this knowledge is encapsulated in the chain
distribution tensor µµµ (Fig. 1c), whose components indicate the
mean squared stretch experienced by the polymer chains in dif-
ferent directions around a material point40,41. Thus, if rrr denotes
the end-to-end vector of a chain and 〈·〉 denotes the average op-
eration over the chain configuration space, µµµ is defined by:

µµµ =
1

L b
〈rrr⊗ rrr〉 (4)

where L is the mean chain length and b the Kuhn length. For a
membrane, this tensor can be decomposed into a tangential (µµµt)
and normal (µµµn) components such that µµµ = µµµt + µµµn. Using this
decomposition, the evolution of this tensor is captured by two
kinetic equations:

µ̇µµ
t = ka

(
C− c

c

)
III− kd µµµ

t +LLLµµµ
t +µµµ

tLLLT (5a)

µ̇µµ
n =

[
ka

(
C− c

c

)
− kd µ

n +2
ḣ
h

µ
n
]

nnn⊗nnn (5b)

where LLL is the surface gradient of the tangential velocities, nnn is the
unit normal vector to the mid-plane surface, and µn is the normal
component such that µn = nnn · µµµ · nnn. In these equations, the first
two terms describe the addition of new attached chains (at rate
ka) to the network in a stress-free configuration, and the deple-
tion of previously connected chains (at rate kd) in their stretched
configuration at the time of detachment. The remaining terms de-
scribe the change in the chains’ average stretch arising from the
elastic distortion sustained by the network (under the assump-
tion of affine deformations). Since µµµ characterizes the amount
of elastic deformation in the network, it can directly be used to
estimate the stored elastic energy density. Under the assumption
of Gaussian chain statistics, the elastic energy ∆Ψe becomes:

∆Ψe =
ckBT

2
[
tr
(
µµµ

t −µµµ
t
0
)
+(µn−1)

]
, (6)

where kBT is thermal energy of a molecular chain, and µµµt
0 is the

chain distribution tensor when the network is in its stress-free
(or natural) configuration. For isotropic materials, such as the
VHB tape considered in this paper, µµµt

0 = III where III is the identity
tensor. The rate of dissipation D is then directly related to the
elastic energy release rate through chain detachment. It can be
shown that:

D = kd∆Ψe (7)

This form clearly shows that permanent networks (kd = 0) can-
not dissipate energy and thus remain purely elastic. The tangent
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stress tensor σσσ can be then be derived using classical thermody-
namics39 to obtain:

σσσ = hckBT
(
µµµ

t −µ
nIII
)
, (8)

where we assumed an incompressible polymer membrane.

Equations (1), (3), (5), and (8) form a general system of equa-
tions to describe the mechanical response of a membrane made of
a single polymer network whose behavior depends on the values
of ka and kd . If ka = kd = 0, the network is said to be permanent,
and the polymer behaves elastically as a Neo-Hookean rubber.
Otherwise, the network is dynamic, and the polymer exhibits a
purely viscous response. In the region of small deformations, this
purely viscous response is equivalent to the behavior described by
a single Maxwell element. However, the two theories grow apart
as the deformation increases, and the Maxwell model loses its
accuracy. Although this "single network model" captures the be-
havior of a viscoelastic material, most polymers display a richer
viscoelastic response which can only be explained by the super-
position of multiple networks with different dynamic properties.
In this situation, each network is described by its distribution ten-
sor µµµ i and the number of attached chain ci, whose variations are
determined by their attachment and detachment rates. For the
sake of simplicity, this paper considers a polymer made of two
networks: a permanent network with density of attached chains
c0, and a dynamic network with density c1 and constant rates
ka = kd . These networks are characterized by the fact that the
total number c of attached chains remains constant such that:

ċ = 0 ⇒ ka

(
C− c

c

)
= kd , (9)

and the tangent stress tensor becomes:

σσσ = h
1

∑
i=0

cikBT
(
µµµ

t
i−µ

n
i III
)
, (10)

In this case, the behavior of the polymer is reminiscent of
the standard-linear solid model. The permanent network acts
as a purely elastic component with equivalent Young modulus
E0 = c0kBT/3, and the dynamic network behaves similarly to a
Maxwell element connected in parallel but accounting for finite
strains. Hence, introducing the axisymmetric constraints, the
stress tensor is simplified to the following two components:

