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Computational self-assembly of colloidal crystals

from Platonic polyhedral sphere clusters

Ryan L. Marson,a,d Erin G. Teich,a,b,d Julia Dshemuchadse,a,d Sharon C. Glotzer,a,b,c,d

and Ronald G. Larsona,d

We explore a rich phase space of crystals self–assembled from colloidal “polyhedral sphere clus-
ters (PSCs),” each of which consists of equal-sized “halo” spheres placed at the vertices of a
polyhedron such that they just touch along each edge. Such clusters, created experimentally by
fusing spheres, can facilitate assembly of useful colloidal crystal symmetries not attainable by un-
clustered spheres. While not crucial for their self–assembly, the center of the PSC can contain a
“core” particle that can be used as a scaffold to build the PSC. Using Brownian dynamics simula-
tions, we show the self–assembly of eight distinct crystalline phases from PSCs that correspond
to the five Platonic polyhedra, and that are made of spheres with purely repulsive interactions.
Strong crystalline order is seen in the centers of mass of the PSCs, or equivalently the core parti-
cles. The halo particles also may organize into crystal structures, usually with weaker crystalline
order than the core particles. Notably, however, in crystals assembled from the octahedral and
icosahedral PSCs, the halo particles are also well ordered, nesting within the crystals formed
by the cores. Interestingly, despite the rounded nature of the PSCs, in some cases we obtain
structures similar to those of the corresponding faceted polyhedra interacting only via excluded
volume. Only the tetrahedral PSCs fail to self–assemble into a crystal, but we demonstrate that
a pre-assembled crystal – whose halo particles sit on a close-packed face-centered cubic lattice,
and whose core particles form a diamond structure – is stable at high density and melts into a
hexagonal phase at lower density.

1 Introduction

Colloids, ubiquitous in day-to-day life in products ranging from

food to shampoo to textiles, are also of interest for many exper-

imental applications. They provide optically visible analogs for

atomic or molecular structures, and readily crystallize into a vari-

ety of ordered structures that depend on particle shape, size, and

charge

1–6

. With careful design, colloidal crystals can possess un-

usual but technologically promising properties such as structural

color

7

, which arises from the packings of constituent colloidal

particles rather than from molecular dyes. Structural color, as is

present for example in the wings of some butterfly species

8–10

is

vivid and bright, and does not fade with time. Perhaps most im-

portantly, next–generation computers that use light rather than
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electrons to operate orders of magnitude faster than current de-

vices may be able to leverage the precisely defined spacings in

colloidal crystal structures

3

to conduct photons in a wavelength–

dependent manner (analogous to similar selective conduction of

electrons in atomic crystals)

11,12

. Of particular technological in-

terest is the diamond family of structures, long sought for its pho-

tonic properties

11–18

.

The pursuit of these photonic and related technologies requires

that researchers spatially order colloidal particles in a controlled,

cost-effective, reproducible manner

2–4,19

. Attempts to do so be-

gan simply, with micron-sized monodisperse polymer spheres that

were densified in various ways including evaporation

20

and mi-

crofluidic techniques

21,22

. Ultimately, most of these experiments

resulted in the crystallization of the FCC structure

2–4

, which is

the densest packing of monodisperse hard spheres

23

. To ob-

tain different structures, researchers have sought ways to in-

troduce anisotropy into the interactions of these colloids, as it

is now well–understood that anisotropic interactions, mediated

for example by colloidal shape or patterning, can lead to new

equilibrium morphologies

1,5

. This understanding has led to a
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Fig. 1 The polyhedral sphere cluster (PSC) geometries used in this study. All Platonic solids were simulated, and are depicted in order of increasing
number of facets – a) tetrahedron, b) cube, c) octahedron, d) icosahedron, e) dodecahedron. The polyhedral structure of each particle is inset in each
panel; distances between spheres within each rigid body are fixed over the course of the simulation.

