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Evolution of critical buckling conditions in imperfect
bilayer shells through residual swelling

Anna Lee,a‡ Dong Yan,a Matteo Pezzulla,a Douglas P. Holmes,b and Pedro M. Reisa∗

We propose and investigate a minimal mechanism that makes use of differential swelling to mod-
ify the critical buckling conditions of elastic bilayer shells, as measured by the knockdown factor.
Our shells contain an engineered defect at the north pole and are made by two layers of different
crosslinked polymers that exchange free molecular chains. Depending on the size of the defect
and the extent of swelling, we can observe either a decreasing or increasing knockdown factor.
FEM simulations are performed using a reduced model for the swelling process to aid us in ra-
tionalizing the underlying mechanism, providing a qualitative agreement with experiments. We
believe that the working principle of our mechanism can be extended to bimetallic shells under-
going variations in temperature and to shells made by pH-responsive gels, where the change in
knockdown factor could be changed dynamically.

1 Introduction
From colloidal capsules at the microscale to meter-sized pressure
vessels, the buckling of thin shells is observed across a wide vari-
ety of length scales and has been challenging scientists and engi-
neers for more than a century1–3. Shell buckling originally was of
interest primarily to structural engineers, within the realm of the
design and analysis of thin-walled mechanical systems. However,
in the last decades, it has become apparent that the buckling of
shell structures is also relevant at much smaller scales, both in
the living world and in technological settings, with examples, to
name just a few, ranging from the Venus flytrap4, pollen grains5,
red blood cells6, and colloidal capsules7.

The catastrophic (subcritical) nature of shell buckling has made
it an iconic example of an elastic instability; when the differ-
ence between the outer and the inner pressure of a shell is in-
creased above a critical value, the shell collapses and loses its
load-carrying capacity2. As such, determining the critical buck-
ling conditions of a shell is of extreme importance in the design
and prevention against failure. Still, this task has proven to be
nontrivial since the catastrophic nature of the instability trans-
lates into a high imperfection sensitivity: typically, shells buckle
at significantly lower loads than those suggested by classic theo-
ries, in an unpredictable way8. These imperfections can be either

aFlexible Structures Laboratory, Institute of Mechanical Engineering, École Polytech-
nique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
bDepartment of Mechanical Engineering, Boston University, Boston, Massachusetts
02215, United States.
‡Current address: Department of Mechanical Engineering, Pohang University of Science
and Technology, Pohang, Gyeongbuk 37673, Korea.
∗E-mail: pedro.reis@epfl.ch

due to variations of the geometry or material properties, or both,
and can arise either during the fabrication or over the lifetime of
the structure. Consequently, it took nearly four decades to rec-
oncile experimental results with the theoretical prediction for the
buckling pressure first derived by Zoelly1. As a result of the high
imperfection sensitivity and to aid in designing and characterizing
shell structures, engineers have defined the knockdown factor, κd,
as the ratio between the maximum experimental load sustained
by the shell before buckling and the classic theoretical predic-
tion9. For thin shell structures, κd can be as low as 0.2. Ratio-
nalizing the factors that dictate κd has been a major challenge in
engineering mechanics throughout the 20th century10 and, with
the lack of formal predictive frameworks, the practical design of
shell structures is mostly limited to empirical guidelines11.

Recently, Lee et al. 12 proposed a rapid and simple fabrica-
tion technique to manufacture thin shells based on the coating
of hemispherical molds with a polymer solution, which eventu-
ally cures to produce an elastic shell with nearly uniform thick-
ness. Thin shells produced this way have knockdown factors up to
κd ≈ 0.913. However, even though fabrication techniques can be
improved to reduce the number and the size of imperfections, the
inherently subcritical nature of shell buckling represents a strong
limitation towards the strengthening of shells by merely improv-
ing their fabrication. Moreover, as buckling can also be a means
towards functionality as in the lock and key mechanism for col-
loids7 or in microswimmers14, shells would benefit from being
dynamically strengthened or even weakened, depending on their
task. While there are some strategies to strengthen shells, such as
introducing ribs15 or fibers16,17, they are tailored primarily for
large-scale systems where the introduction of ribs or fibers can
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Fig. 1 A schematic of differential swelling in a polymer bilayer and
schematics of two types of bilayer shells. (a) Free chains diffuse from
VPS-8 (pink) to VPS-32 (green) driven by a concentration gradient. (b)
The volume of VPS-8 decreases while the volume of VPS-32 increases
as a result of differential swelling. (c) Shrinking on top shell consists of
VPS-8 (softer and shrinking) outer and VPS-32 (stiffer and swelling) in-
ner layers. (d) Swelling on top shell consists of VPS-32 outer and VPS-8
inner layers. Solid arrows correspond to swelling and dashed arrows cor-
respond to shrinking.

be more readily accomplished than at the microscale. Still, some
small-scale examples of reinforced shells do exist, such as fiber-
reinforced micro-capsules17 and pollen grains5. The latter have
a complex composite structure where the outer layer (known as
the exine) is significantly stiffer than the inner layer. These tech-
niques rely on the introduction of stiffening parts in the shells
and cannot be extended to weaken or strengthen the shell dy-
namically.