σ
s =

h
3

1

∑
i=0

Ei (µ
s
i −µ

n
i ) σ

φ =
h
3

1

∑
i=0

Ei

(
µ

φ

i −µ
n
i

)
, (11)

where Ei = cikBT/3. If we consider a time evolution where the
membrane is moving at a velocity vvv with tangent component vs

and normal vn, we can establish the evolution of the axisymmetric
distribution tensor as (see Appendix B for details):

µ̇
s = kd(1−µ

s)+2µ
s
(

vs|s +κ
1
1 vn
)

(12a)

µ̇
φ = kd(1−µ

φ )+2µ
φ

(
r′

r
vs +κ

2
2 vn
)

(12b)

µ̇
n = kd(1−µ

n)+2
ḣ
h

µ
n (12c)

2.3 Delamination mechanics of a viscoelastic membrane

The adhesion energy between the blister and its substrate is mea-
sured by the energy release rate G, that characterizes the energy
dissipated during the detachment of a unit membrane area. While
an expression for G was previously derived for an elastic blis-
ter undergoing finite deformation by Long et al.26, the case of a
visco-elastic blister differs by the fact that dissipation originates
from (a) the viscous deformation of the membrane and (b) the
loss of adhesion energy. To quantify these contributions, the en-
ergy release rate is first expressed in terms of the adhesion energy
Γ, and the delamination area A as:

G =− lim
dA→0

δΓ

dA
(13)

The adhesion energy is then assessed by considering the energy
balance during the detachment of a differential portion of the
membrane from its substrate under the action of the blister’s in-
ternal pressure. During this process, the rate of mechanical work
done by the pressure is equal to the sum of the viscous dissipation
occurring in the initially detached membrane (zone 1 in Fig. 2b)
and the change in adhesion energy δΓ resulting from the detach-
ment of a differential portion dR (zone 2 in Fig. 2b). The latter
can be expressed as the difference between the external and in-
ternal energies as:

δΓ = (δUe +δUd)−δWp (14)

where δWp is the work done by the applied pressure on the entire
system, δUe is the change in the membrane’s elastic energy, and
δUd is the viscous dissipation. Assuming then that there is no slip
in the contact region, this energy can be split into zones I and II,
i.e. δΓ = δΓI + δΓII , where each term corresponds to their own
contributions

(
δUα

e +δUα
d
)
−δW α

p (α = I, II).

Zone I. We can equate the internal energy
(
δU I

e +δU I
d
)

in zone I
to the work done by external forces, which include the work done
by the internal pressure δW I

p and the work 2πR~σ · ~dd′ done by the
line tension ~σ to bring point d to d′ (Fig. 2b).

For a differential displacement in an axisymmetric blister, we
can write the line tension as a function of the contact angle θ

(Fig. 2b) and the longitudinal stress at the delaminatio point ~σ =

−σ s(êr cosθ + k̂ sin,θ). Similarly, following the scheme of Fig. 2b,
the displacement vector can be written as ~dd′ = (dR′)(êr cosθ +

k̂ sinθ)−(dR)êr, where dR′ corresponds to the newly detach mate-
rial points after deformation; i.e., dR′ = λsdR being λs the stretch
at the onset of delamination. Thus, the contribution of the total
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Fig. 2 Evolution of the nondimensional energy release rate G∗ with the
nondimensional blister volume V ∗ at four different inflation speeds
(W = 0, 5 ·102, 5 ·103, and ∞) and for a constant neck R∗ = 7. For
quasistatic inflation rates (W → 0), the blister has an elastic growth such
that G∗ exhibits an asymptotic behavior with upper limit Ge. This same
behavior is observed in extremely fast inflations (W → ∞), where the
blister has an elastic behavior governed by an instantaneous elastic
modulus Ei and which sets an upper limit Gi.

energy in zone I takes the form:

δΓ
I = 2πRσ

s (cosθ −λs)dR (15)

Zone II. First, because zone II has an infinitesimal surface area,
the change in volume in this region is of the order of 2πRδR|dd′|
and scales with dR2. Consequently, since the work of pressure
δW II

p is proportional to this change in volume, it can be ne-
glected due to the presence of a double differential26. Second,
the dissipated energy in this zone is δU II

d =DdV IIdt, with volume
dV II = 2πRhλsdR. Again, the presence of a double differential
(dRdt) allows us to neglect this contribution to the total energy.
The stored elastic energy is, however, non-negligible and can be
derived using Eq. (4) as δU II

e = dV II∆Ψ d
e , where ∆Ψ d

e is the stored
elastic energy density at the delamination point. Hence, we can
write the contribution of part II to total adhesion energy as:

