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Defects in a crystal can exert forces on each other via strain field interactions. Here we explore the strain-
field-mediated interaction between an anisotropic interstitial probe particle and dislocation microstruc-
tures in a colloidal crystal composed of particles interacting via steep repulsive isotropic potentials. We
optimize the interaction between probe particle and dislocation with the anisotropic shape of the probe as
a free parameter. Such alchemical optimization is typically carried out upon the explicitly defined interac-
tion potential parameters; instead, we optimize the strain field of the probe and then map back to particle
shape. We distinguish this tactic from other alchemical methods as ‘strain alchemy’. We report several
findings: 1) a robust mapping exists between strain field calculation methods (the method of eigenstrains)
and strains produced by an anisotropic interstitial, 2) optimization of strain field interactions in the strain
domain permits rapid evaluation of candidate shapes for interstitials, 3) interstitial mobility barriers can
be estimated from the strain field, and 4) strongly interacting and highly mobile interstitial particles can
be found that are capable of driving dislocation glide with applied force. Active particle-induced disloca-
tion glide is examined for the cases of edge dislocation arrays and extrinsic dislocation loops. For edge
dislocations, particle geometries of alternating large and small diameter segments were found to interact
most strongly. For dislocation loops, interstitials with a single small radius segment surrounded by large
radius segments are best.

1 Introduction
Rational design of colloidal crystals has focused primarily on
crystal structure, with many excellent examples in the literature
exploring the connection between particle interaction potentials
(isotropic, anisotropic, DNA-based, hard shape, etc.) and equilib-
rium crystal structures1–14. Far sparser are studies exploring the
connection between these design parameters and material prop-
erties. The optical response of colloidal crystals15–18 has received
the most attention, but mechanical and acoustical properties are
also of interest19–22. Rarer still are studies concerning the design
of kinetically trapped defect states in colloidal materials. Such
states are generally known as defect ‘microstructure’ in the met-
allurgical research community, and include phenomena such as
dislocation networks and grain boundary interfaces. In metals,
defect microstructure plays a critically important role in deter-
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mining mechanical properties such as ultimate tensile strength
and creep23. Defect microstructure can also strongly influence
other materials properties—such as conductivity—across orders
of magnitude24.

In photonic colloidal crystals, defects can create transmissive
breaks in a photonic band-gap. These localized non-evanescent
modes can be exploited to create device components such as wave
guides and resonator cavities25–27. Connected regions of defects,
such as those used in wave guides, can be thought of as a type of
defect microstructure, with profound consequences for the optical
band properties of the metamaterial. If the defects responsible for
such properties could be reconfigured, then colloidal materials
with tunable or dynamic properties are in principle possible.

Methods of microstructure control can be broadly grouped into
two categories: microstructure formation during a phase tran-
sition, and microstructure formation without a phase transition.
The first group encompasses many methods of control including
Ostwald ripening28, precipitation from solid solution29, spinodal
decomposition30, and epitaxial growth31. Generally these meth-
ods employ a competition of mechanisms with different kinetics
or enforced boundary conditions that modify the free-energy of
a system to achieve the desired microstructure as the final solid
phase is forming from the precursor phase (either fluid or a dif-
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ferent solid). The second group of methods relies upon the ap-
plication of non-thermal forces to drive microstructure evolution.
Strain hardening in metals is a prototypical example of such a
process23, where forces are applied that drive microstructure evo-
lution while the material is held at temperatures too low to per-
mit escape from the metastable states formed. The use of high
shear rates or high-energy bombardment with radiation has been
explored to control microstructure in what are termed ‘driven al-
loys’32–34.

Despite the enormous wealth of materials science knowl-
edge available (and numerous reports on colloidal defect behav-
ior35–41), microstructure engineering in colloidal systems is only
lightly explored. Van Blaaderen et al.42 and more recently Das-
gupta et al.43 have explored the effect of surface templating on
colloidal growth by sedimentation. By templating a surface with
the periodicity of non-close-packed planes stacking faults can be
suppressed as the crystal grows. The impact of large impurities
on 2D colloidal crystal growth has also been explored37,44. Large
impurity particles locally stabilize fluid-like configurations, and as
a result are often incorporated into (and pin the motion of) grain
boundaries during crystallization. These methods, where a defect
microstructure is assembled from a fluid state, would fall under
the first category of microstructure control.

Other work has exploited the large length scales of colloidal
crystals to exert control over defects at the single particle level,
falling within the second category of methods of microstructure
control. The application of local forces on 2D crystals with op-
tical traps has yielded demonstrations of direct control over in-
dividual dislocations and their reactions45, the topology of grain
boundaries46, and the misorientation angle of a grain boundary
loop47. Notable limitations of the optical force technique are the
difficulty of applying it to 3D systems and the need to locate and
image each defect to be manipulated. Besides optical forces, it
has also been shown that local forces exerted by active particles
can drive microstructure changes. Van der Meer et al. have shown
for hard-sphere systems in two48 and three dimensions49 that the
addition of active particles to systems with grain boundaries can
result in accelerated kinetics of polycrystalline annealing, result-
ing in single crystals on short timescales.