Here, we introduce and investigate a minimal mechanism to
modify the buckling strength of shell structures, making use of
differential swelling in a bilayer polymeric structure. The sim-
plicity of our system contrasts with the design strategies men-
tioned above, which require added manufacturing complexity to
the structure, whereas our mechanism relies solely on a swelling
stimulus. In our prototypical example, the shell comprises two
layers of different silicone elastomers that undergo differential
swelling from residual, uncrosslinked polymer chains after curing
when in contact18. The sign of the natural curvature induced by
residual swelling depends on the relative position of the swelling
versus the shrinking layers (i.e., which one is on the outside)18,19,
and we observed marked differences in both the time series of
the buckling pressure and its steady-state value. In a region of
parameter space, we find that the buckling strength of the bilayer
shell can increase or decrease. This problem is analogous to the
buckling of bimetallic shells20–25, where the structure can buckle
due to a combination of uniform temperature change and applied
external pressure. Given that, in practice, no shell is perfect, we
decide to study the effect of residual swelling on shells containing
a single well-defined engineered defect at the north pole13. Our
goal is to investigate whether this geometric imperfection could
potentially be either repaired or aggravated, depending on the
original shape of the imperfection, as well as on the natural cur-
vature that evolves due to differential swelling.

In the fabrication of our experimental samples, we use two
vinylpolysiloxane (VPS) polymer liquids (VPS-32 and VPS-8,
Zhermack), which have been shown to undergo differential
swelling when in contact after they are fully cured. This pro-
cess, known as residual swelling, involves residual, uncrosslinked
polymer chains that diffuse from one polymer to the other, across
their interface19,26. Figure 1(a-b) presents a schematic of this
diffusion process. During curing, polymerization leaves many un-
crosslinked free chains in VPS-8 but much fewer in VPS-32. This
concentration gradient of free polymer chains causes a net flux of
these free chains into the VPS-32 layer (Fig. 1(a)). The associated
mass diffusion results in a variation of the volume of each layer
(Fig. 1(b)) which, together with geometric confinement, can lead
to the build-up of residual stresses that deform the bilayer struc-
ture. The two types of bilayer shells are illustrated in Fig. 1(c-d),
where the order of layer is changed in order to change the sign
of the natural curvature. From now on, we will refer to shrinking
layer on top shell and swelling layer on top shell, to indicate the
configurations in Fig. 1(c) and (d), respectively.

Our paper is structured as follows. We start by describing the
experimental protocols to fabricate hemispherical bilayer shells,
measure the buckling pressure, and characterize the deformed
shapes of the shells. We then investigate how differential swelling
and the initial geometric imperfection change the time-evolution
of the knockdown factor. To aid us in rationalizing the underlying
mechanism, we conduct Finite Element Method (FEM) simula-
tions to first predict the buckling pressure of the shells using their
experimentally measured deformed shape, and then perform a
parametric study to investigate the influence of thickness varia-
tions, natural curvature, and defect amplitude. We conclude by
summarizing our findings and providing an outlook of possible
future research.

2 Experimental methods

To characterize the buckling load of elastic shells, we first need
to measure their elastic properties, such as Young’s modulus and
bending stiffness. Most importantly, as our shells are made by
two layers of different elastomers that are undergoing differen-
tial swelling, we have to characterize the mechanical properties
of the structure over time; i.e., as the swelling takes place. To
do so, we fabricate an originally flat bilayer beam, which exactly
replicates the structure of the shell through its thickness, in terms
of both polymers and dimensions. We then study the bending of
the beam over time, so as to characterize the swelling in terms
of time scale and maximum natural curvature19. In Appendix A,
we provide the details of this characterization and show that the
elastic properties (Young’s modulus and bending stiffness) of the
bilayer beam remain constant throughout.

We turn to investigate the time dependence of the shape and
the buckling strength of bilayer shells made out of both VPS-8
and VPS-32. We will start by describing the protocol that we used
to fabricate our bilayer shells, then characterize their shape and,
finally, measure their buckling pressure as a function of time.
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2.1 Fabrication of hemispherical bilayer shells

We engineer a defect in the shells in order to be able to quantify
the effect of differential swelling on the shape of the defect and,
consequently, its effect on the critical buckling pressure of the
shell (knockdown factor). Note that without a seeded defect that
is more dominant than the uncontrollable small imperfections
that are intrinsic to the manufacturing process, the experimen-
tally measured knockdown factor cannot be predicted by FEM
(see Section 4). Moreover, uncontrollable imperfections could be
either repaired or aggravated as a result of the varying natural
curvature due to differential swelling (more on this below) and
would have unpredictable effects on the measured knockdown
factor. We shall show that, by including an engineered defect
(a localized deviation from a perfect hemispherical shape), we
will be able to quantitatively investigate how differential swelling
affects this geometrical defect, thereby dictating the knockdown
factor13.

We used the thick polydimethylsiloxane (PDMS) molds de-
scribed in Appendix B to fabricate bilayer shells made out of VPS-
8 and VPS-32. The manufactured shell can have the shrinking
layer (VPS-8) on top (Fig. 2(b)) or the swelling layer (VPS-32)
on top (Fig. 2(c)), depending on the order of coating of each
polymeric liquid during the fabrication process. In Fig. 2(a), we
illustrate the protocol we developed to fabricate our bilayer hemi-
spherical shells, ensuring clamped boundary conditions at their
equator. First, one of the VPS solutions was poured onto the con-
cave underside of the PDMS mold and turned upside down to
drain the excess polymer and produce a thin lubrication film12.
The curing time scale of the VPS polymers is approximately 10
min12, and both VPS-32 and VPS-8 are fully cured after 20 min.
After the first layer of VPS cured, the other VPS solution (VPS-
32 or VPS-8, respectively) was poured and drained to produce
the second inner layer. During the coating of both VPS layers,
small pendant droplets formed at the equatorial rim of the mold,
as illustrated in Fig. 2(a). Once the second layer of VPS solu-
tion cured, the excess polymer on the bottom surface of the mold
was cut out using a scalpel. We enforced that each layer has
the same thickness, h1 = h2 = 0.3mm by using the technique pre-
sented in Lee et al. 12 , and delaying the pouring time τw = 200s
for VPS-8 and 260 s for VPS-32, from the moment of preparation
of the VPS liquid.