δΓ
II = 2πRhλsdR∆Ψ

d
e . (16)

Energy release rate. The energy release rate G can then be found
by substituting the results of eq. (15) and (16) into expression
(13), where δΓ = δΓI +δΓII . We find:

G =− 1
2πR

lim
dR→0

(
δΓ

dR

)
= σ

s
d(λs− cosθ)−hλs∆Ψ

d
e (17)

There are two main differences between this result and the ex-
pression provided by Long et al.26 for the elastic case. (i) The
value of the stresses and elastic energy are time-dependent, and
consequently, they must be integrated in time. (ii) The second
term is a function of the current thickness h and the elastic en-
ergy density per current volume ∆Ψe, instead of being a function

of the initial reference state of the membrane. This is a conse-
quence of the fact that dynamic networks have no shape memory
and the TNT is derived in the current frame of reference.

3 Blister mechanics at constant neck radius
To understand how blister inflation potentially affects delamina-
tion, we first present results regarding the inflation of a blister
with constant neck radius. For generality, we first nondimension-
alized the problem by introducing the following variables:

R∗ =
R
h0

V ∗ =
V
h3

0
G∗ =

G
E0h0

, W =
V̇

h3
0kd

(18)

where R∗ is the nondimensional neck radius of the blister, V ∗ its
nondimensional volume, G∗ is the nondimensional energy release
rate, and W the Weissenberg number that captures the competi-
tion between inflation rate and viscous dissipation in the mem-
brane.

3.1 Effect of inflation rate on energy release rate.

Stresses in viscoelastic membranes are sensitive to its rate of de-
formation; larger loading rates typically yield larger stresses. This
means that the energy release rate, which eventually controls the
onset of delamination, is likely to be sensitive to the inflation rate
of a blister. To explore this hypothesis, we consider a blister, char-
acterized by a constant neck radius R∗ = 7 and determine the re-
lation between G∗ and blister volume V ∗ for different volume in-
flation rates (Fig. 2c). We observe that, for quasistatic inflation
(W → 0), the viscous forces vanish and G∗ increases with inflation
until it reaches an asymptotic value G∗e . This observation may be
explained by the fact that G∗ is proportional to the longitudinal
stress σ s, which has a similar asymptotic behavior during the in-
flation of spherical membranes42. When the blister is inflated at
very large rates (W → ∞), the dynamic network does not have
time to relax, and the membrane is endowed with an elastic mod-
ulus EI = (c0 + c1)kBT that consists of the combined permanent
and dynamic networks. As a result, we observe a behavior that is
very similar to that for slow inflation, but with a larger asymptotic
energy release rate G∗i . In general, for a constant neck radius R∗,
the energy release rate will always be bounded between its lower
and upper limits G∗e and G∗i , respectively. For intermediate infla-
tion rates, however, the competition between elasticity and dis-
sipation leads to a nonlinear response where G∗ exhibits a local
maximum, after which the energy release rate monotonically de-
creases with blister volume. We note that this response is directly
related to the nonlinear pressure-volume relation and elastic in-
stability observed in soft spherical membranes,36 where the infla-
tion pressure exhibits a maximum as its radius increases 38% its
initial value. This response, previously discussed in43,44, has im-
portant consequences when the membrane is allowed to delami-
nate as shown in the following section. It is important to note that
none of the blisters modeled in this paper has a perfectly spherical
shape. In the case of purely neo-Hookean rubbers, Long et al.26

demonstrated that these differences are small enough such that
theories based on purely spherical geometries45 might lead to ac-
curate and insightful results. Despite the presence of a viscous
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component, this same behavior was observed with our constitu-
tive model where the blisters only showed a noticeable deviation
from a purely spherical shape when θ < π/2. These comparisons
might however lose their accuracy on more complex behaviors
(i.e., strain stiffening or nonlinear chain dynamics).

