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Glassy Dynamics in Models of Confluent Tissue with
Mitosis and Apoptosis†

Michael Czajkowski,∗a Daniel M. Sussman,b M. Cristina Marchettic and M. Lisa
Manningb

Recent work on particle-based models of tissues has suggested that any finite rate of cell division
and cell death is sufficient to fluidize an epithelial tissue. At the same time, experimental evidence
has indicated the existence of glassy dynamics in some epithelial layers despite continued cell
cycling. To address this discrepancy, we quantify the role of cell birth and death on glassy states
in confluent tissues using simulations of an active vertex model that includes cell motility, cell
division, and cell death. Our simulation data is consistent with a simple ansatz in which the rate
of cell-life cycling and the rate of relaxation of the tissue in the absence of cell cycling contribute
independently and additively to the overall rate of cell motion. Specifically, we find that a glass-
like regime with caging behavior indicated by subdiffusive cell displacements can be achieved in
systems with sufficiently low rates of cell cycling.

1 Introduction
A number of experiments conducted over the past decade1–4 have
indicated the existence of glass-like states in confluent epithelial
tissues. Evidence for glassy behavior includes the observation of
dynamical heterogeneities characteristic of supercooled liquids1

and caging effects in motile cell trajectories4. In these living tis-
sues, the constituent cells will often undergo mitosis (cell divi-
sion) and apoptosis (programmed cell death) in a regulated cell
life cycle. These cell life events are necessary for the survival and
function of many tissues5,6, and they clearly differentiate these
dense cellular systems from the molecular and polymeric glasses
that are so well studied. Introducing and removing material el-
ements from any system should impact the dynamics, and it is
therefore important to examine the effect of cell division and cell
death on glassy tissue dynamics.

Recent simulations have suggested that the presence of cell di-
vision and death should generically fluidize a tissue7–10. Employ-
ing a particle-based model, for instance, Matoz-Fernandez et. al.7

have suggested that, even at small rates kδ of cell division and
death per cell, one will not observe the sub-diffusive behavior of

a Physics Department, Georgia Institute of Technology, Atlanta, GA 30332, USA. E-
mail: mczajkowski7@gatech.edu
b Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY
13244, USA.
c Department of Physics, University of California at Santa Barbara, Santa Barbara, CA
93106, USA.
† Electronic Supplementary Information (ESI) available: [details of any
supplementary information available should be included here]. See DOI:
10.1039/cXsm00000x/

cell trajectories, which we take to be a hallmark of glassy systems.
This, therefore, poses a serious question for the experimental and
theoretical studies of these systems: why are caging behavior and
other signatures of glassy dynamics observed at all?

Earlier work by Ranft et. al.9 at the continuum level consid-
ered the effect of cell division and death events on a model of
3-dimensional elastic tissue. Their analytical findings, which are
supported by particle-based cell simulations, suggest that cell dy-
namics will be diffusive and controlled by kδ in the limit of long
times and infinitely large tissues. However, both this work and
many other previous investigations have focused on cell division
and death as the dominant driving force behind tissue dynam-
ics. Epithelial cells can also escape the cages set by their neigh-
bors through motility driven by traction forces the cells can exert
on a substrate. Such forces play important roles in the develop-
ment and function of organisms2,11–15; even in the absence of
cell division and cell death, the timescale over which cells may
escape their cages changes by orders of magnitude with variation
of propulsive forces and intercellular tensions15–20. The full dy-
namics of tissues which experience motile forces in addition to
mitosis and apoptosis should therefore have contributions from
each of these sources of internal driving. In particular, it is natural
to expect that the observed relaxation time of a tissue will be set
by a competition between the timescale of cell cycling events and
the timescale of cage escape due to the motile cells encounter-
ing mechanical energy barriers. To our knowledge, a systematic
analysis of the relationship between these two timescales over a
wide range of parameter space has never been performed in ei-
ther particle-based or cell-shape based models for tissues. Such
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an analysis would allow one to predict tissue fluidity, which has
been shown to help control disease states like asthma4 and devel-
opmental processes like body elongation21, as a function of both
cell cycling rate and inherent mechanical interactions between
cells.

A complicating factor in previous investigations of model tis-
sues with both active dynamics and cell cycle events is that they
have focused on particle-based modes and they often couple the
details of the cell cycle events to the current configurational state
of the tissue7–9 (for instance, triggering cell divisions when a par-
ticle is surrounded by a sufficient amount of space, or triggering
cell deaths when the local density or contact number is too high).
While such couplings may be biologically motivated, they also
make it difficult to separate out the mechanically fluidizing effects
of cell division and death on the glassy behavior of the model tis-
sues.

In this work, we focus on models of confluent tissues, where
there are no gaps or overlaps between cells. Such tissues are
well-described by so-called “vertex models” that have been used
extensively to understand patterning and rigidity in tissues22–27.
Although there has been substantial recent work on “Voronoi”
versions of such models20,28, here we introduce an “Active Ver-
tex Model” (AVM) which naturally incorporates cell motile forces
similar to the previously studied Self-Propelled Voronoi (SPV)
model, but without the restriction that cell shapes be described
by Voronoi volumes.

The remainder of this work is organized as follows. In Sec. 2
we describe our Active Vertex Model and characterize its dynami-
cal behavior in the absence of cell division and cell death. In Sec.
3 we extend this model to include a single controlled rate of mi-
tosis and apoptosis, and we demonstrate that the phase diagram
for this model has two dynamical regimes: one where the system
is dominated by cell cycle events and another where the system
is controlled by the inherent dynamics of the motility-only model.
These combined regimes are well-described by a simple ansatz in
which the overall relaxation rate is an additive independent sum
of the inherent rate of cell motility and the rate of cell cycling,
revealing a universal crossover between cell-cycle-dominated and
motility-dominated dynamics. In Sec. 4 we investigate the dis-
placement fields associated with individual mitosis and apoptosis
events. Each event produces an Eshelby-like29–31 displacement
field of tissue cells, in addition to a mechanical noise stemming
from the disordered geometry of the tissue. Quantifying these
displacements allows us to construct a prediction for the cell dif-
fusion across a broad range of cell cycling rates, confirming that
the effect of cell cycling on diffusion is similar to that predicted by
previous continuum models7,9, although the fluctuating motions
generated by disordered geometries that are typically ignored by
those models also contribute to overall cell motion. We close in
Sec. 5 with a discussion of how our results compare to previous
work, and we suggest experiments to guide future developments.

2 A Vertex Model for Motile Tissues
Numerical studies of the influence of motility on tissue dy-
namics have been conducted in particulate models16, the Potts
model32,33, and Voronoi / vertex models15,20,34,35. These in-

vestigations have generally indicated that motile forces tend to
promote fluidity and enhance diffusion. For instance, using the
SPV model – in which cells are described as polygons obtained
from a Voronoi tiling of the plane that self-propel analogously
with self-propelled particle models – Bi et. al.20 obtained a transi-
tion line separating glassy states from fluid-like states where cells
frequently exchange neighbors.