Such active particles are but one example of a microscopic ‘tool’
– a specialized applicator of force designed to achieve target mi-
crostructures. In general, tools are specifically designed to en-
act certain transformations on their working material. Figure 1
schematically illustrates how control of dislocations permits con-
trol over the internal structure of a crystal through directed local
plastic deformations. We explore how a ‘tool-particle’ can be de-
signed for manipulation of defects (in this case dislocations) by
changing its shape. Given that modern particle synthesis tech-
niques are capable of producing a wide variety of shapes50–52, we
seek a general method of designing the shape of the particle-as-
tool for maximum interaction with specific types of dislocations.

Our study uses the linear elastic formalism to understand the
interaction between a self-propelled interstitial colloidal particle
and dislocation microstructures in a crystal where spherical parti-
cles interact via steeply repulsive isotropic potentials (i.e. nearly
hard spheres). The interaction between interstitial and dislo-

Fig. 1 Examples of how direct control over dislocations can reconfigure
crystalline materials. ai-ii Bending localization (or grain boundary forma-
tion) ai dislocations (⊥) are initially distributed randomly, resulting in low,
evenly distributed curvature. Forces are applied to dislocations (red ar-
rows). aii Dislocations are concentrated, resulting in high local curvature.
bi-ii Coherent boundary roughening by passage of dislocation dipoles. bi
Force (red arrow) is applied to a dislocation dipole to drive it towards a
coherent grain (green). bii After passage through the coherent grain, the
dipole has roughened the boundaries with a local shift of one Burgers
vector.

cation is estimated and designed by sampling the linear elastic
strain fields of both objects. Our work seeks to provide a means
to re-configure microstructure after crystallization has already oc-
curred, which allows for the possibility of reconfigurable and re-
sponsive colloidal materials with functional defects.

In section 2 we describe the model system and methods em-
ployed in this study which are standard or introduced elsewhere.
In section 3 we apply these methods and introduce new methods
created for this study to design interstitial tool particles capable
of internally restructuring a colloidal crystal.

2 Model and Methods
To optimize the interaction between an interstitial and a disloca-
tion as a function of interstitial geometry, the strength of the in-
teraction must be measured for each trial geometry. This presents
a difficult sampling problem, as thermalized strain fields must be
sampled over long time scales and dislocations require large sim-
ulation sizes due to their long-range interactions. To address this
difficulty, we propose a technique we term ‘strain alchemy’. In
a typical alchemical simulation12, the free energy of a system
is minimized by allowing some design parameter of the parti-
cle interaction to fluctuate as a thermodynamic quantity over the
course of the simulation. This procedure results in near-optimal
interaction parameters for the target state. Such a tactic involves
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making trial changes to an interaction potential, and then sam-
pling system configurations with a molecular dynamics (MD) or
Monte-Carlo (MC) simulation12.

Instead of directly proposing new interstitial shapes, we de-
velop a method in which the strain field produced by the intersti-
tial is allowed to fluctuate. Provided the magnitude of this strain
field remains low enough, then linear elastic methods can be used
to calculate the free energy of interaction of this field with another
– such as that produced by a dislocation. The optimal strain field
is then translated into an optimal particle shape. By approximat-
ing the objects of interest as strain fields we avoid extensive MD
or MC sampling for each trial move. In this study, we develop
this strain alchemy algorithm and apply it to the optimization
of interstitial-edge dislocation and interstitial-loop dislocation in-
teractions. In the the remainder of this section, we outline the
model system and standard simulation techniques employed. Ap-
plication of these techniques and development of new methods is
covered in section 3.

2.1 Interstitial Sites

A face-centered cubic (FCC) crystal of hard spheres at contact
contains obstruction-free channels that lie in the {111} family of
planes along the 〈11̄0〉 family of directions. These are advan-
tageous sites for interacting with gliding dislocations, as these
planes and directions comprise the low-energy slip system for this
crystal structure. Fig. 2a-b shows a rendering of the interstitial
space present in the cubic close-packed crystal.

At finite pressures and temperatures, these channels locally
fluctuate in width as particles undergo thermal motion. Lower
pressures also lead to an expansion of the structure, increasing
the available free space. If a rod of radius equal to the chan-
nel radius for hard spheres at contact is inserted into a nearly-
hard-sphere crystal at finite pressure and temperature, local strain
fields produced around it are negligible in magnitude. Small in-
creases of rod diameter above this minimum will lead to small
local strain values. This perturbative relationship between geom-
etry and local strain field magnitude is advantageous for particle
design, as it permits the use of linear elastic approximations. Fur-
thermore, the channel geometry limits the height of hopping bar-
riers during interstitial motion. For a spherical interstitial sitting
in tetrahedral or octahedral sites in FCC, motion between sites
must be accompanied by local lattice strains that (temporarily) far
exceed the linear elastic regime. By working within the channels,
the maximum strain induced during particle motion can be lim-
ited to the maximum strain produced by the particle at rest, and
so particle mobility is treatable within the linear elastic frame-
work.