3.2 A phase diagram for delamination.

In order to study these concepts in a broader parameter space,
let us now consider the inflation of an initially flat blister at a
constant volume rate W and neck radius R∗. Due to the incom-
pressibility of the filling liquid, the delamination of a blister can
be characterized by the variation of G∗ within the V ∗−R∗ space
(Fig. 3a). Indeed, each pair V ∗−R∗ defines a unique blister pro-
file (or shape) whose stability is inferred by the relation between
the energy release rate G∗ (also interpreted as the driving force
for delamination) and a critical value G∗0 (G∗0 = G0/E0h) at which
delamination occurs. Thus, if G∗ > G∗0, delamination takes place
and the adhesion is said unstable; by contrast, if G∗ <G∗0, the blis-
ter neck remains constant, and the adhesion is said stable. The
intersection between this surface and the plane G∗ = G∗0 defines
a phase diagram delimiting the stable and unstable regions (Fig.
3b).

We have previously found that the adhesion energy has an up-
per bound G∗i for each value of R∗. This implies that if G∗0 is high
enough, the blister is permanently stable and unable to delami-
nate regardless of the inflation speed. However, as the value of
G∗0 decreases, the phase diagram shows a closed unstable region.
Considering the inflation of a blister with zero initial volume, two
main conclusions can be extracted from this result. (i) For each
value of G∗0 there is a minimum R∗ above which the blister always
remains stable independently of its volume. (ii) If the neck ra-
dius is constrained, it is possible that the adhesion energy might
eventually drop below the adhesion threshold, leaving the blister
stable. In other words, the blister is trapped (it does not spread)
despite having a higher liquid volume. This is not the case when
G∗0 < G∗e since the blister always remains unstable at higher vol-
umes and will eventually delaminate.

While the information provided by the phase diagram of Fig. 3b
is useful to understand the adhesive stability of a blister, G∗0 is a
fixed property depending on the affinity between the membrane
and the substrate, which is generally hard to control. Instead,
most systems are driven by the volume rate V̇ , or equivalently,
the Weissenberg number W , and have a fixed adhesion threshold.
In terms of the phase diagram, varying the Weissenberg number
implies that our plane G∗ = G∗0 remains fixed, and it is the entire
surface that changes according to the results shown in Fig. 2c.
Hence, we obtain a particular phase diagram (Fig. 4) where each
contour in the V ∗−R∗ space defines two stability regions whose
shape depends on the inflation rate V̇ . As discussed before, the
adhesion energy during an extremely fast inflation (W → ∞) has
an increasingly asymptotic behavior acting as an upper bound of
the system. In this phase diagram, this particular case creates two
main regions (Fig. 4). (1) A permanently stable region which
is completely independent of the inflation rate; i.e., the blister
would never delaminate in those V ∗−R∗ conditions. (2) A poten-

tially unstable region where delamination depends on the infla-
tion rate. Indeed, as the inflation rate decreases, we observe how
the stability regions become a closed loop in the phase diagram
such that the blister would only delaminate when its V ∗−R∗ state
falls within the loop. Finally, in cases where G∗0 > G∗e , there is a
lower threshold on W where the stresses never increase enough
to break the adhesive bonds, and the blister remains stable during
the entire inflation process.

4 Dynamics of blister growth
Let us now concentrate on the case where the blister is allowed
to delaminate and spread during inflation. This necessitates the
introduction of a new time scale that governs the typical delami-
nation rate of a membrane on a substrate. Indeed, if the spread-
ing velocity is significantly larger than the inflation rate, one may
expect a flat blister that grows by spreading on its substrate. By
contrast, when the inflation rate is significantly faster than the
rate of delamination, the blister will mostly grow in height.

4.1 A simple model of blister spreading

Delamination dynamics have been extensively studied in the lit-
erature, and the evolution of the neck (Ṙ) is well-captured by the
following empirical relation46:

Ṙ =

 0 if G < G0

v
(

G
G0
−1
) 1

n if G≥ G0
(19)

where v is the critical velocity at which the effect of viscous
dissipation at the crack tip become important, while n is the
adhesion exponent and depends on the properties of the sub-
strate/membrane pair. In this work, the latter value is taken as
n = 2 following the adhesion mechanics of PDMS35.