new wave of various synthesis techniques, chief among them

the assembly of building blocks using droplet evaporation

24,25

,

DNA ligand-capped anisotropic nanoparticle synthesis

26

, and the

use of colloid-tethered DNA as a specific

17,20,25,27–29

or direc-

tional

30,31

binding agent

22,32

. Such building blocks are then

used to assemble a variety of single-component and binary crys-

tal structures

15,17,28,29,33–38

. Other methods for assembly that

rely on shape and entropy are particularly appealing due to the

simplicity of the assembly process, which requires no interac-

tions other than excluded volume among the particles

1,39–42

,

and can be achieved merely by crowding the particles. Hard

polyhedra, for example, assemble into a host of diverse crystal

structures

40,41,43

, some of which have been experimentally re-

alized.

43,44

Recently, McGinley et al.30,45

put forth a method of

synthesizing purely repulsive anisotropic colloids by exploiting a

“core” – “halo” packing of spheres to create polyhedral clusters

such as tetrahedra, octahedra, and icosahedra. Here we inves-

tigate via molecular simulation the self-assembly of rigid, pre–

formed core–halo polyhedral sphere clusters (PSCs) to explore

the range of crystal structures that can be formed from rigid clus-

ters of purely repulsive hard spheres.

We define a PSC as a sphere cluster for which the set of all

bonds connecting the centers of tangent spheres forms a polyhe-

dron. In our definition, we require all spheres of a PSC to be

tangent spheres (that is, no overlap is permitted within a PSC).

This definition of PSCs intentionally excludes clusters for which

there are bonds that are not part of a polygon forming the face

of a polyhedron – for example, a tetrahedral cluster with a fifth

sphere attached solely to one corner of the tetrahedron. We fur-

ther define a “regular” PSC as one in which all spheres are the

same size. Any polyhedron whose edges are all the same length

can therefore frame a regular PSC. If the edges of the polyhedron

are not all the same length, then equi-sized spheres cannot touch

along each edge of that polyhedron. Hence only polyhedra with

the same edge lengths can be scaffolds for regular PSCs. Thus,

one can construct “Archimedean PSCs”, “Catalan PSCs” (duals of

the Archimedean PSCs), and “Johnson PSCs”, along with the “Pla-

tonic PSCs”’, all of which are regular because they all have edges

of equal length.

We also define a general class of “halo sphere clusters” (HSCs),

with a central sphere core surrounded by a layer of halo spheres,

all of which touch the central sphere. In a regular HSC, all halo

spheres are the same size but possibly different from the size of

the core sphere. This type of cluster has already been defined pre-

viously

46,47

. For some HSCs the halo spheres form PSCs; but, in

general, the regular PSCs are a subset of HSCs. Beyond this, one

can define “multilayer” HSCs with second, third, or more layers

of halo spheres, where the nth order halo spheres must all touch

one or more of the (n�1)th layer spheres.

Because the vertices of Platonic and Archimedean solids are all

equivalent, for each of these, there exists a regular core-halo clus-

ter. That is, the touching spheres at the vertices of the Platonic

or Archimedean PSCs all can also touch a central core sphere of

appropriately-chosen size. The Catalan and Johnson polyhedra

do not universally possess this property because, although the

edges of a Catalan or Johnson polyhedron are all the same length,

not all vertices are equivalent; thus, a central sphere can touch

some vertex spheres without touching them all. The ability of

the central sphere to touch all halo spheres is important not only

for determining the symmetries of the self-assembled phases, but

also for synthesizing these sphere clusters by binding halo spheres

to the central spheres. It should be noted that while the arrange-

ments of the core particles are discussed in our study (due to their

use as scaffolds onto which the halo particles of the PSC are fre-

quently assembled experimentally), they play no direct role in the

self–assembly of the PSC clusters into crystalline phases, because

2 | 1–16
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their short-range (contact) interactions do not reach beyond the

surrounding halo particles in which each core particle is buried.