2.2 The Interstitial Particle

In this study our interstitial probe particle of interest is a seg-
mented rod. We wish to impart to this probe enough degrees
of freedom to optimize its interaction with a dislocation’s strain
field. Therefore, the probe is split into segments, each a/

√
2 long

(where a is the lattice constant of the host crystal). This is the
smallest meaningful distance at which the local strain of the host

Fig. 2 a A close-packed hard-sphere crystal showing obstruction-free
channels aligned with the 〈11̄0〉 family of directions. The triangle high-
lights the columns of nearest-neighbor particles for the indicated chan-
nel. b In the here-depicted (111) plane of densely packed spheres, these
channels correspond to troughs with triangular cross section, indicated
by the shaded rectangle. c The probe particle model. Rigid-body seg-
ments (yellow) with repulsive interactions are rendered at the zero-energy
isosurface. The center particle of the rigid body (red) coincides with the
particle’s center of mass. The mass, center of mass, and moment of in-
ertia of the probe are calculated as though it is comprised of overlapping
spheres of the same density as the lattice particles. A force (red arrow)
is applied along the probe axis. The probe shown is one example of a
sequence of segment diameters.

lattice can be measured, and yields ‘internal’ degrees of freedom
for the probe equal to one value (the strain magnitude η∗) for
each segment. These segments are allowed to change indepen-
dently during optimization. Beyond internal degrees of freedom,
the probe’s position relative to the dislocation core can also be
changed: it can be placed in any of the channels present in the
{111} family plane parallel to the 〈11̄0〉 family of directions (indi-
cated in Fig. 2b). Fig. 2c shows a schematic of the rod geometry
used in MD simulations (See section 2.4 for MD methods).

2.3 The Method of Eigenstrains
To predict the strain field surrounding an interstitial we employ
the method of eigenstrains53. Each segment of the interstitial
probe will be represented by a single strain value. These strains
can be called ‘non-elastic’ because they arise from displacements
of particles by the interstitial, not by a stress field. Adopting
Mura’s terminology, we refer to these strains as ‘eigenstrains’.
The total strain (εi j) in the system is taken to be the sum of the
non-elastic eigenstrain (η∗i j) and the elastic strain (ηi j). For a

continuum material at rest, the relation εi j =
1
2

(
∂ui
∂x j

+
∂u j
∂xi

)
holds

(where ~u is the displacement vector and ~x is the position vector).
This relationship between strains and displacements is known as
‘compatibility’. Such a relationship allows the elastic deformation
ηi j to be found for arbitrary eigenstrains. In this work we employ
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Fig. 3 Comparison of sampled a and predicted b strain fields for a segmented rod interstitial. A single slice of the strain field is shown through the
midpoint of the probe, with the long axis normal to the image plane. The sampled and predicted field show good agreement overall with only minor
differences for regions in closest contact with the interstitial.

an implementation of the Fourier transform method of computing
total strain distributions from eigenstrains based on the equations
presented by Mura53 and validated against analytic solutions for
inclusions derived by Chiu54. The elastic strain field found in this
way can be directly connected to the deformation free energy of
the material in the small strain limit55.

When considering a rod-like interstitial at rest in the 〈11̄0〉
aligned channels of the FCC structure (section 2.1), an increase
in interstitial diameter does not produce a purely dilatory dis-
placement of nearest neighbors. This is because (unlike for tetra-
hedral or octahedral interstitial sites) all neighbors of the 〈11̄0〉
channels are not equidistant from the channel center. The cor-
rect relation between probe diameter and channel neighbor dis-
placements (i.e. eigenstrain) was found semi-analytically. An
eigenstrain matrix was found (algebraically) which displaced the
nearest neighbors of the close-packed channel sufficient to clear
enough space to fit a probe of given diameter. A corrective scaling
factor was required to match the eigenstrain sampled from sim-
ulations of uniform diameter probes to this derived eigenstrain
matrix. The scaling factor is needed because the derived eigen-
strains where found from the close-packed FCC crystal geometry,
and the simulations are conducted at finite pressures and temper-
atures. See SI for additional information about the accuracy of
these strain predictions †.