In the above static analysis, we showed that the phase diagrams
of Fig. 4 allow for a stability classification of any blister defined
by a pair V ∗−R∗. However, this information is not sufficient to es-
tablish its inflation history. In fact, this question may be answered
by rewriting (19) in a way that it describes the path taken by an
inflating blister in the R∗−V ∗ plane. It is indeed straightforward
to show that:

ẋxx =

{
Ṙ∗

V̇ ∗

}
=

{
Ṙ∗(v∗,G∗)

W

}
, (20)

where Ṙ is given by Eq. (19), and v∗ = v/kdh0. This system of dif-
ferential equations can be directly integrated in cases where there
is no inflation (V̇ = 0), or no delamination (G <G0⇒ Ṙ= 0). Oth-
erwise, one must use the relationship between the delamination
velocity and the volume as Ṙ = V̇ dR/dV where V̇ =Wh3

0kd . Sub-
stituting this result in Eq. (20), one obtains a single differential
equation that governs the dynamics of blister growth when infla-
tion and delamination coexist:

W
dR∗

dV ∗
=

v
h0kd

(
G
G0
−1
) 1

n

, (21)

This equation can be numerically integrated given the initial vol-
ume V ∗0 , neck R∗0, and Weissenberg number W to determine the
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Fig. 3 (a) Nondimensional adhesion energy as a function of its neck radius and liquid volume for a blister inflated at a constant volume rate (W = 500).
The surface is cut by a flat plane (G∗ = G∗0) dividing the surface into two main regions: stable blisters with no delamination (G∗ < G∗0), and unstable
blisters that delaminate (G∗ > G∗0). (b) Phase diagram built from (a) where the color shows the value of the adhesion energy as a function of the neck
radius R∗, and the volume V ∗. The different lines show the limits of the stability regions (stable (S) and unstable (U)) resulting from having different
values of G∗0. Note that as G∗0→ 0 the unstable region grows until it spans the entire space. On the other end of the spectrum, if G∗0→ ∞ the unstable
region shrinks until it vanishes at G∗0 > Gmax, and the blister is stable at every R∗−V ∗ configuration.

time evolution of a blister growth. In summary, the solution
consists of two branches: when the blister in the stable region
(G∗ < G∗0), there is no delamination and the blister grows at con-
stant R following a horizontal path in the phase diagram. Alter-
natively, when a blister is in the unstable region (G∗ > G∗0) de-
lamination occurs and the blister neck grows at a rate given by
(21).

4.2 Blister spreading dynamics and trapping

Before analyzing predictions for the model, we first note that the
problem is now driven by the interplay of three length-scales: the
relaxation time of the polymer, the inflation (volume) rate, and
the delamination time (captured by the intrinsic speed v∗). For
clarity, we thus limit our analysis to constant inflation rates W and
introduce the spreading coefficient Z =W/v∗ to capture the com-
petition between inflation and delamination rates. Fig. 5 shows
a blister trajectories predicted by the model for three values of
Z, Z → 0, Z = 2 · 103, and Z =→ ∞). Initially, all blisters start in
a stable domain, i.e., no delamination takes place (V ∗ = 0), and
they follow a horizontal path in the V ∗−R∗ space. Once the blis-
ters reach the unstable domain, however, delamination starts and
the blister paths, which depends on inflation rates, diverge. We
discuss below the characteristics of these paths in three situations.

Slow inflation (Z→ 0). When the dynamics of delamination are
much faster than the inflation rate, blisters are unable to pene-
trate the unstable domain and remain on its boundary (Fig. 5a).
In other words, the blister first follows a horizontal path (no de-
lamination) until it meets the boundary of the unstable domain.
At this point, its path follows this boundary, since it maximizes
neck spreading for all inflation volumes. If the unstable domain
is bounded, the blister eventually reaches a maximum neck ra-
dius, after which it is unable to delaminate further and retrieve a

horizontal path. Depending on the adhesion energy, the outcome
will be a relatively flat blister (θ < π/2) blister that maximizes its
neck size. We finally note that if a blister initially starts within the
unstable domain, it will first follow a vertical path (i.e., it will de-
laminate before growing). These paths are indicated with vector
fields in Fig. 5.

Fast inflation (Z→ ∞) When inflation is significantly faster than
the blister’s spreading dynamics, the rate of neck growth becomes
negligible compared to the rate of volume growth. We thus ob-
serve growth in volume at quasi-constant neck size, as depicted
by the horizontal paths in Fig. 5c. Interestingly, this condition
allows a blister to cross-over the unstable domain without spread-
ing (as represented by the horizontal vector fields) and eventually
become stable once they are large enough. The outcome will be a
large and stable quasi-spherical blister with a small neck radius.