While the Voronoi description is theoretically appealing, the
restriction of cell shapes to local Voronoi volumes is not always
desirable. More seriously, Voronoi models are not easily extend-
able to describe tissues with free boundaries, as would be needed
to describe wound-healing geometries in 2D or isolated spheroids
in 3D. To avoid these issues, while simultaneously preserving the
spirit of the self-propelled Voronoi model, we have constructed
a model for a motile tissue that preserves the freedom of polyg-
onal cell shapes. In this work we restrict our attention to the
generic case where every vertex is three-fold coordinated, al-
though this restriction could be easily relaxed to study the sorts of
open boundaries described above. To our knowledge, the dynam-
ics of the particular Active Vertex Model presented herein has not
been explored in previous work. Therefore, we include a more
detailed description of the model, as well as quantification of its
dynamical states in the absence of cell cycle events.

2.1 Shape forces in the Vertex Model

In the Vertex Model22–25 cells are modeled as irregular polygons
tiling the plane, but in contrast to Voronoi models, the degrees of
freedom are the positions of the vertices of the spatial tiling. Pre-
vious studies using this model have typically involved searching
for geometric states which minimize the tissue energy,

EShape = ∑
a

Ea = ∑
a

[
κA (Aa−A0a)

2 +κP (Pa−P0a)
2
]
, (1)

where the sum runs over all cells a and κA and κP are elastic
moduli. This energy drives the area Aa and perimeter Pa of cell a
toward a target area A0a and a target perimeter P0a respectively.
The area term in Eq. 1 comes from the resistance to fluctuations
in cell height. The perimeter term may be seen as arising from the
competition between cell-cell adhesive interactions and the non-
linear tension created by the cortical actin network. While the
target shape properties may vary from cell to cell, in the absence
of cell division and death we presume cells identical with uniform
A0 and P0 values. An important parameter in such models is the
dimensionless target “shape index” s0 = P0/

√
A0, which controls

rigidity in both static26 and motile20 tissues.

2.2 The Active Vertex Model

Although the simplest implementation of activity in a vertex
model allows each vertex to be self-propelled, we would like to
model the behavior of a polarized motile cell moving persistently
along a specific direction. Therefore, we extend this model to
include self propulsion of cell a in the direction

n̂(θa) = cos(θa)x̂+ sin(θa)ŷ , (2)

2 | 1–17Journal Name, [year], [vol.],

Page 2 of 17Soft Matter



(a) (b)

(c)

11

decre
asin

g s 0

decreasing s0

Fig. 1 Quantification of phase behavior in the Active Vertex Model (AVM) with Dr = 1 and Ncells = 300. In (a), the timescale τα0 of the decay of the
self-overlap function grows beyond the length of simulations as the vertex model tuning parameter s0 is decreased while v0 = 0.05 is held fixed. In
(b), the mean square displacement of cell centers for the same phase points indicates this increasing timescale is associated with subdiffusive caging
behavior. In (c), τα0 is shown on a logarithmic colorscale for a representative set of points in the s0− v0 plane. Black stars indicate phase points where
τα0 is too long to be resolved with our data. The inset shows the implementation of cell motility in terms of vertex forces as prescribed by Eq. (7).

where the cell propulsion angle θa is governed by

∂tθa = ηa , (3)

with ηa being a white gaussian noise defined by

〈ηa(t)〉= 0 (4)

and
〈ηa(t1)ηa′(t2)〉= 2Drδ (t1− t2)δaa′ . (5)

Assuming that cell dynamics take place in the overdamped limit,
vertex µ will follow an equation of motion,

∂trµ =−1
γ

∂

∂rµ
EAV M , (6)

where γ is the substrate friction. Here and throughout we use
superscripted greek letters to refer to vertex positions, and sub-
scripted latin letters to refer to cell positions. The total effective
energy,

EAV M = EShape− γv0 ∑
cells−a

n̂(θa) · ra , (7)
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now captures the cellular self-propulsion forces (of magnitude v0)
in addition to the standard shape energy from Eq. 1. This energy-
based method is analogous to the implementation of motility in
active incarnations of the Cellular Potts Model32,36,37. In our
AVM simulations we define ra as the cell centroid, or geometric
center,

ra =
1

6Aa
∑
ν

(
rν

a + rν+1
a

)
(rν

a × rν+1
a ) · k̂ , (8)

where ν here indexes the Na vertices on cell a in counterclockwise
fashion and rNa+1

a = r1
a.

With these equations of motion, each cell attempts to carry out
a persistent random walk, as is commonly observed for cells iso-
lated from the surrounding tissue and in the absence of external
signals38,39. We note that previous work28, has used the term
"Active Vertex Model" to refer to simulations with active propul-
sion acting on centers of a Voronoi tesselation, while those sim-
ulations are referred to as "Self-propelled Voronoi" (SPV) models
earlier in the literature20. This has caused some confusion in the
field.

Here we reserve the term "Active Vertex Model" for the general
class of models where the degrees of freedom are the vertices,
not the centers of a Voronoi tesselation, and where forces are ap-
plied to these vertices to propel the cell in a coherent direction.
Previous incarnations of such models have treated each vertex as
its own self-propelled unit40,41 or given each vertex an external
force proportional to the average of the cellular self-propulsion
of the cells with which that vertex is associated42. In contrast,
adding a term to the energy functional as in Eq. 7 allows us to
model the self-propulsion as acting on the cell as a whole, while
still allowing mechanical interactions between cells to depend on
the vertices. Furthermore, writing things in this way permits an
analogy with the Voronoi model. In the SPV, the degrees of free-
dom are the Voronoi centers and we might imagine constructing
the same energy Eq. 7, using these Voronoi centers as the {ra}.
It is easy to see that using these as the degrees of freedom in the
overdamped equation of motion,

∂tra =−
1
γ

∂

∂ra
E

= v0n̂(θa)−
1
γ

∂

∂ra
Eshape ,

(9)

indeed leads to the standard SPV dynamics20,28,43. We are there-
fore using the closest energetic analog that implements SPV dy-
namics in a vertex model. In the AVM we will instead apply shape-
based and motility-based forces to the vertices. These forces may
be precisely defined by taking the derivatives in Eq. 6, as ex-
plained in greater depth in Appendix A.1.

2.3 Glassy dynamics in the Active Vertex Model

Since this model for confluent tissue dynamics has not been ex-
plored in previous work, we first examine its behavior and search
for glassy states. We quantify the dynamical state of the system
by using two familiar metrics: the mean square displacement and

the self-overlap function. The self-overlap function is defined as

O(t) =
1

Ncells
∑
a

Θ(b−|ra(t)− ra(0)|) , (10)

where Θ is the Heaviside function and b represents the size of
a typical cage in natural units, which we set to 0.5. All lengths
are measured in units of 1/

√
ρ, where ρ is the system number

density. The function O has a value of 1 at t = 0 and decays
towards zero as cells move beyond the caging distance b. The
structural relaxation time τα0 is defined as the point at which the
self-overlap decays below 1/e.

As indicated in the introduction, in this work we use the term
“glassy” to primarily refer to the presence of a subdiffusive regime
in the mean squared displacements, and to the observation of
uncaging times τα0 that are orders of magnitude longer than ex-
pected from free diffusion. The uncaging time averaged over 10
systems of Ncells = 300 is displayed in Fig. 1. Its behavior is consis-
tent with previous work on the Self-Propelled20 and Thermal35

Voronoi models. Less motile tissues at lower s0 (higher cortical
tension) are indeed glassy and have long relaxation times. The
tissue may be effectively fluidized by either increasing v0 (higher
effective temperature) or increasing s0 (higher cell-cell adhesion).