2.4 Molecular Dynamics Methods

All MD simulations reported here are performed with
HOOMD-blue56,57. In simulations of dislocations, all lat-
tice particles interact via the shifted-Weeks-Chandler-Andersen
potential58 (SWCA), whereby the origin is shifted to the surface
of the particle. The value of σ used in this potential was set to
0.07, and the potential was shifted in radius so that the minimum
(located at σ21/6 in the unshifted case) is at a distance of 21/6.
In this work we will refer to the diameter of the host particles
as D, which is equal to 21/6. Simulations were carried out in
the NPT ensemble via equations derived by Martyna et al.59.
System thermal energy was held at kT = 0.1, pressure at P = 2,

and particle mass was fixed at m = 10 (in simulation units). This
choice of parameters yields a crystal with an acceptably large
range of linear elastic behavior60. The elastic modulus tensor
was sampled via fluctuations of the system box parameters and
stress tensor61.

Stain-field representations of line and loop dislocations were
sampled from MD simulations. Dislocation line arrays were cre-
ated by subtraction of a half plane of particles in a simulation box
spanning 60 unit cell lengths in the x direction (aligned with crys-
tal direction [11̄0]), 24 unit cell lengths in the y direction (aligned
with crystal direction [112̄]), and 20 unit cell lengths in the z di-
rection (aligned with crystal direction [111]). Particles within a
rectangle spanning one Burgers vector in the x direction, the full
box width in the y direction, and half the box height in the z di-
rection were deleted from an initially perfect crystalline domain.
The crystal in between the top and bottom of the deleted rectan-
gle was then stretched in the x direction, so that the gap was
closed. Upon MD simulation, this initial configuration rapidly
equilibrated into two partial dislocation pairs, with glide planes
separated by one half of the height of the simulation domain.
See SI for a diagram of dislocation preparation †. Box bound-
ary conditions are all periodic, and the final particle count was
346,992. Per-particle strain fields were collected from 100 decor-
related samples, and a voxelized representation was created by
binning. Bins form an isotropic grid with orthogonal distance
a/
√

2 between bin centers. The final line-dislocation strain tensor
has size 139×32×56×3×3.

Due to the compact size of the dislocation loop, we used a
smaller simulated domain without strong loop-loop interactions
across the periodic boundary conditions. The simulation con-
tained a crystal domain of the same orientation as used for line
dislocations but containing 30×20×16 unit cell lengths in the x,
y, and z box directions (corresponding to [11̄0], [112̄], [111]] crys-
tal directions, respectively). The extrinsic loop was created by
the addition of a parallelogram of particles 1 plane thick in the
x direction and 3 particles wide and tall. To make room for
the extra particles, a section of the initially perfect crystalline
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Fig. 4 The aggregated results of 100 MC solver runs on an edge dislocation. a Histogram of the barriers estimated from the eigenstrain procedure.
b Distribution of solution fitness, as defined by the difference of barriers near and far from the dislocation. c Histograms of the diameters of each of
the six segments that comprise the probe. The mean of each distribution is indicated with a chevron. d Location of final solution position, relative to
dislocation core.

domain bounded by the glide tube of the dislocation loop was
compressed along the x direction, which opened up a gap in the
center of the simulation domain. An extra half plane of parti-
cles was then inserted into this gap. Upon MD simulation, this
initial configuration rapidly equilibrated into a dislocation loop.
See SI for a diagram of dislocation preparation †. The total lat-
tice particle number after loop formation was 115,209. The strain
field surrounding a loop was sampled in the same manner as the
line dislocation, yielding a loop dislocation strain tensor of size
69×40×45×3×3.

In all cases the segmented probe is simulated as a collection of
isotropic repulsive potentials (interacting via the same SWCA po-
tential as the lattice particles). To produce variations in segment
diameter, the radial shifting of the SWCA potential is varied ac-
cordingly. Relative positions are maintained and torques handled
during MD integration by rigid-body simulation62.

3 Results

3.1 Interstitial Particle Strain Field Mapping

Since we use the strain field produced by the interstitial to es-
timate interaction energies and probe mobilities, it is important
that the analytically predicted field is sufficiently accurate. Fig. 3
shows a slice through the center of the strain field surrounding
a probe of constant radius. The MD sampled field (3a) and ana-
lytically predicted field (3b) show good agreement in distribution
and magnitude for regions not in direct contact with the intersti-
tial. In these plots, one pixel corresponds to a region of crystal
a/
√

2 per side. As segment radius is increased, eventually signifi-
cant differences in strain magnitude arise between the predicted
and sampled fields. This is because the methods employed here
are only applicable in the small-strain (linear elastic) limit. When
the radii of probe segments are permitted to fluctuate, an upper
limit is used to restrict the search to the linear regime (see SI for
details †).

3.2 Interaction Estimation via Interstitial Mobility Estima-
tion

With the ability to map the strain field of a segmented probe
particle to its geometry, the path is clear to use a Monte-Carlo
(MC) style optimization scheme to maximize the interaction free-
energy between the rod and another strain-field-producing object
(such as a dislocation). Within the linear elastic approximation,
linear superpositions of fields are also valid fields. Therefore, the
strain field of the rod under design can be superimposed with
the strain field of a dislocation and the total strain field energy
evaluated according to the expression55:

Felastic =
∫
~r

V
2 ∑

i jkl
Ci jklηi j(~r)ηkl(~r), (1)

where η(~r) is the strain tensor describing a volume V centered at
position~r. Here the tensor field η is the sum of two tensor fields,
one representing the probe and one the dislocation. Ci jkl is the
elastic modulus tensor. By comparison to the strain-field energy
of both fields widely separated, interaction energies as a function
of relative position can be determined.