After the fabrication of the bulk of the bilayer shell, we then
added a circular plate at its base (equator) in order to close the
shell and impose a clamped boundary (otherwise the shell would
undergo large deformations due to swelling, and break rotational
symmetry18). To set these boundary conditions, we poured a mix-
ture of VPS-8 and VPS-32 with a ratio 1:1 onto the acrylic plate
and covered the puddle of this mixture with the shell. The pud-
dle of VPS mixture gradually spread until the leading edge met
the shell at its equator, which, upon curing, formed a band with
a thickness of 3.1±0.5mm, which ensured the clamped boundary
condition at the equator. For this base plate of the shell, we used
a VPS-8 and VPS-32 mixture to minimize the effect that the base
plate had on the differential swelling of the bilayer shell. Had we
used pure VPS-8 or VPS-32 as a material of the base plate, we
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Fig. 2 (a) Fabrication process of a hemispherical bilayer shell that has
a flat defect of amplitude δ . Photographs of shell with (b) the shrinking
layer (VPS-8) on top and (c) the swelling layer (VPS-32) on top shells.
Profiles of the outer surface (solid line) and the inner surface (dashed
line) of the (d) shrinking layer on top and (e) swelling layer on top shells.
(f) Thickness profiles as a function of the zenith angle, θ , of the shrinking
layer on top and swelling layer on top shells.

would have observed significant diffusion between the shell and
base plate. We measured and compared the natural curvature of
an open bilayer shell (without base plate) and closed one (with
base plate) and found no difference between them, which reveals
that the base plate did not affect the differential swelling of the
shell. Finally, the bilayer shell closed with the plate at its equa-
tor was peeled from the PDMS shell, and a hole was made at the
center of the bottom plate.

We define t = 0 as the instant of time when the second layer
of the shell is poured onto the first, already cured, shell. The
first buckling pressure measurement was taken at t ≈ 30 min be-
cause the polymerization of the shell and the thicker band at
the equator, together with the preparation to measure the buck-
ling pressure required t ≈ 30 min. We fabricated a set of bilayer
shells with a systematic variation of the amplitude of the de-
fect, δ = {0,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5}mm, where
VPS-32 could be on top of VPS-8, or the reverse. For all sam-
ples, the radius of the shell was R = 25.1 mm, and the thick-
ness was h = 0.6 mm, such that the radius to thickness ratio
was η ≡ R/h = 42. This value of η satisfies the condition for a
thin shell η ≥ 20, as described in Ventsel and Krauthammer 27 ,
but our shell is still much thicker than the shells used in other
shell buckling experiments (η > 70). However, if the thickness of
the shell was to be decreased, the diffusion time scale would de-
crease steeply since T ∼ h2 as discussed also in Pezzulla et al. 26 ,
so that it would become difficult to investigate the time-evolution
of the knockdown factor, which is addressed in the next Section.

1–11 | 3

Page 3 of 11 Soft Matter



2.2 Protocol to measure the critical buckling pressure of bi-
layer shells

We recall that the knockdown factor κd is defined as the max-
imum experimentally measured pressure, pmax, which the shell
can withstand, normalized by the classical buckling pressure, pc,
for a perfect shell. The critical buckling pressure for a perfect bi-
layer shell, pc, was obtained by FEM with linear buckling anal-
ysis. In the FEM simulations, the bilayer shells had the same
parameters as the shells used in our experiments, but the mass
diffusion of free chains was not considered. The shell has a ra-
dius R = 25.1 mm, and the thickness of each layer was enforced
to be constant h1 = h2 = 0.3 mm. The Young’s moduli of each layer
were also assumed to be constant over time (Section 4), which is
consistent with our experimental measurements.

The shell was mounted onto an acrylic plate with a hole at its
center, and connected to both a syringe pump (NE-1000, New
Era Pump Systems, Inc.) and a pressure sensor (MPXV7002, NXP
semiconductors). The air inside the shell was extracted at the
imposed constant flow rate of 0.6 ml/min for 1 min, and then
injected back into the shell with the constant flow rate of 0.6
ml/min for 1 min. For each shell, we repeated these measure-
ments as a function of time to obtain time-series of the critical
buckling pressure. This air extract-inject process was repeated au-
tomatically every five minutes by programming the syringe pump.
The internal pressure was monitored at an acquisition rate of 1 Hz
using the pressure sensor. During the air extraction period, the
inner volume of the shell decreased, until the shell buckled, at
which point a minimum value of the internal pressure and its time
were recorded. Beyond this point, the shell deformed further, de-
creasing its volume, until the end of air extraction. During the
next air injection cycle, the deflection was reduced, and finally,
the shell returned to the original shape at the end of the air in-
jection. After a 3 min pause, the air extract-inject process was
repeated, so the time-step of the measuring process is 5 min.