Intermediate inflation rates. Blisters inflated at relatively mod-
erate rates are able to enter the unstable domain, in which
they experience a combination of inflation and delamination, de-
pending on the value of the spreading coefficient Z. Fig. 5b
shows three typical paths taken by blisters, with different initial
neck radii, subjected to Z = 2 · 103. Overall, a blister possesses
three stages of growth: (a) growth without delamination until it
reaches the unstable domain, (b) combined inflation and spread-
ing, whose ratio depends on the value of Z and (c) Return to a
stable stage, where the blister growth without spreading. In this
case, the blister is trapped at a higher volume, i.e., it will never
delaminate again past this point. While our study only considered
constant inflation rates W , it is worth noting that stopping the in-
flation in the unstable domain would force the blister to follow a
vertical growth until it reaches the boundary between stable and
unstable zones. In this case, a blister would not necessarily reach
a maximum neck radius.
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Fig. 4 Stability phase diagram V ∗−R∗ obtained at a constant adhesion
threshold G∗0 but for different values of the Weissenberg number, namely
W = 250, W = 350, W = 500, and W → ∞. The shaded region
corresponds to a permanently stable adhesion; i.e., the blister is stable
regardless of the inflation rate, and corresponds to the upper bound of
the system obtained at W → ∞. The rest of the diagram corresponds to
a potentially unstable adhesion depending on the inflation rate. Each
value of W , defines a different limit such that the blister configuration is
unstable inside in the white region and stable in the gray region.

4.3 Experimental test

To observe these predictions in a simple experiment, we designed
a blister test using a hyperelastic adhesive tape (VHB 4905) ad-
hered to an aluminum substrate and inflated at a constant volume
rate. Since the tape and its adhesion both exhibits complex vis-
coelastic response44,47, whose study is beyond the scope of our
work, our objective here is not to quantitatively match model-
ing results, but rather to qualitatively demonstrate the key con-
cepts developed in this study (i.e. observe rate-dependent blister
growth, spreading and trapping).

Our experimental setup consists of an aluminum plate with a
circular hole of radius R0 = 3.5mm perfectly attached to a 3D-
printed base. This piece enabled connecting the hole to a NE-
1000 syringe pump (NEWERA Pump Systems Inc.) using a set of
polyethylene tubes. In order to inflate a blister, we then attached
a piece of VHB 4905 (h0 = 0.5mm) on top of the aluminum board
and injected dyed water at a constant volume rate V̇ . Since the
thickness (h0) and the mechanical parameters (kd , and ci) of the
adhesive tape were set by the manufacturer, we only had con-
trol over two of the four nondimensional parameters: R∗, and W .
Since the manufacturer sets the thickness of the tape, the former
parameter (R∗ = 7) is controlled by modifying the radius of the
circular hole in the aluminum plate. The Weissenberg number W
was controlled via the volume rate V̇ . Although the relaxation of
VHB possesses multiple relaxation times44, its chain dynamics is
approximated by an average value kd ≈ 0.0028 1/s44 which estab-
lishes an operational range of W between 3 and 3 ·104. The rest of
nondimensional parameters, G∗ and v∗, are unknowns which de-

pend on the contact properties between VHB and aluminum and
which would need to be calibrated. Furthermore, as described by
the manufacturer, the adhesion strength VHB tape is not reached
instantaneously, and it takes around 72 hours to reach its maxi-
mum potential. At this stage, we observed that the pressure in-
duced by the inflation of a blister was not enough to delaminate
the membrane; i.e., G0�Gi. To counter this effect, we performed
all blister tests exactly 5 minutes after the tape was attached to
the aluminum plate. At this moment, we observed that the level
of adhesion G0 was on the same scale to the energy release rate
G induced by the stresses on the membrane. Hence, this ensured
to have a low enough adhesion such that blister would delami-
nate with the incoming water and allowed us to investigate the
different scenarios previously described in this paper.

Using this experimental setup, Fig. 6b shows results the
resulting blister growth at three inflation rates: 0.001 ml/min,
0.1 ml/min, and 10 ml/min, which would correspond to Weis-
senberg numbers on the order of 3, 30, and 3000. We observe that
the blisters inflated at faster and slower rates have similar pro-
files. In the slowly inflated blister, this phenomenon occurs due
to the fact that the viscous forces are very low, and G < G0. If we
stopped inflating, its radius would remain the same. By contrast,
for the quickly inflated blister, a similar profile due to the blister
has not had enough time to delaminate, indicated by the higher
values of Z. If we stopped inflating, its radius would continue to
grow. For the intermediate case, however, we observe the highest
spreading dynamics as the blister is inflated at rate where W and
v∗ are comparable. This results in a larger neck radius compared
to the other two cases.