Although the overlap function shown in Fig. 1 appears qualita-
tively similar to those observed in other glassy materials, both it
and the mean-squared displacement shows an unusual behavior.
In most glassy materials, the mean-squared displacement levels
off to a subdiffusive regime where ∆r2 ∼ t0, followed later by a
diffusive regime ∆r2 ∼ t1. Here we find anomalous sub-diffusive
behavior with a non-standard exponent, ∆r2∼ tα , where 0<α < 1
which persists across a wide range of timescales. In this same
parameter regime, we also see multiple timescales in the shear
stress autocorrelation function. These results are highlighted in
Appendix A.2. Such properties are highly atypical in the con-
text of standard glasses, and may be related to the unusual zero-
temperature rigidity transition in such models34. Understanding
the origins of this behavior will be an interesting avenue for fu-
ture work.

As we are interested in characterizing the simple long-time dif-
fusion of cells in our model, this unusual behavior is problem-
atic. To acknowledge this, throughout the manuscript we high-
light with distinct symbols any data presented from simulations
that remain sub-diffusive on long timescales. In Section 3 we will
see that the parameter regimes of the active vertex model that are
diffusive at long times have dynamics which are easily interpreted
as a competition between glassy relaxation and relaxation driven
by cell division and death.

3 Simulation of mitosis and apoptosis
events

We would now like to incorporate the influence of cell cycle
events in these vertex model simulations. To identify an appro-
priate procedure, we first note that division and death events can
change the total number of cells and the cell areal density, with
potentially drastic changes in tissue dynamics. To minimize such
effects, we choose to work in a constant-number ensemble. In
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Fig. 2 The process for a single mitosis event in our model is shown
sequentially in (a-c). Starting again with the initial cell in (a), the model
steps for apoptosis are shown sequentially in (d-f).

our simple implementation, each instance of apoptosis will be ac-
companied by a mitosis event somewhere else in the tissue. In
addition, the implementation of the individual cell cycle events is
chosen to preserve the sum of the cell target areas.

In apoptosis, a cell will abruptly contract to a small size and
then extrude itself, effectively disappearing from the 2d mono-
layer44. Shown in Fig.2(d-f), our simple realization of apoptosis
on cell a begins with setting the target area and target perimeter
to zero, while leaving moduli κP and κA unchanged. This change
induces the rapid contraction of cell a to small size and generally
will lead to a final triangular shape. The simulation then detects
triangular cells that are smaller than some threshold area Amin

and removes them.
Similarly, in the process of mitosis a cell will expand, even-

tually reaching a threshold size and dividing into two complete
cells45–47, all the while maintaining tissue cohesion48. While this
process typically spans a much longer time period than the event
of a cell death, we model this growth process as similarly instan-
taneous to suppress fluctuations of tissue density. Shown in Fig 2,
in the division of cell a two non-adjacent edges of the cell are
chosen at random, and their midpoints determine the axis of the
division. A vertex is then added to the center of each edge and
these new vertices are connected with a new edge. Naturally the
product is two closed polygonal cells out of one, and the shape
parameters of these new cells are then set to the values of the
parent cell. These cells are then allowed to expand dynamically
in the simulation. Similar division dynamics were studied in a
quasi-static system by others, including Farhadifar et. al.22.

Such constant number simulations allow us to enforce a global
cell cycle event rate k∆, which is implemented as a Poisson pro-
cess. This sets the effective cycle rate per cell as kδ = k∆/Ncells.
Note that kδ is a more appropriate parameter for real biological
systems whose cell cycle timing does not depend strongly on the
extent of the surrounding tissue. We therefore use kδ = 1/τδ as
our tuning parameter.

In simulations with cell division and death, complications arise
when trying to extract cell trajectory data. This is because many
trajectories will start and end during the course of the simula-
tion. Rather than parse this network of trajectories, we follow the
method used in Ref. 7 and exclude a small (%10) subset of the
cells from the cell cycle events. Using these “tracer” cells to ob-
tain our dynamical data is both convenient and affords the closest
comparison with the previous literature7.

We note that fast rates of cell division tend to cause tissues
to reach rare topological states that can generate a breakdown
in our simulation framework; to avoid this we restrict the data
presented here to τδ > 3000.

3.1 Tissue dynamics in the presence of mitosis and apopto-
sis

Given this simulation protocol, we search for signatures of glassy
behavior. Tissue dynamics is quantified using the uncaging time
τα , defined as the time required for the observed self-overlap to
decay below 1/e. The notation intentionally differs from that in
Section 2.3, to distinguish τα0 as the uncaging time in the limit of
the model without cell cycle events (i.e., the limit kδ = 0).

Our search for glassy behavior is guided by the simple expec-
tation that the dynamics is determined by a competition between
the timescale τδ of division and death events and the timescale of
motility driven cage escape τα0. Naturally, we recover the dynam-
ics of the “bare” (free of cell division and death) AVM in the limit
τδ � τα0 where mitosis and apoptosis will play a negligible role.
One may then expect to find the opposite behavior in the limit
τδ � τα0, where motility-based dynamics should become negligi-
ble. To check this, we increase s0 to decrease τα0. In the top-left
region of Fig. 3-a where τα0 is large and τδ is small (kδ is high) we
observe structural relaxation times τα which are approximately
independent of s0 and by proxy, τα0.

3.2 Simple model for interaction between τδ and τα0

Building on the limiting behaviors described above we develop a
very simple ansatz for the interplay between cell death and divi-
sion and glassy dynamics. Specifically, we assume that the overlap
decay rate 1

τα
of a dividing tissue is determined by the weighted

sum of the bare cage escape rate 1
τα0

and the rate of division and
death events according to

1
τα

=
1

τα0
+

C2

τδ

, (11)

where C2 captures the displacements of surrounding cells result-
ing from the division and death events. The strong assumption
we have made here is that the two rates add in series and are
not strongly correlated. Our model predicts that the quantity τα

τα0

will be a function only of τδ

τα0
. As shown in Fig. 4, this works rea-

sonably well, indicating the generic presence of a regime where
fast divisions dominate the dynamics and τα is proportional to τδ

(left side of Fig. 4), along with a regime of slow divisions where
τα becomes independent of τδ (right side of Fig. 4). To under-
stand what controls the crossover, we quantify the impact of cell
division and cell death events on the motion of surrounding cells
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Fig. 3 Dynamical measures of tissues with mitosis and apoptosis for v0 = 0.05, Dr = 1, and Ncells = 300. In (a), the measured overlap decay τα as
a function of s0 and kδ (the cell cycling rate) is displayed as a colormap, indicating generically that kδ tends to fluidize the tissue. Black stars indicate
where τα is beyond the length of our simulations. In (b) and (c), mean square displacement and overlap curves are plotted for constant s0 = 3.76 over
a series (from green to blue) of τδ = 3k,6k,9k,20k,30k,90k,300k,900k,3M.

in the next section.

4 Flow and fluidization from individual mi-
tosis and apoptosis events

To quantify the effect of a single cell cycling (division or death)
event on the motion of the surrounding tissue, we perform a spe-
cial set of “single-event” simulations. In these, the standard AVM
is run for a short equilibration time before a single cell is chosen
at random to undergo either apoptosis or mitosis in a randomly
chosen direction. We then monitor the motion of the surrounding
tissue cells and average over 1000 realizations.