2.3 Characterization of the final shape of the bilayer shells
through X-ray tomography

As shown in Section A of the appendix, differential swelling of
a bilayer beam causes its natural curvature to evolve. For the
case of bilayer shells, this swelling is also expected to modify the
shape of an existing defect. Consequently, a change in the geom-
etry of the imperfection, albeit small, can have a large effect on
the knockdown factor. Thus, prior to presenting the results on the
knockdown factor (Section 3), we shall first quantify the shape of
our bilayer shells at their final steady state, which, eventually, will
enable us to evaluate how the deformation of the defect relates
to the variation of the knockdown factor. The shape profiles re-
ported next will also be used in the FEM simulations (Section 4).

X-ray computed tomography (CT), together with digital image
processing, was employed to obtain three-dimensional (3D) data
on the full geometry of the bilayer shells. Specifically, we focused
on obtaining data on the outer and inner surfaces, from which
we could readily compute the thickness profile of the shells. We
found that the shape of the shell remained axisymmetric through-
out the differential swelling process. From the outer/inner sur-

faces data, we extracted curves along three meridians (at differ-
ent azimuthal angles) and averaged them to obtain the axisym-
metric shell shape, as well as its thickness profile. This nonde-
structive technique prevented us from having to cut the shell for
inspection. The scanning resolution was 26 µm (voxel size), and
each scan took approximately 1 hr. As such, we could not ob-
tain time-dependent data from the X-ray CT and, instead, we only
quantified shells at steady state (at least after 1 day past fabrica-
tion), once the shape had ceased to evolve due to saturation of
differential swelling.

In Fig. 2(b-c) we show photographs of the steady state of
two representative bilayer shells, one shrinking layer on top shell
(Fig. 2(b)) and one swelling layer on top shell (Fig. 2(c)). Both
of these shells were fabricated to contain a defect with an ini-
tial amplitude of δ = 0.4 mm, corresponding to δ/h = 0.66. In
Fig. 2(d-e), we plot the corresponding profiles of their outer and
inner surfaces (solid and dashed lines, respectively). The shrink-
ing layer on top shell has a large and smooth defect; see Fig. 2(b,
d). On the other hand, the swelling layer on top shell has a smaller
and sharper defect; see Fig. 2(c, e). For other shells with different
values of the initial defect amplitude, we found that the steady-
state shape near the defect varies accordingly but the shape of the
rest of the shell remains nearly the same.

Beyond the outer shape of the defect (which could have alter-
natively been obtained in an easier way using a contactless pro-
filometer), any potential spatial variation of the shell thickness
(the quantification of which can only be obtained through tomog-
raphy) must also be treated as an imperfection. If present, such
thickness variations are important as they would likely contribute
significantly to affect the buckling behavior and must, therefore,
be quantified. We expect the thickness profile of our imperfect
shells to be nonuniform in the vicinity of the defect due to fab-
rication details associated with the viscous flow of the polymer
suspension coating the surface of the mold, which precedes cur-
ing. Our shells could exhibit non-uniform thickness due to two
effects. First, under the flat part of the mold (which shapes the
initial shape of the defect), the Rayleigh-Taylor instability28 can
occur when the defect is large, which would induce a localized
increase of the thickness. Second, it is known that the thickness
of a liquid film flowing over a complex surface increases at a con-
cave corner29,30. In our shells, this effect could translate into the
VPS film having a maximum thickness along the circular edge of
the defect. We examine these two possibilities by extracting the
thickness profile from our X-ray CT scans.

In Fig. 2(f), we plot the final (steady state) thickness profiles
for a set of shells, as a function of the zenith angle θ . As repre-
sentative cases, we selected shells containing a defect with the fol-
lowing initial amplitudes, δ = {0.2,0.3,0.4} mm (dashed-dotted,
dashed, and solid lines, respectively), the three of which could ei-
ther have the shrinking layer on top (red lines) or swelling layer on
top (blue lines). Shrinking layer on top shell and swelling layer on
top shell have nearly the same thickness profiles, indicating that
the non-uniformity results from the fabrication procedure (vis-
cous coating), rather than from differential swelling. The thick-
ness at the pole was measured to be hθ=0 = {0.51,0.66,0.73}±
0.03 mm, for the shells with δ = {0.2,0.3,0.4} mm, respectively.
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The larger values of hθ=0 are obtained for shells with the larger
values of δ , which is compatible with the accumulation of VPS at
the pole due to Rayleigh-Taylor effects. Beyond the pole, another
maximum of thickness occurs near the edge of the defect (black
lines represented by the vertical lines in Fig. 2(f)), with the val-
ues of hβ = {0.64,0.73,0.75}±0.02 mm for δ = {0.2,0.3,0.4} mm,
respectively. The existence of this second maximum is consis-
tent with the mechanism mentioned above for the increase of the
thickness of a film near a concave corner (which is the case at the
edge of the defect). Away from the defect, the thickness decreases
to 0.6 mm in the rest of the shell, for all the cases evaluated.

The non-uniformity of the thickness reported above will need
to be included in the FEM simulations presented in Section 4,
and must also be considered when interpreting the experimental
results on the knockdown factor, which we present next.

3 Experimental results on the time-varying
knockdown factors

We proceed by making use of the experimental protocols pre-
sented above to quantify how the critical buckling pressure, and
hence the knockdown factor, of our bilayer shells evolves over
time due to differential swelling. We shall also compare the
knockdown factors of the shrinking layer on top and swelling layer
on top shells, and systematically explore how the evolution of κd

is affected by the amplitude of the defect. In Fig. 3, we plot time
series for κd(t), for the two cases of shrinking layer on top shells
(Fig. 3(a)) and swelling layer on top shells (Fig. 3(b)).