5 Conclusions
In this paper, we presented a new model combining the transient
network theory (TNT) and adhesion mechanics under finite de-
formation to study the mechanics of a viscoelastic blister. We
found that the combination of a hyperelastic rubber with high
viscous properties yields a nonlinear behavior of the adhesion en-
ergy with a new adhesive instability not present with pure elas-
ticity. For instance, we show the blister stability is not only deter-
mined by its geometry, but also by its inflation rate. Our results
suggest that this problem can be well understood from the phase
diagram where the adhesion energy is plotted as a function of
the neck radius and blister volume. This approach was used to
demonstrate that the final shape of a blister can be highly con-
trollable by tunning the initial neck radius, membrane thickness,
or inflation rate. Nonetheless, there are still many parameters
such as the prestretch of the membrane33, or the slippage dur-
ing delamination48 whose effect in combination with membrane
viscosity remains an unknown. In addition, the TNT not only
allows for an easy adaptation to other viscous materials, but it
also opens the door to future exploration on how specific mate-
rial properties might affect the behavior of blisters. For example,
considering more realistic non-constant values for the crosslink
density or the attachment and detachment rates will undoubt-
edly have profound implications on the conclusions drawn in this
manuscript.

Being able to control the morphology of a surface is a crucial
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Fig. 5 R∗−V ∗ path followed by three blisters with initial radii R∗ = 6, 8, and 10, which are inflated at a constant Weissemberg number (W = 500). The
three scenarios (a, b, and c) show the effect of varying the spreading coefficient Z =W/v∗, which corresponds to having blisters with different
spreading velocities. (a) shows a case where Z→ 0 such that v∗�W . In this scenario, blister delamination prevails over blister inflation. The blisters
are unable to penetrate the unstable regime, and the path follows the boundary between the two regions. (b) shows an intermediate case (Z = 2000)
where the blisters penetrate the unstable domain and progressively delaminate until G drops again below the threshold G0. Finally, (c) shows the case
inflation prevails over delamination (Z→ ∞). Under these conditions, the blisters enter and exit the unstable regime fast enough such that their neck
radius remains almost the same. Indeed, despite the high volume and stresses in the system, the relaxation rate can lower the energy release rate
below the threshold before the blisters have time to delaminate significantly.

feature in many processes such as adhesion, friction, camouflage,
or hydrophobicity of materials. For instance, blister-like actuators
made of hydrogels49 or dielectric materials50 rely on the rubber
instability in order to achieve extreme blister-like deformations.
However, this instability, as well as the potential delamination of
the material, depend on its viscous properties, which so far have
not been studied. In addition, the combination of the problem
considered here with novel reversible adhesion techniques51,52,
would provide an ideal framework to achieve a controllable and
reversible shape morphing material similar to the one shown by
arthropods. For this, one should also consider the effect of dam-
age in the network due to large deformation on the mechanical
response53.
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Appendix A: Membrane mechanics

In order to derive the governing equations of a membrane, we
start by parametrizing its position in space. As discussed in the
main text, the slenderness of a membrane allows representing it
by a 2D surface, the mid-plane, embedded in a 3D space. This
surface can be parametrized as xxx = xxx(ξ 1,ξ 2), where ξ α are the
parametric coordinates. Hence, we can define a local coordinate
system made of two tangent vectors aaaα = xxx,α and a normal to
the mid-plane nnn = aaa1×aaa2/‖aaa1×aaa2‖. In this coordinate system, a
vector and a tensor are written respectively as:

vvv = vα aaaα + vnnnn (22)

σσσ = σ
αβ aaaα ⊗aaaβ︸ ︷︷ ︸

σσσ t

+σ
αnaaaα ⊗nnn+σ

nβ nnn⊗aaaβ +σ
nnnn⊗nnn︸ ︷︷ ︸

σσσ nnn

(23)

In addition to that, we can define the metric tensor of the surface
in its covariant form as aαβ = aaaα ·aaaβ , which provides a mapping
between the parametric space and the actual representation of
the membrane. This tensor can alternatively be represented in its
contravariant form as aαβ defined by aαβ aβγ = δ α

γ . Finally, the
representation of a membrane is closed by defining the curvature
tensor in both its covariant and mixed form respectively by:

καβ = aaaα,β ·nnn κ
α

β
= aαγ

κγβ (24)