Before optimization, a likely guess as to what kind of strain
field maximizes the interaction between a segmented probe and
a dislocation is straightforward: larger probe strains will always
increase repulsive interaction strength, while fields that result in
total cancellation of the dislocation’s field will likely maximize at-
tractive interactions. However, we are not concerned here only
with the interaction strength, but also the mobility of the probe.
In order for an active interstitial to interact with a dislocation,
it must have sufficient mobility to move through the defect-free
crystal. Upon encountering a dislocation, the desired behavior
is to then become bound, unable to escape from the vicinity of
the defect. If we assume that particle migration through the crys-
tal is achieved by hopping through a periodic free-energy surface
(with the periodicity defined by the geometry of the crystal in
the direction of travel), then we seek an interstitial with location-
dependent barrier height (d). Far from the dislocation, the bar-
rier (dfar) should be as low as possible, while the barrier in the
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Fig. 5 Renderings of the top six optimized probes for interacting with
an edge dislocation (a) and extrinsic dislocation loop (b). The surface
rendered is the zero-energy isosurface of the SWCA potential. Directions
relative to the rod when placed in the host crystal are noted. The average
line direction of Shockley partials is parallel to [112̄].

vicinity of the defect (dnear) should be as large as possible. Con-
sequently, we seek a particle geometry optimization which takes
into account the free-energy barrier that limits probe mobility. We
expect both dfar and dnear to increase with an increase in probe
strain, which means that high mobility and strong defect interac-
tion are competing design goals.

It is possible to estimate this barrier height from the strain
field that surrounds a segmented probe interstitial (which can be
rapidly predicted using the method of eigenstrains). This method
of approximation relies on the special geometry of the segmented
probe particle: because each segment imposes local strains that
are within the linear regime, there will be no high-strain interme-
diate states as the probe hops from one site to the next. The bar-
rier to probe movement then arises due to the strain free-energy
that is dissipated in each hop. As the probe approaches new vol-
umes of the pristine crystal, it imposes strain, which increases
the local free energy. Simultaneously, regions from which the rod

leaves relax their local strain free energy. This relaxed free-energy
is not recaptured by the rod, but instead escapes as heat. There-
fore the hopping of an interstitial rod requires that new strain
energy be stored in volumes ahead of the particle motion, while
previously stored strain free energy is not recovered. This is the
source of resistance to motion. The value of this hopping barrier
can be calculated from a given strain field according to Eq. 2:

d = ∑
~r
||F2(~r)−F1(~r)||

F1(~r) =
V
2 ∑

i jkl
Ci jkl

[
η

D(~r)+η
I(~r)
]

i j

×
[
η

D(~r)+η
I(~r)
]

kl

(2)

F2(~r) =
V
2 ∑

i jkl
Ci jkl

[
η

D(~r)+η
I(~r+d~r)

]
i j

×
[
η

D(~r)+η
I(~r+d~r)

]
kl

with Ci jkl being the crystal’s elastic modulus, V is the volume of
an element centered at ~r, ηD the strain field of the dislocation,
and ηR the strain field of the segmented probe interstitial.

3.3 Strain Field Monte-Carlo Algorithm

The optimization of probe-dislocation strain-field-mediated inter-
action is carried out through a Monte-Carlo style algorithm we
developed for this work. The domain of optimization is a vox-
elized grid, represented by an n×m×o×3×3 tensor, where each
point of an n×m× o grid (representing the physical dimensions
of the optimization area) has a 3× 3 local strain tensor. The op-
timization requires two such tensors: a background tensor, en-
coding the local strain surrounding a dislocation or other object
of interest, and the design tensor, which encodes the values of
local strain produced by the probe interstitial. The background
tensor’s values and size are set by a voxelization procedure used
to measure time-averaged local strain in an MD simulation, de-
scribed elsewhere60. The design tensor is used in two forms: the
eigenstrain and strain representations. These forms are related
through the method of eigenstrains53. Changes to the segmented
probe interstitial’s geometry are represented through changes to
the eigenstrain design tensor, which is then converted into the
strain representation before evaluation is carried out. Since the
conversion from eigenstrain representation to strain representa-
tion is the limiting step, and the extent of the strain field of the
segmented rod interstitial is much smaller than the sampling of
the dislocation’s strain field, the design tensor can have fewer ele-
ments (cover a smaller volume) than the background tensor. The
steps in choosing a strain configuration and evaluating its fitness
are as follows:

1. Select a segment of the probe and assign a new diameter
value to it.

2. Set the elements of the eigenstrain design tensor that cor-
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Fig. 6 The aggregated results of 100 MC solver runs on an extrinsic dislocation loop. a Histogram of the barriers estimated from the eigenstrain
procedure. b Distribution of solution fitness, as defined by the difference of barriers near and far from the dislocation. c Histograms of the diameters
of each of the six segments that comprise the probe. The mean of each distribution is indicated with a chevron. d Location of final solution position,
relative to dislocation loop center axis.

respond to this probe segment to values which describe the
displacement caused by this diameter.