The experimental results reported in Fig. 3 clearly show that
shrinking layer on top shells become weaker with time, that is with
a positive increasing natural curvature, except for some noise
when the defects are small (δ/h < 0.3) since other imperfections
coming from the fabrication procedure might have a compara-
ble influence. Swelling layer on top shells, that is shells with
a negative decreasing natural curvature, become weaker over
time for small defects (δ/h < 0.16), but heals and get stronger
for larger defects, resulting in an increasing knockdown fac-
tor over time. Specifically, when the defect amplitude is small
(δ = {0, 0.1, 0.2} mm), the knockdown factor of shrinking layer
on top (Fig. 3(a)) shells slightly decreases from κd = 0.53± 0.06
to κd = 0.49± 0.04, a decrease of about 8%. With larger defects
(δ = {0.3, 0.35, 0.4, 0.5} mm), both the initial and steady-state
knockdown factor are lowered. The knockdown factor decreases
from κd = 0.30±0.03 to κd = 0.17±0.07 (≈ 43%).

For swelling layer on top shells (Fig. 3(b)), when the defect is
small (δ = {0, 0.1} mm), the knockdown factor decreases non-
monotonically by 16% and 12%, respectively. For larger defects,
the shell gets stronger increasing its knockdown factor, for exam-
ple, by 19% when δ = 0.3 mm and by 55% when δ = 0.4 mm.
Some non-monotonic behavior is observed for shells with even
larger defects. For example, for the case with δ = 0.5 mm, buck-
ling first occurs at the defect, and then, once κd reaches the maxi-
mum value, additional buckling events occur close to the equator,
meaning that the seeded defect is not the most critical imperfec-
tion. This is because the large thickness at the center compensates
the effect of geometric imperfection. Moreover, when the defect
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Fig. 3 Knockdown factor versus time. Experimental results of the knock-
down factor of the (a) shrinking layer on top shells and (b) swelling on top
shells with R = 25.1 mm and h = 0.6 mm. The amplitude of a flat defect is
varied δ = {0,0.1,0.2,0.3,0.35,0.4,0.5} mm.

is small (δ = {0,0.1}mm), the other uncontrollable imperfections
can have more significant effects on shell buckling.

In Fig. 4(a), we plot the initial (open symbols) and the final
(solid symbols) values of the knockdown factor, κd, as a function
of the normalized defect amplitude, δ̄ = δ/h, for both swelling
layer on top shells (blue circles) and shrinking layer on top shells
(orange triangles). These open and solid symbols correspond to
the large open and solid symbols in Fig. 3, respectively. The time-
series in Fig. 3 is a subset of all the data, and here Fig. 4 shows
all the data with error bars. With the same initial amplitude of
the defect, the swelling layer on top shells are generally stronger
than the shrinking layer on top shells. The error bars of the data in
this figure correspond to the standard deviation of three buckling
pressure measurements, with three different shells.

For swelling on top shells in the initial state (empty circles),
the knockdown factor continuously decreases and then reaches
a plateau as the defect size increases, which is analogous to the
relation between κd and δ̄ found in our previous work13, even
though the values of the plateaus are different because the geom-
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etry of the flat defects are different from the dimple-like defects
studied in the previous work. When the steady state is attained
(solid circles), the swelling layer on top shells heal the large defect.
The knockdown factor first decreases as the defect size increases
and then achieves a minimum value of κd = 0.50 at δ̄ = 0.33. The
knockdown factor then increases as the imperfection increases
further. The minimum value of κd = 0.50 at steady state is higher
than the value of the plateau κd = 0.43 in the initial state. On the
other hand, the knockdown factor of the shrinking layer on top
shells is nearly constant at first and then decreases as the defect
amplitude increases both in the initial (open triangles) and steady
(solid triangles) states. The value of the plateau for shells with
large defects is lower at the steady state than in the initial state.

Figure 4(b) shows how the knockdown factor varies from the
initial to the steady states. Specifically, we plot the variation of
the knockdown factor, ∆κd = κd,steady − κd,initial, versus the nor-
malized defect amplitude, δ̄ ; a positive value means that the
shell was strengthened over time. Shrinking layer on top shells
(crosses) have negligible ∆κd for small defect sizes, and then
decreasing ∆κd from +0.10 to −0.19 with δ̄ . Swelling layer on

top shells (squares) see their ∆κd increasing from −0.12 to +0.26
with the defect size, except when the defect and its thickness at
the center are too large (δ̄ > 0.8). Overall, differential swelling
can increase or decrease the knockdown factor of bilayer shells.
Small defects in swelling layer on top shells are aggravated by dif-
ferential swelling. However, large defects (δ̄ > 0.4) are healed
as the knockdown factor increases, by as much as ∆κd = 0.26.
The minimum knockdown factor for swelling layer on top shell
is κd = 0.50. On the other hand, the knockdown factor of shrink-
ing layer on top shells slightly changes with small defects, and
decreases with large defects over time due to differential swelling
by ∆κd =−0.19, at most.