These local curvilinear coordinate systems are generally char-
acterized by the fact that they are not orthonormal. This implies
that one must redefine the variations a tensor by taking into ac-
count the variation of both the components and the basis. Hence,
we can write the divergence and gradient of a vector and a tensor
respectively as:

∇ · vvv =
(
vα |β

)
(25a)

∇ ·σσσ =
(

σ
αβ

∣∣∣
β
)aaaα (25b)

∇vvv =
(
vα |β

)(
aaaα ⊗aaaβ

)
(25c)

∇σσσ =

(
σ

αβ

∣∣∣
γ

)(
aaaα ⊗aaaβ ⊗aaaγ

)
(25d)
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Fig. 6 (a) Evolution of three blisters with identical initial state (v∗,R∗), but which are inflated at three different volume rates (W = 3,30, 3000) such that
the fastest inflation does not yield the fastest spreading. (b) Experimental observations of three different blisters inflated at different rates namely
V̇ = 0.1,1, and 10 ml/min. Assuming a constant value of kd = 0.00281/s, these values correspond to effective Weissenberg numbers of the order of
W = 3,30 and 3000.

where the vertical bar indicates a covariant derivative:

vα |β = vα

,β +Γ
α

βγ
vγ (26a)

σ
αβ

∣∣∣
γ
= σ

αβ
,γ +Γ

α
µγ σ

µβ +Γ
β
γµ σ

αµ (26b)

and Γα
α = 1

2 aαµ (aβ µ,γ +aγµ,β −aβγ,µ ) are the Christoffel symbols.
The equilibrium equations of a shell in this curvilinear basis are
determined by introducing these definitions into the balance of
linear and angular momentum such that one obtains:

σ
αβ

∣∣∣
β
+ f α = 0 (27)

σ
αβ

καβ + f n = 0 (28)

Appendix B: Axisymmetric details
In this appendix, we carry out the mathematical conditions to ob-
tain the axisymmetric form of the equations to finally obtain the
equations in an implementation-ready form. Let us start by intro-
ducing the following polar parameterization on the mid-plane:

ϕϕϕ = [r(ξ 1)cosξ
2,r(ξ 1)ξ 1 sinξ

2,z(ξ 1)] (29)

By simply applying the definitions of Appendix A, we can write
the metric tensor as:

aαβ =

[
r′2 + z′2 0

0 r2

]
(30)

where we used ‘ to indicate a derivative with respect to ξ 1. In a
similar way, the only non-zero Christoffel symbols can be written
as:

Γ
1
11 =

r′r′′+ z′z′′

a11
Γ

1
22 =−

rr′

a11
Γ

2
21 =

r′

2
(31)

and thus we can write the membrane equations as:

σ
11
,1 +

(
2Γ

1
11 +Γ

2
21

)
σ

11 +Γ
1
22σ

22 + ḟ 1 = 0 (32a)

σ
11

κ11 +σ
22

κ22 + f n = 0 (32b)

Next, if we consider the real stress in the shell by taking into ac-
count the magnitude of the basis, we can redefine the true stresses
on the membrane in its longitudinal and hoop direction respec-
tively as:

σ
s = σ

11a11 σ
φ = σ

22a22, (33a)

and substituting both (31) and (33) into (32) we directly obtain
the simplified form of the balance of linear momentum shown in
Eq. (2). Similarly, to obtain the simplified forms of the distribu-
tion tensor, we start by expressing the velocity gradient LLL = ∇v in

10 | 1–12Journal Name, [year], [vol.],

Page 10 of 12Soft Matter



terms of local basis as44:

L = (vα |β − vn
κ

α

β
)(aα ⊗aβ )+(vγ

κγβ + vn
,β )(n⊗aβ )

+
ḣ
h0

n⊗a3− h
h0

(vα
καβ + vn

,β )α
β ⊗a3. (34)

Then, by plugging this this expression into Eq.(5a) and Eq.(5b),
and note that vφ |φ = vs/r for the axisymmetric condition, we can
obtain the expression of Eq.(12a)-(12c):

µ̇
s = kd(1−µ

s)+2µ
s
(

vs|s +κ
1
1 vn
)

(35a)

µ̇
φ = kd(1−µ

φ )+2µ
φ

(
r′

r
vs +κ

2
2 vn
)

(35b)

µ̇
n = kd(1−µ

n)+2
ḣ
h

µ
n (35c)
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