We measure the individual cell displacement vectors {ui} and
use them to construct a few useful quantities. In order to resolve

coherent spatial data, the cells are first binned based on their dis-
tance from the event (and in the case of cell division based on
their angle relative to the division axis orientation). Within each
bin, we calculate two quantities: the vector averaged displace-
ment u(m,a)(r,θ) and the vector standard deviation of this aver-
age w(m,a)(r,θ) where the subscripts m and a refer to mitosis and
apoptosis events, respectively. As noted by Puosi et. al.31 for the
similar case of shear transformations in thermal sphere packings,
the vector averaged u(m,a)(r,θ) captures the mean elastic response
of the surrounding medium. These data are shown in Fig. 5 (a),
(b) and (c).

A straightforward calculation of the response of a homoge-
neous elastic medium to localized strains31 suggests that the
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Fig. 4 Observed uncaging times for the AVM with division and death at a range of rates τδ and (from blue to red) s0 =

(3.82,3.825,3.83,3.84,3.85,3.875,3.9,3.925,3.95). The τα values come close to collapse with simple rescaling using τα0 and suggest a universal
crossover between motility-dominated and division-death dominated dynamics. Data is represented by “+" symbol where diffusion is never observed
in the corresponding “bare” AVM and is represented by “*" otherwise. The black dashed line represents the prediction via Eq. 11 for s0 = 3.95, which
matches well with the simulation data. All data is from simulations with Ncells = 3000, Dr = 1.0 and v0 = 0.05.

mean deformations associated with either a cell death or cell di-
vision event should fall off as r−1 in two dimensions, which is
indicated by the dashed line in Fig. 5(c). As highlighted in Fig 13
in the Appendix, there are strong finite-size effects in our simu-
lations that cause this field to fall off quickly on the scale of the
periodic box size. Therefore, even for our largest system sizes
we have access to only about a decade of radial data, and so we
are unable to distinguish whether potential screening effects may
cause this field to drop off faster than 1/r.

Additional cell displacements are expected to arise in the vicin-
ity of the event due to disorder in the tissue structure. These addi-
tional fluctuating displacements are captured by w(m,a)(r,θ). It is
important to note that this quantity captures both local contribu-
tions from the mitosis (apoptosis) event, as well as contributions
everywhere from active, motility driven, cell motions. To separate
the local contribution of these fluctuating elastic displacements
from the noise generated by the active forces in the AVM, we first
average over θ

|w(m,a)(r)|2 = 〈|w(m,a)(r,θ)|2〉θ , (12)

and then define

δu(m,a)(r)
2 = |w(m,a)(r)|2−|w(m,a)(∞)|2 , (13)

where |w(m,a)(∞)|2 is the far-field plateau in the fluctuating dis-

placement field generated by active noise, shown in the inset to
Fig. 5 (d). The resulting rotationally averaged fluctuating dis-
placement field, δu(m,a)(r), captures only the motion caused by
the cell cycling event. It is plotted in Fig. 5(d) for a mitosis event.

We note that in the granular literature49, the mean displace-
ment field is often referred to as the "affine" component, while
the fluctuating part is referred to as the "non-affine" component.
However, since those terms do not correspond to formal defini-
tions of affine and non-affine transformations, we choose not to
adopt that terminology here.

From the data in Fig. 5(c) we can immediately note that the
mean deformations show only minor variation with the change
in s0 and therefore depend little on the quiescent dynamics. In
contrast, in Fig. 5(d) we see that the fluctuating motions decrease
as we go from more rigid tissue at low s0 to more fluid tissue at
s0 ∼ 3.9. The degree of variation is, however, still minor and in
general the dynamical response to cell division and death events
is not expected to be a good indicator of the underlying dynamical
state of the tissue.

4.1 Predicting Cell Displacements from Mitosis and Apopto-
sis

In the simple model in Eq. 11 it is assumed that motility and cell
cycling contribute independently and linearly to the rate of cell
motion. This same assumption implies that the diffusion D will
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(a) (b)

(d)(c)

Fig. 5 Mean and fluctuating displacements quantified in response to a single mitosis/apoptosis event. In (a) and (b), arrows show the mean dis-
placements in response to a mitosis and apoptosis, respectively, for a tissue with s0 = 3.6, v0 = 0.05. Colormap indicates the magnitude of these mean
vectors with grid spacing 1.5. Panels (c) and (d) show cell displacements as a function of distance to the cycling cell for s0 = 3.75,3.8,3.85,3.9 (blue
to red). Panel (c) shows the magnitude of the rotationally averaged mean displacements as a function of distance from a mitosis event. The green
dot-dashed line is the expected scaling 1/r . In (d), the values for the δu(m,a)(r) per Eq. 13 are plotted similarly, revealing a finite region of fluctuating
displacements. Inset shows that w plateaus at long distances to the expected value from mean-square displacement data in the bare AVM.

be the sum of independent parts D = D0 +Dδ , where D0 is the
contribution from motile forces and Dδ is the contribution from
the cell cycling. Below, we estimate Dδ from the displacements
measured for single cell-death and cell-division events.

As pointed out by Ranft et. al.9, the mean displacements iden-
tified above produce a constantly changing reference state in an
elastic material. Therefore, while cells may oscillate in their
cages, the cages themselves move as a result of each event via
the displacement fields u(m,a)(r,θ). We would like to estimate the
effect of this changing reference state on the mean square dis-
placement of our tracer cells. These events will simultaneously
create fluctuating displacements, which will also contribute to the
net cell motion.

To estimate the total diffusion produced by these different con-
tributions (mitosis and apoptosis, mean and fluctuating displace-
ments), we again make the simplifying assumption that they are
uncorrelated. We can then write Dδ as a sum of the decoupled
parts

Dδ = ∑
i

Di = Dmean
(a) +Dmean

(m) +D f luc
(a) +D f luc

(m)
. (14)

Here, Dmean
(m,a) captures the diffusion due to the mean u(m,a)(r,θ),

while D f luc
(m,a) captures diffusion due to the fluctuating δu(m,a)(r,θ).

Quantifying each of these diffusion constants will rely on the
simplifying assumptions (1) that we may ignore randomness in
the timing of the divisions and deaths and (2) that the effect
from each event is felt instantaneously by the surrounding tis-
sue. This enables us to simply sum up the contributions from the
n(t) = tNcells/τδ events that will have taken place after a time t.
Therefore, each term in Equation 14 may be estimated in terms
of an average magnitude of motion per cell per event di as

Di =
Ncells

4τδ

d2
i , (15)

where the four contributions from the rhs of Eq. 14 are now in-
dexed by i. As shown in Appendix C, the values of d2

i may be
then estimated from summation of the single-event data shown
in Fig. 5(b) and (c). In practice, d2

i is computed as a spatial av-
erage. For example, motion arising from the mean displacements
created by a mitosis event is

d2
i =

1
AT

∫
d2x u2

(m)(r,θ). (16)
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As these simulation data are measured on a radial grid in discrete
bins, the integral in Eq. 16 will turn into a sum over bins, and will
have a cutoff radius at r ∼ L/2. While this excludes cell displace-
ments in the corners of the simulation box, this contribution is
small and the predictions constructed without these corners vali-
date their exclusion. As shown in Fig. 6-(a), each of these contri-
butions to the diffusion Di is essential to form a complete predic-
tion of the observed diffusion. In Fig. 6 this prediction provides a
reasonable estimate, deviating most significantly for tissues which
display glassy signatures in the (τδ → ∞ limit) bare-AVM. This
breakdown is expected because the corresponding component D0

in our prediction is no longer truly a diffusion, since the AVM it-
self displays anomalous subdiffusion in this regime as discussed
in Appendix 2.