4 Finite Element Simulations
To help us in better understanding the knockdown factor evolu-
tion observed in the experiments and explore broader parameter
space, we conducted simulations using the FEM to model bilayer
shells with residual swelling and compute their buckling load un-
der applied pressure. In the simulations, the swelling or shrinking
of the two layers is simulated, analogously, by thermal expansion
or contraction, respectively. Even though this does not represent a
physically-accurate modeling of swelling, and a microscopically-
based swelling model should be used, this simplified approach
does take into account the geometric changes (variations in nat-
ural curvature) similar to those induced by swelling, as also dis-
cussed in previous studies18,31. Note also that, since the swelling
changes the shape of shell just after fabrication, we could not ex-
perimentally measure the initial shape of the bilayer using X-ray
tomography which is a relatively slow technique (each scan took
approximately 1.5 hours). Therefore, in the FEM simulations we
used the deformed shape measured at steady state as the natural
configuration, which then undergoes thermal deformations. The
thermal expansion and contraction of the two layers are assumed
to have the same magnitude. The induced natural curvature k
is described by the curvature of a bilayer strip under differential
thermal expansion32 as,

kh =
48εT

(14+E1/E2 +E2/E1)
, (1)

where εT is the thermal expansion strain, and E1 and E2 are the
Young’s moduli of the two materials.

We performed FEM simulations using the commercial finite el-
ement modeling package ABAQUS/STANDARD. The hemispher-
ical bilayer shell is reduced to a 2D axisymmetric model since
the buckling observed in our experiments is axisymmetric. The
two layers are modeled by incompressible neo-Hookean materi-
als with the initial Young’s moduli measured in experiments. Each
layer is discretized by the reduced hybrid axisymmetric elements
CAX4RH with a regular mesh of 8 elements in the thickness direc-
tion, and 1000 elements in the longitudinal direction. Geometric
nonlinearity is considered in simulations. The shell is clamped
at the equator and a temperature field is applied to induce the
thermal expansion and contraction in the two layers. The shell
deforms to a new configuration under this differential thermal
expansion. The magnitude of natural curvature is controlled by
the temperature field. We then depressurize the shell by applying
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a uniform live pressure on its outer surface, for different values
of natural curvature. The simulation is conducted using the Riks
method, which solves for the equilibrium states by prescribing the
arc-length of the load-displacement curve. The buckling pressure
is defined as the maximum pressure and is divided by the buck-
ling pressure of a perfect bilayer shell, which is predicted by FEM
using eigenvalue buckling analysis, to get the knockdown factor.

4.1 FEM results using the experimentally measured shape of
shells

We proceed by taking the deformed geometry of the shell mea-
sured in the experiments using X-ray computed tomography and
compare FEM predictions with experimental results. As described
in Section 2.2, the axisymmetric shape is obtained by averaging
the extracted curves along three meridians at different azimuthal
angles.
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Fig. 5 Evolution of the knockdown factor predicted by FEM simulations,
which consider the experimentally measured deformed shapes of the
shells, compared with experimental results, for (a) shrinking layer on top
shells and (b) swelling layer on top shells. The amplitude of the flat defect
is varied: δ = {0.2, 0.3, 0.4} mm.

We increase the differential thermal expansion and predict the
knockdown factor for different values of natural curvature. Using
the time evolution of natural curvature, experimentally charac-
terized in a bilayer beam (Appendix A, Fig. 7), we plot the knock-

down factor as a function of time and compare with the experi-
mental results, as shown in Fig. 5. FEM simulations can qualita-
tively describe the evolution of the knockdown factor. For shrink-
ing layer on top shells (Fig. 5(a)), the numerical results agree well
with the experiments. Shells weaken with time, except for small
defects (δ = 0.2 mm). For swelling layer on top shells (Fig. 5(b)),
simulations predict the evolution of the knockdown factor only
qualitatively. The lack of quantitative agreement may be due
to the over-simplification in the modeling of swelling via ther-
mal expansion, and to the fact that in numerical simulations, the
experimentally measured deformed shape is used as the natural
configuration, which then undergoes thermal deformations.

Next, we perform a parametric study where a swelling layer
on top shell with an engineered defect and a non-homogeneous
thickness undergoes a differential thermal expansion, toward
shedding light on the various parameters at play.

4.2 Influence of thickness variation on the evolution of the
knockdown factor

In the numerical exploration of parameters space that we present
next, we describe the normalized shell thickness as

h′

h
=

{
1+ δh

h cos2
(

θ

θ0
π

)
, 1

2 θ0 ≤ θ ≤ 3
2 θ0 ,

1 , θ < 1
2 θ0 or θ > 3

2 θ0 ,
(2)

where δh is the amplitude of thickness variation, and θ0 is the half
angular width of the flat defect so that cosθ0 = 1−δ/R (Fig. 6(a)).
We vary δh/h from 0 to 0.5 for shells with different defect ampli-
tudes. In this parametric study, we focus on swelling layer on top
shells, as they can exhibit both increasing and decreasing knock-
down factors.

Figure 6(b) shows the knockdown factor for swelling layer on
top shells with different thickness variations, at the initial state
(kh = 0) and at the steady states (kfh < 0). For a shell with a
specific defect amplitude, the change in knockdown factor from
the initial state to the steady state is indicated by the distance
between the dashed and the solid curves. For shells with a
small thickness variation, the knockdown factor decreases due to
swelling. For larger thickness variations, shells strengthen result-
ing in a positive change in the knockdown factor. As shells with
larger thickness variations manifest larger increases in knock-
down factor, this parametric study suggests that thickness vari-
ation is a key parameter in this phenomenon.