3. Compute the strain representation of the design tensor with
the method of eigenstrains.

4. Shift (with edge wrapping) the strain design tensor so that
the probe origin is near the dislocation core and evaluate the
hopping barrier, dnear.

5. Shift (with edge wrapping) the strain design tensor so that
the probe origin is at a location far from the dislocation core.
Compute the estimate of the hopping barrier dfar.

6. Calculate the fitness of the design tensor as f = dnear−dfar.

7. Accept the new design tensor with probability e( f− f0)/kTalch ,
where f0 is the fitness of the previously accepted design ten-
sor, and kTalch is a thermal energy that can be lowered over
the course of the optimization to restrict the magnitude of
strain field fluctuations.

8. Repeat until convergence (or until kTalch is reduced to a neg-
ligible value).

The sampling of dnear and dfar depends strongly on the position
of the probe relative to the glide plane. To avoid introducing
assumptions concerning which location will produce the fittest
solution, changes to the position of the probe can also be included
in the MC procedure. For this study positional moves are made
less often than strain moves.

3.4 Use Case: Line Dislocations
Using the procedure outlined in section 3.3, the interaction of a
segmented probe interstitial and a line dislocation of pure edge
character was performed (see section 2.4 for details). The eigen-
strain representation of the particle is comprised of 6 coupled
blocks of 4 voxels each, centered in the design tensor. The num-
ber of blocks represents segments of the probe. 6 was chosen as

the number of segments to avoid excessively high aspect ratios.
Segment radii are permitted to approach 0, effectively shortening
the probe if advantageous for optimization. The size of the design
tensor was sufficient for strain fields to decay to negligible values
at the edges of the domain.

Fig. 4 shows summary information from 100 MC trials pre-
formed on line-dislocation arrays (See SI for solver parameter de-
tails†). The final locations that maximize interaction (shown in
Fig. 4d) are clustered on the leading edge of the dislocation, near
the tensile lobe associated with the ηzz field. Fig. 4c shows his-
tograms of the segment geometries. The distributions are broad,
however mean values display a clear trend of high values at the
probe ends, and low values at the center. This dog-bone configu-
ration appears to maximize the probe’s escape barrier when near
a lobe of the dislocation’s ηzz field. The top six highest fitness
solutions are shown in Fig. 5a. Aside from the average trends of
high diameter ends and low diameter middles, some high-fitness
geometries also have a large diameter central segment, resulting
in a serrated appearance. This appears to be a further refinement
of the average trend.

3.5 Use Case: Dislocation Loops

The same MC procedure (section 3.3) as for line-edge disloca-
tions (section 3.4) was applied to extrinsic dislocation loops (see
section 2.4 for details). Fig. 6 summarizes the results of 100 MC
trials on the sampled loop strain data. The higher values of mo-
bility barriers in the neighborhood of the dislocation loop imme-
diately become clear. The strain fields perpendicular to the loop
glide axis are higher in magnitude than those surrounding a line-
edge dislocation. The line dislocation has negligible strain values
in the direction parallel to the line vector; most strain energy is
contained in the field parallel to the glide direction. The bending
of the dislocation-loop lines produces a more highly strained lo-
cal environment for the probe to interact with. The locations of
maximum interaction are distributed within the area of the loop.
There is a preference for the compressive corners of the loop over
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the tensile corners. The histogram of segment diameters reveals
large populations of high and low diameters (and a relative lack
of intermediate diameters), with almost no pattern to how these
segments are ordered. Fig. 5b shows the top six solutions of opti-
mal probe shape, highlighting again that the key feature for opti-
mal interaction is a low-strain segment surrounded by large-strain
segments. There seems to be no strong preference for where on
the probe the small segment is placed.