This prediction for the diffusion constant may be extended to
a prediction for the uncaging time τα , which performs similarly
well. Relating these two quantities relies on the simple result
D · τα = cB which applies to free overdamped Brownian motion
in 2D. The constant cB ∼ 0.1363 is straightforwardly derived as
shown in Appendix. B. Using this relation, our prediction of τα

then relies only on the assumption that, on long time scales, the
motion of cells is Brownian.

This is an assumption which, again, begins to break down as
motion becomes glassy and cage-escapes become intermittent.
In Fig. 4, the black dashed line prediction matches well with
(red) data. However, even where anomalous subdiffusive glassy
signatures arise, our prediction captures this crossover between
motility-dominated and cell division/death dominated dynamics
reasonably well.

5 Discussion
To study the influence of propulsive forces on the dynamical state
of tissues, we have developed an Active Vertex Model that natu-
rally generalizes the Vertex Model framework to incorporate cell
motility analogously with self-propelled Voronoi models20. In
Section 2, we have shown that this model qualitatively repro-
duces some of the dynamical results of the SPV model. As found
previously by Bi et. al.20, we locate “glassy” states which exhibit
sub-diffusive mean square displacements. The transition from a
fluid-like state to a solid-like state is achieved either by decreas-
ing the propulsive forces, or by increasing the effective cell-cell
interfacial tension.

We then extended the AVM to investigate the influence of cell
death and cell division on tissue dynamics. Our investigation was
guided by the expectation that the rate of cell division and death
will compete with the “bare” uncaging rate from the AVM to de-
termine the tissue dynamics. This simple picture allows us to
identify evidence of glassy states even at finite rates of apoptosis
and mitosis. The glassy behavior found here appears to be in a
different regime from the one explored in7, where sources of ac-
tivity beyond cell cycling were not the focus. We again emphasize
that another pertinent difference is the choice of whether or not
to couple cell cycle events directly to the local structural state of
the individual cells. This may resolve a standing discrepancy be-
tween existing experiments and theory. While cell division and
death events will generally lead to diffusive fluid-like behavior

on the longest timescales, subdiffusive behavior can be observed
on intermediate timescales when the bare uncaging rate is slow
enough to allow it and the cell division rate is low enough to not
obscure it. The subdiffusive dynamics also suggests, by analogy
with supercooled fluids, that these tissues will behave elastically
on these intermediate timescales.

We further characterized the spatial distribution of cell dis-
placements in the vicinity of each individual mitosis and apop-
tosis event. As expected from previous work for the case of
area-preserving deformations31, we have identified an average
displacement field that matches the one obtained from elasticity
theory, as well as “fluctuating” displacements that arise from the
disordered geometry. The mean elastic response decays spatially
as ∼ 1/r, with a magnitude that does not depend significantly on
tissue dynamics. The fluctuating displacements, in contrast, vary
in magnitude with model parameters, such as cell interfacial ten-
sion. Specifically, mitosis and apoptosis events tend to generate
more rearrangements in rigid tissues than in fluid ones.

Using the calculated mean and fluctuating displacements re-
sulting from these division and death events, we assess the rela-
tive importance of motile forces versus division and death in the
tissue dynamics. From this data, we are able to construct pre-
dictions for both the diffusion coefficient and the uncaging time.
These predictions are very accurate for systems where true dif-
fusive exponents are measured and begin to break down as sub-
diffusive glassy signatures emerge. Even in these glassy states,
however, the prediction gives a good qualitative description of
the crossover from motility-dominated to cell cycle-dominated dy-
namics.

Taken together, our results provide a general perspective on
the role of cell division and cell death in tissues. To reasonably
good approximation, cell cycle events appear to produce long-
time diffusivity that adds linearly with the existing cell dynamics.
This linear behavior appears independent of the approximate cell
lifecycle 2τδ for the values probed here, but is expected to break
down as this lifetime gets faster than the speed of sound in the
tissue and events begin to interact.

In addition, we have not yet addressed the question of whether
glassy signatures persist as the tissue size is increased. In Ap-
pendix C.1 we present a scaling argument that suggests that
the total diffusion due to mean displacements should increase as
log(N) over some range of N in our two-dimensional simulations.
However, we expect a large-scale cutoff for this log(N) behavior in
disordered systems because there is a characteristic lengthscale at
which the signal generated by the mean displacements associated
with one event will destructively interfere with that from another
event, as has been previously highlighted for sheared particulate
packings50. As the system size surpasses this lengthscale, we no
longer expect the log(N) scaling to hold, and so the system will re-
main glassy in the thermodynamic limit. While our data is consis-
tent with these arguments, very large system sizes and enormous
statistics are required to carefully constrain logarithmic scaling,
which is beyond the scope of this manuscript. Testing this hy-
pothesis is an important avenue for future investigations.

So far, we have focused on dynamics that explicitly keeps the
tissue at a fixed number density, in order to pinpoint the effect of

Journal Name, [year], [vol.],1–17 | 9

Page 9 of 17 Soft Matter



(a) (b)

Fig. 6 Separate contributions to diffusion from mean and fluctuating displacements and the bare diffusion add up to approximate the measured
diffusion in (a). In (b), the validity of this prediction is tested for a range of division rates and a series of s0 values. Simulations where the MSD does not
ever become truly diffusive are not included. Criteria for diffusion here is that the MSD-exponent α be greater than the cutoff value 0.9.

cell divisions on tissue dynamics. However, in many experiments
on epithelial monolayers, a common and interesting regime is
where cell divisions outnumber cell deaths and so the number
density increases rapidly. An important open question is how Ac-
tive Vertex Model parameters, such as s0 or v0, change during
epithelial densification. Several experiments on pairs or triplets
of cells indicate that many epithelial cells exhibit “contact inhibi-
tion of locomotion”, where cells reduce traction forces and slow
down upon contact11,51–54. Such behavior could be modeled by
decreasing v0 as a function of time in densifying monolayers, and
additional experiments to measure traction forces and fluctua-
tions during such slowing processes would be very valuable in
constraining model predictions. Perhaps even more interestingly,
it remains unclear how cells regulate their shape s0 with changing
number density. One possibility is that cells attempt to maintain
the same shape despite changes to density, meaning that they
must change their perimeter to match their decreasing area as
a function of time. Alternatively, one could postulate that cells
keep their preferred perimeter fixed while their area decreases
dramatically, resulting in an increasing s0 that would fluidize a
tissue. This latter hypothesis seems inconsistent with existing ex-
perimental data, where tissues are generically found to solidify
as they become more dense. Careful studies of cell shape cou-
pled with careful studies of interfacial tensions55 would help to
constrain models and better test model predictions.

An important question is whether a given real biological tis-
sue or cell colony exhibits dynamics dominated by cell divisions
(e.g. the left-hand side of Fig. 4) or dominated by the inherent
mechanical energy barriers (e.g. the right-hand side of Fig. 4).
It is straightforward to measure the rate of cell divisions, and so
to answer this question we need a method to extract the inherent
alpha relaxation timescale in the absence of cell divisions from ex-
periments. In our simulations, this timescale is controlled by the
combination of Dr, v0, and cell shape s0, but estimating the self
propulsion speed v0 and the target shape index of cells s0 from
experiments is difficult. As we show in Fig. 4, it is not the partic-

ular detailed combination of (Dr, v0, s0) that matters, but rather
the alpha relaxation timescale that those parameters imply; the
data collapses based only on that alpha relaxation timescale, and
so we should try to measure that directly in experiments. A possi-
ble experiment would be to study the mean-squared displacement
(and extract the alpha-relaxation timescale) in an epithelial layer
or other tissue exposed to drugs or inhibitors (e.g. mitomyosin or
a cdk1 inhibitor) that arrest cell divisions with minimal impact on
other cytoskeletal properties.