Figure 6(c) shows the contour plot of ∆κd for different val-
ues of the normalized amplitude of thickness variation, δh/h and
normalized defect amplitude, δ̄ : the contour line with ∆κd = 0
(thick solid line in Fig. 6(c)) corresponds to the boundary be-
tween the strengthening and weakening of shells due to differ-
ential swelling. We observe that for shells with a large defect,
δ̄ > 0.3, the change in the knockdown factor is much more sensi-
tive to the thickness variation than to the defect amplitude. We
notice that in the blank (white) region of the contour map, shells
have a very small defect but a relatively large thickness variation,
such that the shell is locally strengthened at the north pole, and
buckling occurs at the equator of the shell. This buckling regime
is out of the scope of this paper.
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simulations (δh/h = 0.2 and θ0 = 0.057π). (b) Knockdown factor κd ver-
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(dashed curves) and at the steady state (solid curves), predicted by FEM
simulations, for swelling layer on top shells. The normalized defect am-
plitude is varied as δ̄ = {0.1, 0.15, 0.2, 0.3, 0.5, 1}. (c) Contour plot of the
knockdown factor change, ∆κd for different values of the normalized am-
plitude of thickness variation, δh/h and normalized defect amplitude, δ̄ .

5 Conclusions
In closing, we have introduced a minimal mechanism that can
be used to modify the buckling pressure, and hence the knock-
down factor, of hemispherical bilayer shells, due to differential

swelling. The natural curvature of the bilayer system changes
due to swelling, which, in turn, induces both a shape change and
a build-up of residual stress. Consequently, the critical buckling
pressure of bilayer shells with differential swelling is modified
with respect to the reference non-swelling case. Depending on
the size of the initial defect and the magnitude of swelling, shells
can strengthen or weaken against buckling.

An experimental fabrication method was developed to produce
hemispherical bilayer shells that contain a single flat defect at
their pole, the amplitude of which was varied systematically. The
critical pressure for the onset of buckling for these shells was mea-
sured while polymer chains were diffusing across the bilayer in-
terface, causing a differential swelling. The experimental results
show that swelling layer on top shells have higher knockdown fac-
tor than shrinking layer on top shells. Moreover, we found that the
knockdown factor of swelling layer on top shells could increase
over time due to differential swelling, depending on the size of
the defect. This healing of imperfections is more effective when
the initial amplitude of the defect is large. In parallel to the ex-
periments, we carried out FEM simulations to further explore the
underlying mechanism and found a qualitative agreement with
experiments. The FEM indicate that the change of shape had a
primary role in increasing and decreasing the knockdown factor
during differential swelling. Spatial variations of the shell thick-
ness significantly were also found to be particularly important in
affecting the time evolution of the knockdown factor or shape-
changing shells.

We believe that the mechanism that we have introduced and
investigated to evolve the knockdown factor of spherical bilayer
shell over time could be extended to bimetallic shells or shells
made by pH-responsive gels to dynamically control their buck-
ling conditions. In addition, since the mechanical response of the
shells is dependent on both the timescale and magnitude of resid-
ual swelling, these results suggest that a more detailed character-
ization of the residual solvent and the physics of residual swelling
is necessary in the future.
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A Characterization of a bilayer beam under-
going differential swelling

Differential swelling causes a change in the natural curvature of
a thin structure. One-dimensional objects, like beams that are ei-
ther flat or initially curved, can simply bend to accommodate this
change in curvature. On the other side, plates and shells cannot
simply bend and accumulate residual stress that can eventually
lead to instabilities. Hence, to relate the diffusion of free chains
to the natural curvature, it is important to quantify how beams
deform, since they have no geometric incompatibilities that can
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lead to instability. Therefore, in this Appendix, we investigate
the mechanics of deformation of rectangular bilayer films that
are originally flat, with an emphasis on quantifying the evolution
of their natural curvature as a result of differential swelling, and
measuring their mechanical properties.

We have performed a series of experiments to characterize the
natural curvature, the bending stiffness, and the axial stiffness
of a bilayer beam. We define the natural curvature of a beam
as its curvature in the absence of external loads (e.g., gravity),
which can be measured as the curvature of the beam bending
set orthogonally to the gravitational field (see Fig. 7(a)). Then,
if the same beam bends under gravity (Fig. 7(b)), its shape will
be the result of the combined effects of natural curvature and
bending stiffness. Assuming that the former has already been
quantified, the latter can be determined as a function of time.
Furthermore, the effective axial tensile stiffness can be measured
with an independent tension test.

An initially flat bilayer film was fabricated using the following
protocol. First, VPS-32 was mixed with a base/cure ratio of 1:1 in
weight and the liquid solution was coated onto a glass plate using
an automatic film applicator (ZAA2300, Zehntner GmbH Testing
Instruments), which, upon curing, yielded a solid sheet of thick-
ness h1 = 0.3mm. Second, a liquid suspension of VPS-8 was mixed
(also with a base/cure ratio of 1:1 in weight) and poured onto
the previously cured VPS-32 film, and cured achieving the same
thickness of h2 = h1, set by the film applicator. Note that these
specific values for h1 and h2 were chosen because they are also
the values for the targeted thicknesses of the bilayer shells used
in this manuscript, whose fabrication procedure is described in
Section 2.1. Upon curing of the VPS-8 film (τc = 10min measured
from the end of mixing), we set a timer and then cut a rectangular
strip from the bilayer film with the thickness h = h1+h2 = 0.6mm,
width w = 2mm, and length l = 12mm. To measure the natural
curvature, this bilayer strip was clamped as depicted in Fig. 7(a),
such that the bending deformation occurred orthogonally to grav-
ity, and time-lapsed photographs taken (Nikon 850).