3.6 MD Validation of Barrier Estimation

To test the validity of estimating hopping barriers from predicted
strain fields (section 3.2), the optimized probes found in sections
3.4 and 3.5 were placed within a defect-free FCC crystal domain
and a force was applied that aligned with the rod’s axis. Several
hydrostatic strains were applied to the simulated crystal in order
to test the rod’s mobility in different strain environments. Fig. 7a
shows the average velocity of the rod under different magnitudes
of force (~f ) for different hydrostatic strain conditions. Curves are
fit to the velocity data using the Fokker-Planck equation solution
for a periodic 1D potential63. Two free parameters—the barrier
height (dfit) and the damping constant (γ)—were used for the fit.
Barrier heights were compared to those found from the optimiza-
tion process (deig). Fig. 7b shows the comparison of the estimated
and fit barrier height. The fit and predicted values have a constant
offset, but are otherwise related linearly with a proportionality
constant close to unity. The origin of the offset is unknown, but
may be a product of the fluctuating probe orientation and thermal
bending of the interstitial channels, which are effects neglected by
the estimation method. The value of γ found by fitting is related
linearly to the pressure of the crystal (see Fig. 7). This trend in
γ reveals that strained environments can change the frequency of
collisions between the interstitial and the crystal particles, which
is an expected result. In optimization of the probe geometry, this
γ effect can be neglected, since it is predominantly important at
high forces. Additionally, since γ is positively linearly correlated
with d, both parameters need not be considered to maximize dif-
ferences in average particle velocity.

3.7 MD Simulation of Interstitial-Dislocation Interaction

To test the validity of the solutions (sections 3.4 and 3.5) pro-
duced by the MC optimizer, MD simulations were performed. The
optimized probe particle was placed within the simulated crystal
(the same geometry as was created for sampling of the defect
strain fields) at the location of maximum interaction found by the
optimization, with a force applied to the rod along its long axis.
Fig. 8a shows the relationship between the distance traveled by
the optimized probe, and the slip between a pair of tagged trac-
ers positioned on either side of the dislocation slip plane. On this
plot, a slope of 1 indicates that the dislocation and the optimized
probe are traveling together, producing one Burgers vector of slip
per full transit of the periodic box by an optimized probe. As
the force exerted by the interstitial is increased, the total distance
traveled by the dislocation and the probe increases. The inset in
Fig. 8a shows the velocity of the probe as a function of force. A
local velocity maximum near f ' 9.0 is observed. For f > 16.8 the

Fig. 7 a Probe interstitial velocity as a function of force for various con-
ditions of hydrostatic strain. Curves are fit as functions of γ and barrier
height, d f it . b Relationship between the fitted value of d and that pre-
dicted by the eigenstrain estimate. c Relationship between the fit value
of γ and pressure. The quantity γ ·D2 scales linearly with applied system
pressure.

probe becomes completely unbounded from the dislocation. The
dislocation array stops moving unidirectionally and the probe’s
velocity as a function of force becomes monotonic. Fig. 8b-e
shows renderings of simulations where the probe particle is in-
teracting with a partial edge dislocation line. Also shown is a
slice of the simulation domain before and after the dislocation ar-
ray was driven to glide across the periodic box several times. The
central segment of the crystal can be seen to have slipped past the
remainder of the system. This slip increases by one full Burgers
vector magnitude for each time that the partial dislocation pair
transits the periodic simulation domain in the [11̄0] crystal direc-
tion.

The same study and analysis was also conducted for the
dislocation-loop-optimized probe. In this case one of the tagged
tracer particles was placed within the glide cylinder of the tube.
Fig. 9a shows the correlation of optimized probe travel and loop
travel as a function of force. As these simulations were run for the
same amount of time as the line dislocation tests, it is clear that
the mobility of the loop-probe pair is much higher. The striking
difference in mobility for loop and line dislocations is not sur-
prising, as loops contain a much shorter length of dislocation line
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Fig. 8 a Optimized probe distance traveled versus slip of the central
region for a simulated edge dislocation array. Particle forces above
fb = 16.8 result in small slopes, indicating that the active particle escapes
from the vicinity of the dislocation. The inset shows the velocity of the op-
timized probe as a function of force. There is a local maximum in velocity
before the breakaway force. Snapshots of the optimized probe as it inter-
acts with a partial edge dislocation, rendered with OVITO 64. b The dis-
location array, shown with all particles having an FCC-like neighbor shell
removed. The red particles are members of the stacking faulted layer
and the white particles are members of the disordered core. c Close-up
of the optimized particle as it interacts with one of the partial dislocations.
d A slab of particles at the start of the simulation, color coded by x posi-
tion. e The same particles after several passages of the dislocation array
through the box.

that has to glide. In the simulations shown here, the length of
Shockley dislocations present in the loops is ∼ 18a (with the to-
tal length of all dislocations ∼ 30a), while line dislocation sim-
ulations contained only Shockley partials spanning ∼ 120a. The
escape force for the loop optimized probe is larger than that for
the line dislocation, above f ' 29.2. The probe’s velocity (Fig. 9a
inset) as a function of applied force shows similar features to the
line dislocation case, however the local maximum ( f = 16.8) and
minimum ( f = 29.2) are more distinct. The increased force value
of the maximum and minimum is consistent with the higher ∆d
achieved for the optimization of the loop probe. Fig. 9b-e shows

images of the simulated loop-active particle system. Fig. 9c shows
the dislocation lines present in the extrinsic loop, as found with
the DXA algorithm65 implemented in OVITO64. The loop struc-
ture is comprised of three dislocation types: partial (Shockley)
dislocations, forming the two ends of the dissociated dislocation
loop tube, as well as stair-rod dislocations and Hirth dislocations
at the corners of the loop, with line directions parallel to the glide
axis of the loop. Similar to the case of the line dislocation array,
multiple transits of the dislocation loop through the simulation
cause slip of the regions bounded by the glide cylinder.