Another important point is that the rate of cell divisions often
changes drastically over the time course of one experiment. For
example, at the beginning of many experiments on epithelial mat-
uration, cells are dividing much more rapidly than the inherent
alpha relaxation timescale, on the order of every 10 minutes11.
Our model predicts that fluctuations from the cell divisions should
thus promote fluidity on these time scales. However, epithelial
tissues which have reached a quiescent epithelial state are known
to undergo a near complete arrest of cell divisions (and propor-
tionally cell deaths), with a division timescale on the order of 50
days11. We think this manuscript provides a framework for bi-
ologists and biophysicists to quantify precisely how low the cell
division rate has to be to allow a state with jammed or glassy dy-
namics, which biological systems may then utilize to drive other
processes4,21

Finally, it is interesting to think about how cell division and
death rates are themselves affected by tissue dynamics. For ex-
ample, it is known that in many cell types cell division rates are
governed by the magnitude of local stresses that build up in the
tissue47,56. In addition, the orientation of a cell division is also
controlled by local stresses. This creates the possibility for inter-
esting feedbacks, where tissue dynamics is controlled by the rate
of cell division and the rate of cell division is controlled by tis-
sue dynamics. Understanding precisely how division and death
affect dynamics is therefore very important for predicting how
such feedback loops can control tissue growth and patterning. It
would be interesting to explore how such feedback loops generate
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Fig. 7 Illustration of the vectors and geometric components involved in
evaluating the forces on vertex µ due to the shape energy and the motility
of cell a

patterns in AVMs, and compare to experiment.
-
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6 Appendices

A The Active Vertex Model
Here we include a more detailed description of the Active Vertex
Model implemented in this work.

A.1 Forces in the Active Vertex Model
In this Active Vertex Model (AVM), the degrees of freedom are the
positions of the vertices of the spatial tiling. The vertex labeled µ

follows an overdamped equation of motion

∂trµ =−1
γ

∂

∂rµ
E , (17)

where γ is the substrate friction. The effective energy

E = Eshape− γv0 ∑
cells−a

n̂(θa) · ra , (18)

captures the self-propulsion force (of magnitude v0) of each cell
a in direction θa in addition to the standard shape energy terms
from Eq. 1. The geometric center (centroid) ra of cell a defined
by

ra =
1

6Aa
∑
ν

(
rν

a + rν+1
a

)
(rν

a × rν+1
a ) · k̂ , (19)

captures the center of mass of a polygon of uniform mass density.
Here, ν indexes the Na vertices on cell a in counterclockwise fash-
ion and rNa+1

a = r1
a. The polygon area may be expressed in similar

terms as
Aa =

1
2 ∑

ν

(rν
a × rν+1

a ) · k̂ . (20)

The force (and therefore motion) on each vertex can be cal-
culated by carrying out the derivatives in Eq. 6. Each vertex in
this model is connected to 3 cells and each cell energy will con-
tribute separate terms to the net motion of the vertex. If vertex µ

is connected to cells a, b and c, then the motion breaks down into

∂trµ =−1
γ

(
∂

∂rµ
Ea +

∂

∂rµ
Eb +

∂

∂rµ
Ec

)

+ v0

(
∂ (n̂(θa) · ra)

∂rµ
+

∂ (n̂(θb) · rb)

∂rµ
+

∂ (n̂(θc) · rc)

∂rµ

)
.

(21)

For simplicity, we may focus on the contributions from cell a. As
identified in previous work43, the shape energy produces tension-
based and pressure-based forces on each vertex. The shape-based
force on vertex µ from cell a reads

∂

∂rµ
Ea =−

Πa

2
(n̂ablµγ + n̂aclµλ )−Ta(l̂µγ + l̂µλ ) , (22)

where γ and λ index the vertices of cell a which are adjacent to
µ, lµγ (lµλ ) and l̂µγ (l̂µλ ) are the length and direction of the edge
connecting vertex µ to vertex γ (λ) and the unit vector n̂ab (n̂ac)
points across the edge shared by cell a and cell b (c) as in Fig 7.
The tension and pressure of cell a are respectively

Ta =
∂Eshape

∂Pa
Πa =−

∂Eshape

∂Aa
. (23)

Similar to the above, we now evaluate derivatives to under-
stand the self propulsion forces which act on the vertices. Again,
we will consider only the contributions from cell a. The derivative
will take the form

∂ (n̂(θa) · ra)

∂rµ
=

∂ra

∂rµ
· n̂(θa) (24)

With these expressions, taking the derivative in Eq. 24 is tedious
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Fig. 8 A T1 topological rearrangement in our AVM simulations identifies
an edge with length l0 < lc, rewires the network connections appropri-
ately, rotates by π/2, and extends the edge length to a factor λ times its
original length.

but straightforward. This becomes

∂ ra, j

∂ rµ

i
=

1
6Aa

[
δi j(rλ × rµ ) · k̂+δi j(rµ × rγ ) · k̂

+(rλ
j + rµ

j )R(π/2)ikrλ
k +(rµ

j + rγ

j )R(−π/2)ikrγ

k

−3(R(π/2)ikrλ
k +R(−π/2)ikrγ

k )ra, j

]
,

(25)

where

R(θ)i j =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(26)

is a vector rotation by an angle θ , (i, j) index cartesian vector
components in the x−y plane and Einstein summation convention
is assumed for repeated indices. While the expression in Eq. 25
is a bit unwieldy, we note that it is translationally invariant and
may consider it in a more convenient coordinate system r̃ = r−ra

which has its origin at ra. Using this, we find the force on vertex
µ due to the motility of cell a as

fµ(a)
i = v0n̂(θa) j

∂ ra, j

∂ rµ

i

=
v0n̂(θa)i

3Aa
[Aλ µ

a +Aµγ
a ]

+
v0

6Aa

[
R(π/2)ik r̃λ

k n̂(θa) j(r̃λ
j + r̃µ

j )

+R(−π/2)ik r̃γ

k n̂(θa) j(r̃
µ

j + r̃γ

j )

]
,

(27)

where Aλ µ
a and Aµγ

a are the area of triangles with vertices
{ra,rλ ,rµ} and {ra,rµ ,rγ} respectively, as shown in Fig. 7. While
this expression does not lend itself to much insight, we can see on
inspection that the first terms will move the vertex in the direc-
tion of n̂(θa). The second terms in the large square brackets will
roughly serve to shrink the length of interfaces at the back of the
cell, while expanding the length of interfaces at the front.

While these forces determine the continuous time-evolution
of the vertices, there can be no large-scale migration of cells

through the tissue until topological rearrangements are allowed.
We therefore include a protocol for T1 rearrangements (as shown
in Fig 8) which are sufficient to explore the space of cellular
topological configurations at constant density. In practice, the
edge lengths are periodically checked after a time tT 1 for values
lower than a threshold `c. These edges are then topologically re-
arranged so that the two cells which initially share the short edge
are no longer in contact. The edge is then rotated by π/2 and
the length extended by a factor λT 1. The value of tT 1 = 0.05 used
here is chosen for speed of simulation, while the rescaling factor
λT 1 = 2 is chosen to avoid “T1-traps” whereby the same transition
may repeat itself regardless of energetic favorability. The cutoff
length `c = 0.04 is chosen small enough to make the transition ap-
pear continuous but also large enough so that a vertex may “find”
and activate the desired T1. The parameters `c, λT 1 and tT 1 have
been separately varied within reasonable ranges and the impact
on the dynamics appears insubstantial. These simulations are im-
plemented using the “cellGPU” codebase previously developed by
one of us42.