From the digital photographs, we fit a circle of radius R to the
mid-surface of a bilayer beam (red dashed lines in Fig. 7(a)). We
define the curvature of the bilayer beam as k(t) = 1/R, which is
time-dependent due to the differential swelling. In Fig. 7(c), we
plot the normalized curvature kh, of the bilayer beam as a func-
tion of time, t. We find that the experimental data (circles) are
well described by

kh = kfh(1− e−t/T ) , (3)

where kf is the final curvature once steady state has been reached,
and T is the characteristic time constant associated with the dif-
fusive process across the interface of the bilayer. For this partic-
ular sample, the final normalized curvature was measured to be
kfh = 0.1462± 0.0016, and characteristic time was T = 42.5± 0.2
min by curve fitting (the ± values correspond to the with 95%
confidence bounds). The latter represents the ratio between the
squared of the characteristic length (in this case the thickness of
the shell) and the diffusivity of the bilayer system. These results
indicate that the diffusion time scale is significantly larger than
the curing time scale of the VPS polymers (τc ≈ 10 min for both
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Fig. 7 (a-b) Photographs of a bilayer beam with the thickness, h = 0.6
mm, deforming (a) orthogonally and (b) against gravity. The dashed line
corresponds to the fitted circle and the solid line is the solution of the
Eq. (4) with the determined bending stiffness. (c) Time evolution of the
natural curvature of the bilayer beam, k(t). The dashed line corresponds
to fit of the Eq. (3). (d) Young’s modulus, E, and (e) bending stiffness,
EI, of a bilayer beam as a function of time. The lines correspond to the
average values. Error bars are smaller than the symbol size.

VPS-8 and VPS-32). As discussed in Section 2, where we char-
acterize the response of bilayer shells (e.g., shape and buckling
pressure) during swelling, the time intervals chosen for data ac-
quisition (∆t = 5min) provide sufficiently dense data to represent
the time evolution of the process.

In addition to the evolution of the natural curvature of the bi-
layer beams reported above, we have also measured the time-
dependence of their mechanical properties. The Young’s moduli
of VPS-32 and 8 were measured to be E1 = 1.164±0.026MPa and
E2 = 0.267± 0.002MPa, respectively. The effective Young’s mod-
ulus, E, of the bilayer beam was measured through tensile tests
(Instron 5943 mechanical testing system with a 5 N load cell).
For this purpose, we fabricated a dog-bone shaped bilayer speci-
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men with a length (reduced parallel section) of l = 100mm, width
w = 12.15mm, and thickness h = h1 +h2 = 0.6mm. The measure-
ments were repeated every 20 min to attest any possibility of
time-dependence due to differential swelling and the results are
plotted in Fig. 7(d). Then, we measured the bending stiffness, EI,
of the bilayer beam, for which we positioned the bilayer beam as
shown in Fig. 7(b), so as to have the beam bending against grav-
ity. The elastica equation with gravity and natural curvature was
solved numerically, and the value of EI was determined so as to
minimize the quadratic distance between the numerical solution
and the experimental profile of the beam deforming with gravity
effect. The elastica description we used, in terms of dimensionless
quantities, is given by 33

θ
′′(s)− 1− s

β
cosθ(s) = 0 , (4)

where θ is the angle of the tangent vector of the neutral axis
of the beam with respect to the horizontal axis, s is the di-
mensionless arc-length nondimensionalized by the total length
of the elastica L, and β is a dimensionless parameter defined
as β = EI/(ρgSL3), where ρ is the density, and S is the cross-
sectional area. Without gravity (configuration in Fig. 7(a)), β

becomes infinite, such that the associated term in Eq. (4) van-
ishes, and the solution of the equation is a segment of a cir-
cle. Under gravity (configuration in Fig. 7(b)), we determine
the value of β that best fits the experimental profile, which in
turn yields the value of EI. The natural curvature, which is ho-
mogeneous along s, enters the problem via a boundary condition
at the free end, equivalent to an applied torque: θ ′(1) = Lk. In
Fig. 7(e), we plot the time evolution of the experimentally deter-
mined bending stiffness, EI, of the bilayer beam, obtained using
the fitting procedure mentioned above. From the ensemble of
the results in Fig. 7, we found that both E = 0.68±0.02MPa and
EI = 4.31± 0.03× 10−8 Nm2 are constant to within 3% (MAD)
over time.

B Fabrication of PDMS molds
To manufacture our hemispherical bilayer shell samples, we first
fabricated thick elastic shells out of PDMS, which were used
as molds to produced our desired VPS-8/VPS-32 bilayer shells
using a coating technique. To make these PDMS molds, we
first machined stainless steel bearing balls (TIS Wälzkörpertech-
nologie GmbH) that were originally spherical, with a radius of
25.4 mm, to flatten their pole with a set amplitude in the range
0 ≤ δ [mm] ≤ 0.5. Second, we poured a PDMS mixture onto the
machined stainless balls with a waiting time τw ≈ 30 min between
the preparation of the mixture and the moment of pouring to tune
the viscosity 12. The PDMS base, curing agent (Sylgard 184, Dow
Corning), and cure accelerator (3-6559 Cure Accelerator, Dow
Corning) were previously mixed in a 10:1:2 weight ratio.

These PDMS molds were cured in a convection oven at 40◦C.
We repeated pouring and curing of PDMS six times to obtain
hemispherical molds with the desired thickness of hmold = 2.0±0.1
mm. Upon curing, the molds were sufficiently thick and stiff so
as to not deform from the target shape under self-weight. Finally,
the thick PDMS shells were peeled from the stainless spheres and

the resulting molds had an inner radius of 25.4 mm and a single
flat defect at their pole with the amplitude, δ , which was varied
systematically.
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