Fig. 9 a Optimized probe distance traveled versus slip of the loop glide
cylinder region for a simulated extrinsic dislocation loop. Probe forces
above fb = 29.2 result in small slopes, indicating that the active probe
escapes from the vicinity of the dislocation. Inset shows the velocity of
the probe as a function of force. Snapshots of a segmented rod intersti-
tial particle as it interacts with an extrinsic dislocation loop, rendered with
OVITO 64. b Close-up of the dislocation loop structure with optimized
probe nearby. Particles with FCC-like environments have been removed
for visibility. Red particles are members of stacking faults, and white par-
ticles have disturbed neighbor shells. c Close-up with particles rendered
transparently and dislocation lines highlighted: green lines are partial
(Shockley) dislocations (~b = 1

6 〈112〉), purple lines are stair-rod disloca-
tions (~b = 1

6 〈110〉), and yellow lines are Hirth dislocations (~b = 1
3 〈001〉). d

A slab of particles at the beginning of the simulation, colored by x posi-
tion. e The same particles after several transits of the loop through the
box.
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The straight partial dislocations simulated in this study cross
the periodic box boundaries, and so can be thought of as infi-
nite in extent. Therefore, it is best to compare the performance
of probes interacting with line and loop dislocations on a per-
length basis. In a periodic box containing one probe particle and
two straight edge dislocations that have decomposed into four
Shockley partials, the breakaway force of the line dislocation op-
timized probe is f/l ' 16.8/120a = 0.14/a. If in the loop dislo-
cation case we consider only the Shockley partial length, then
the loop dislocation optimized breakaway force per unit length is
f/l ' 29.2/18a = 1.62/a. The large difference in breakaway force
on a per unit length basis emphasizes the increased coupling be-
tween a curved dislocation and the probe interstitial.

The probe interstitial can only interact via its strain field in a
small volume (the volume of non-negligible strains produced by
the probe). Ultimately, the small size of the probe results in strain
fields that rapidly decrease in magnitude with distance, much like
a point source. A bent dislocation, like those in a small loop, can
fit more dislocation line length within range of the probe’s strain
field. In fact, the straight dislocation case can be compared to a
very large diameter loop, which on length scales similar to the
range of the probe’s strain field appears straight. The results pre-
sented here show that as the circumference of a dislocation loop
is scaled from ' 9a to ' 60a, a greater than ten-fold reduction in
optimal probe binding strength per unit length occurs due to the
reduction of dislocation curvature. An implication of this result is
that dislocation bends or jogs, which have locally high curvature
should also be expected to strongly interact with the same probes
that strongly interact with small dislocation loops.

4 Conclusion
We have shown that there is a robust mapping between the geom-
etry of a repulsive segmented probe particle embedded as an in-
terstitial in an FCC crystal of repulsive spheres and the local strain
field that is produced around it. We exploited this predictive con-
nection to allow the use of MC methods to design the nature of the
interaction between the interstitial probe and other strain-field-
producing disturbances in the crystal. We have also shown that
the mobility of such an interstitial is well-approximated through
consideration of the strain field alone, and that by placing con-
straints on the mobility of the interstitial in different local envi-
ronments (i.e., near to and far from a dislocation), the interaction
between this interstitial and another object can be tuned. A strik-
ing feature of this design method is its computational efficiency.
The simple Python implementation of the MC solver used here re-
quires approximately one day per solution to run on a single CPU.
In contrast, each trial force MD simulation of the line dislocation
arrays requires a full week of NVIDIA R© Tesla R© P100 GPU time. If
every trial geometry, position, and force required such a simula-
tion for evaluation, then it would be unfeasible to carry out this
scheme.

This work demonstrates a route towards microstructure control
in colloidal materials through a designed, active tool particle in-
terstitial that can manipulate internal defects. Currently, the most
powerful tool for 3D microstructure creation available to colloidal
scientists is templating, whereby the boundary conditions of crys-

tallization are changed to favor the creation of desired defects.
Our work complements such efforts by providing a means to re-
configure microstructure after crystallization has already occurred,
which opens the possibility for colloidal crystal mechanical and
optical devices. Furthermore, increasing defect mobility by inter-
action with active interstitial probes is a route to lowering col-
loidal crystal defect quantity. Active particles designed in this
way can be used to ‘sweep out’ undesired defects and microstruc-
tures. This work demonstrates a colloidal microstructure control
scheme that exploits the designability of colloidal crystal subunits
in a way not achievable with atomic materials.
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