We note again that this form of the Active Vertex Model is cho-
sen to minimize the differences with the Self-Propelled Voronoi
model. The differences are limited to the following: (1) the Active
Vertex Model has more degrees of freedom, avoiding the shape
constraints of Voronoi tesselations, (2) T1 rearrangements in the
AVM must be done by hand, while in the SPV they come about
naturally and (3) motility in the AVM is designed to propel the
centroid of the cell, whereas for the SPV this is replaced by the
Voronoi center.

A.2 Subdiffusive Exponents and Exotic Dynamical States in
the Active Vertex Model

While the main text describes the glassy behavior present in the
AVM, Vertex Models governed by an energy of the type in Eq. 1
may also be subject to anomalous energy landscapes and non-
trivial inherent stresses34,35. As a reflection of these features, dy-
namical signatures such as the mean-square displacement (MSD)
and the self-overlap (as defined in Eq. 1) may appear anomalous
in the vicinity of the glassy phase. Here, we explore these anoma-
lies in greater detail.

The mean-square displacement in thermal particulate systems
approaching a glass transition will display the signatures of
“caging”. This manifests as a flat plateau in the MSD as particles
reach this cage size (radius) and are temporarily trapped before
diffusing away on a longer timescale57,58. The AVM MSD, in con-
trast, near the onset of glassiness does not appear to completely
flatten at any discernible length scale. Instead, we observe an
extended subdiffusive regime which emerges as the system ap-
proaches the glassy state, implying that there may not be a well
defined cage-size and that the cells are exploring an unusual dis-
tribution of local metastable states as they attempt to realize their
target shapes. It may therefore not be useful to think of the travel
between these metastable states as "cage-breaking" which come
paired with intermittent jumps in displacement on the order of
the particle size. Instead, it appears that a distribution of effec-
tive cages may be traversed by the cells in a more continuous
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(a) (b)

(c)

Fig. 9 Revealing the persistent subdiffusion in the Active Vertex Model.
In c, the long-time exponent of the MSD is plotted on a colormap for
the same phase data as in main text Fig. 1c. Phase points where the
uncaging time τα0 is beyond the simulation time are left white. Along the
interface, a region where this exponent α is distinctly lower than unity
despite the finite uncaging time indicates the anomalous dynamics. In a,
and b, we display the varied character of the overlap (a) and the MSD
(b) curves for points with the same uncaging time τα0 ∼ 2 ·104 and corre-
sponding, from green to red, to the points at (s0,v0) = (4.01, 0.02), (3.88,
0.03), (3.833, 0.05) , (3.81, 0.07), (3.783, 0.1), (3.632, 0.4), (3.573, 0.5)
as indicated by the red stars in the phase diagram. All data for Dr = 1.0
and Ncells = 300.

manner.
The above points to the unconventional geometric mechanics

of the Vertex Model as the cause of this anomalous behavior, but
we must also consider the details of the non-equilibrium dynamics
chosen here. As we have employed a non-zero persistence time of
these forces as τp = 1/Dr = 1, we also perform simulations with
the motility replaced by thermal forces on the vertices at effective
temperature T . These thermal simulations are run in the AVM
with v0 set to zero, and the equation of motion of a vertex instead
obeying

∂trµ =−1
γ

∂

∂rµ
E +η

µ (28)

where
〈ηµ (t)〉= 0 (29)

and
〈ηi(t1)η j(t2)〉=

2T
γ

δi jδ (t1− t2) (30)

Results for this thermal vertex model are summarized in Fig. 10

and indicate qualitatively the same behavior as observed for cell
motile forces. We also note that previous studies in the Self-
Propelled Voronoi and Thermal Voronoi models have not explic-
itly identified this subdiffusive dynamical feature. This indicates
that this strange extended subdiffusion is associated with the Ver-
tex Model geometric energy along with the vertex degrees of free-
dom that it acts on.

Finally, we investigate temporal fluctuations in the mechanical
stress as defined instantaneously by

σi j =
1

AT
∑

cells−a
Aa

[
∂Eshape

∂Aa
δi j +

1
2Aa

∑
µν∈a

∂Eshape

∂ lµν

i

]
(31)

as in Ref.43. From this global tissue stress, we compute the stress
autocorrelation function via

Cσ (t) =

〈
σxy(t0 + t)σxy(t0)

〉
t0〈

σ2
xy(t0)

〉
t0

. (32)

Where the angular brackets denote the average over both noise
and over the time t0. In practice, the computation of this correla-
tion is accomplished using the multiple-time algorithm described
by Ramírez et. al. in Ref.59. This stress auto-correlation function,
shown in Fig. 10 for a range of s0 values, indicates additional un-
usual behavior. Specifically, we do not resolve the traditionally
expected “beta” (fast) and “alpha”(slow) decorrelation times. In-
stead, the stress appears to decorrelate in three or more stages
across a range of timescales. This may also indicate that the pro-
cess of cage breaking can occur across a broad range of different
length scales (and therefore different time scales) in epithelial
tissues.

B Relating the Uncaging Time to the Diffu-
sion Constant for Brownian Particles

This work relies largely on two scalar measures of tissue dynam-
ics, the uncaging time τα and the diffusion coefficient D. Here we
show that, for the case of Brownian motion in two dimensions,
these quantities may be related explicitly as

τα D = cB ≡
−b2

4ln[1− 1
e ]

, (33)

where b is the radius defining the cage size in the overlap function
(Eq. 10). This equation (which is related to the Stokes-Einstein
relation) breaks down as a material approaches a glass transition,
and therefore provides important context for interpreting dynam-
ical parameters.

To understand Eq. 33, we note that free Brownian motion of an
ensemble of particles may be described by a smooth probability
density function P(x, t) which is governed by Fick’s Law

∂tP(x, t) = D∇
2P(x, t) . (34)

To understand the measured uncaging time, we must first solve
for the P(x, t) for a single particle starting at an arbitrary point x0

at a time t0. This corresponds to solving with an initial condition
P(x0, t0) = δ (x− x0). Preserving the normalization of P, this is
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(a) (b) (c)

Fig. 10 Summarizing the dynamical signatures in the Thermal Vertex Model. In a, the uncaging time τα0 is displayed in a logarithmic colormap
revealing similar behavior to that for the AVM shown in Fig. 1c. Black asterisks again indicate phase points where τα0 is out of range. In b, the long-time
MSD exponent α is plotted in a colormap for the same phase space in a, again with the points where the uncaging time is out of range left blank. A
region of phase space with subdiffusive behavior extending sufficiently beyond cage escape is indicated by the dark region near the boundary. In c,
the extended subdiffusion is shown for points (from blue to red) at s0 = (3.75,3.77,3.79,3.81,3.83) and T = 0.00045. All data for Ncells = 300.

Fig. 11 The shear-stress autocorrelation function Cσ (t) in the Thermal
Vertex Model shows unusual temporal character in the glassy state. This
data for T = 0.00045 over a series of s0 values at the same points as in
Fig.10c. Three timescales are suggested instead of the traditional two
“alpha” and “beta” relaxation times.

solved for t > t0 by

P(x, t) =
1

4πD(t− t0)
Exp

{
− [x−x0]

2

4D(t− t0)

}
. (35)

This probability distribution may be used to take averages and we
may therefore rewrite the self-overlap,

O(t) = 〈Θ(|∆ri(t)|−b)〉 , (36)

as

O(t) =
∫ b

0
rdr

∫ 2π

0
dθP(r, t) , (37)

where, for convenience, we have set t0 = 0 and r = |x− x0|. The
uncaging time is then defined by the condition O(τα ) = 1/e and

we may insert Eq. 35 into Eq. 37, integrate, and manipulate to
find our desired result in Eq. 33. Evaluating this constant for the
case b = 0.5, we find that τα D = cB ∼ 0.1363.

C Displacements due to single division or
death events

Here we describe our method of converting displacement data
for single apoptosis and mitosis events into averaged motions per
event d2

i as well as a predicted diffusion coefficient Dδ per Equa-
tions 14 and 16.

C.1 Estimating mean contributions to displacement
To estimate the first and second diffusion coefficients on the right
hand side of Eq. 14, we will use the "single-event" mean motion
data u(m,a)(r,θ) obtained in Section 4. Due to the similarity of the
data shown in Fig. 5 & 12, we will treat apoptosis and mitosis
events with the same procedure. On the long timescales which
we are interested in, each event effectively instantaneously moves
the cells via the mean displacement u(m,a)(r,θ) and the cells then
follow an equation of motion

∆x(m,a)(t) =
n(t)

∑
j

u(m,a)(r j,θ j) (38)

in which the n(t) displacements due to previous events at loca-
tions (r j,θ j) with respect to our tracer cell are simply summed
up. With this EOM, the MSD may be computed as

〈∆x2
(m,a)(t)〉=

n(t)

∑
j

〈
u(m,a)(r j,θ j)

〉
. (39)

where 〈〉 here is the average over the realizations of these apop-
tosis and mitosis events. As the stochasticity here comes from the
spatial positioning (and orientation) of the mitosis (apoptosis)
event with respect to our tracer, finding this average for 〈u2

(m,a)〉
requires integrating over the possible positions and orientations
of this mitosis (apoptosis) event. This amounts to a spatial inte-
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(b)(a)

Fig. 12 (a) Mean and (b) fluctuating displacement fields produced by an isolated apoptosis event across a range of target shape s0. Parameters are
identical to those in main text Fig. 5(c) and (d).

gral 〈
u(m,a)(r j,θ j)

〉
=

ρ

Ncells

∫
d2xu2

(m,a)(r,θ) (40)

over the mean displacement data where ρ is the global number
density of cells. Note that this averaged quantity is precisely the
corresponding d2

i quantity from the main text. To directly produce
a numeric value for 〈u2

(m,a)〉 from the data, the integral is turned
into a sum over all the bins in r and θ . The diffusion coefficient
produced by these motions is then defined from Eq. 39 as

Dmean
(m,a) =

Ncells

4τδ

〈
u2
(m,a)

〉
(41)

The estimate produced above leads to useful and accurate pre-
dictions of the dynamics as shown in Figures 6 and 4 in the main
text. However, this prediction provides little insight into the func-
tional form of these mean diffusions. Some insight can instead
be gained by estimating the integral in Eq. 40 using some as-
sumptions based on the data. In Fig. 13(a) we see that averag-
ing these mean displacements over the angular bins appears to
roughly approach a 1/r trend as expected from Eshelby theory.
We presume at large system sizes that this may be captured by
u(m,a)(r) = u(m,a)/(ρr). This trend persists out to a distance of
∼ 0.3L where the event begins to interfere with its periodic im-
age and drops off quickly (here L =

√
Ncells/ρ is the periodic box

length). A good approximation of the average displacement is
given by

〈u2
(m,a)〉=

2πρ

Ncells

∫ rlarge

rsmall

drru2
(m,a)(r) , (42)

where the small rsmall and large rlarge ∼ 0.3L cutoffs of integration
respectively capture the typical cell neighbor spacing and the ex-
tent of the mean field. Inserting the above form of u(m,a)(r) and
integrating, we find an expression for the diffusion

Dmean
(m,a) =

Ncells

4τδ

〈u2
(m,a)〉

=
πu2

(m,a)

2τδ ρ
ln
(

rlarge

rsmall

)
.

(43)

Inserting rlarge = 0.3
√

Ncells/ρ we will find that this contribution
to the diffusion scales as D∼ log(N). However, this predicted scal-
ing will only continue as long as the appropriate long-distance
cutoff rlarge is set by the box size. As we consider increasingly
large tissues, these mean fields will interfere with that from other
events rather than periodic images of the same event. There-
fore we expect that the cutoff length (and by proxy, the predicted
Dmean
(m,a)) will become independent of the tissue size in large enough

tissues.

C.2 Estimating fluctuating contributions to displacement
Similar to the previous section, we now consider the contribu-
tion to diffusion from the fluctuating (third and fourth) terms in
Eq. 14. Similar to Eq. 38, the contribution to the tracer dynamics
generated by these fluctuating displacements is written as

∆r f luc
(m,a)(t) =

n(t)

∑
i=0

δu(m,a)i , (44)

where δui is the fluctuating displacement produced by the i-th
mitosis(apoptosis) event. This displacement is assumed to have a
random direction and magnitude determined by the distribution
of δu(m,a)(r) from Eq. 13. The mean square displacement again
relies on the quantity 〈δu2

(m,a)〉, which again takes the form of a
spatial average

〈δu2
(m,a)〉=

ρ

Ncells

∫
d2xδu2

(m,a)i(r,θ) . (45)

Turning this integral into a sum over bins, the fluctuating dis-
placement data from Section 4 can be used to estimate these con-
tributions to diffusion

D f luc
(m,a) =

Ncells

4τδ

〈δu2
(m,a)〉 . (46)
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(b)

Fig. 13 Scaling of mitosis-based displacement fields with system size
for a tissue with s0 = 3.8,v0 = 0.05,Dr = 1.0. In (a) the mean displace-
ments are roughly consistent with a 1/r form which persists to a finite
fraction of the box size. Dotted vertical lines indicate the cutoff estimate
rlarge = 0.3

√
Ncells/ρ. Grey region indicates an estimated core-region of

the event, beyond which the scaling may begin. In (b), the fluctuating
displacements extend over a finite region of fluidization and are roughly
unchanged by increasing system size.

Similar to the case of the mean displacements, we may esti-
mate the form of the diffusion Eq. 45 based on some more tangi-
ble parameters. This is accomplished by approximating the fluc-
tuating displacements as a uniform region of fluidization with
δu(m,a)(r) = w(m,a)Θ(Rw− r). The diffusion is then

D f luc
(a,m)

=
ρπw2

(m,a)R
2
w

4τδ

. (47)

Fig. 5 (b) indicates that all of these parameters above are inde-
pendent of system size as long as L is sufficiently larger than Rw.
Therefore the contribution of these displacements to cell dynam-
ics is also independent of system size as long as

√
Ncells/ρ > 2Rw.

These fluctuating components may also be checked for scaling
with increasing system size. As shown in Fig. 13-b, the mitosis
event creates a finite region of fluidization which is consistent

across system sizes.
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