We refer to these colloidal clusters as PSCs because the halo par-

ticles alone drive their crystalline self–assembly. PSCs could be

synthesized without a core particle as a scaffold, for example by

shrinking a droplet containing the desired number of equal-sized

spheres until the spheres touch and bond permanently together

into a well-defined cluster

5

. One could still define a center-of-

mass for these PSCs, which would be equivalent to the center of

mass of a core particle; thus the positions of core particles can

describe the overall crystal structure of the system whether or not

the core particles are actually present within the PSCs.

In this study we investigate purely repulsive Platonic PSCs, as

shown in Fig. 1, and report the first finding of crystal struc-

tures self-assembled from them. We find remarkable complexity

in the structures that assemble, with some PSCs demonstrating

more than one phase depending upon the system volume fraction.

We impose purely repulsive interactions between constituent PSC

spheres, and thus produce results that are independent of abso-

lute particle size, provided the diameter ratio of “halo” to “core”

spheres remains fixed and the PSCs are Brownian. Our assem-

blies instead emerge primarily entropically from excluded volume

effects of rigid colloidal building blocks, in the absence of any at-

tractive forces. In the following sections, we describe and sum-

marize our computational study.

2 Model

We utilize a minimal coarse-grained model used in previous works

to study the assembly behavior of rigid colloidal particles

39,48–53

.

The colloidal clusters are modeled as rigid bodies

52

composed of

beads situated at the vertices of the Platonic polyhedra (the halo

particles); an additional core particle, whose diameter is chosen

to just touch the surrounding particles, is present at the center

of each cluster. As mentioned earlier, the core particle has no in-

fluence on phase behavior since interactions are purely repulsive

and the core particle is buried within the cluster so that it can-

not interact repulsively with core or halo particles of any other

cluster. For the icosahedral cluster, we choose the core and halo

spheres to be all the same size, to match with a known experi-

mentally achievable cluster geometry

30,45

. Due to the geometry

of the icosahedron, this necessitates that the halo spheres do not

actually lie completely tangent to each other. Rather, the edge

length in this case is

2sp
F51/4 ⇠ 1.05s , rather than s , where F is

the golden ratio. For this reason, our icosahedral cluster does not

quite meet the formal definition of a Platonic PSC, although we

will continue to refer to it as one. All five PSCs – tetrahedron,

cube, octahedron, icosahedron, and dodecahedron – are shown

in Figure 1; insets show the connectivity of the “halo” particles

and the polyhedral cage.

We use a Weeks–Chandler–Anderson (WCA) potential

54

to

model repulsive interactions between constituent spheres on dif-

ferent PSCs. This potential is defined in the usual way by shift-

ing the standard Lennard-Jones (LJ) potential upward in energy

and truncating at its minimum so that it goes smoothly to zero

at its cut-off. This shift results in an effective hard–sphere in-

teraction, with little to no penetration of spheres in neighboring

clusters except at extremely high densities beyond those studied

here. The PSCs only interact via the individual repulsive poten-

tials calculated pairwise between spheres on different PSCs. The

self–assembled phases we report arise from these purely repul-

sive interactions, rather than via any sophistication in the design

of the potential between PSCs. As a result, all self–assembly is

driven essentially solely by entropy. Further detail on the WCA

potential, including a plot of its functional form, is provided in

the Supplementary Information.

The PSCs are simulated in an implicit solvent within the NV T

ensemble using Brownian dynamics (BD)

55

, which avoids the

need for modeling an explicit solvent and thus reduces the com-

putational workload. Particle trajectories are governed by the

Langevin equation, m

¨

r

i

(t) = F

C

i

(r
i

(t))+F

R

i

(t)� gv

i

(t), where m is

the particle’s mass, r

i

is its position, F

C

i

is the conservative force

on the particle, F

R

i

is a random force, v

i

is the particle velocity,

and g is the particle’s friction coefficient. The friction coefficient

is g = 6phs , where h is the solvent viscosity. F

C

i

is the conserva-

tive force established by the WCA potential. The random force,

F

R

i

, satisfies the fluctuation-dissipation theorem. The combined

effect of the friction coefficient, g, and the random force, F

R

i

, is to

couple particles to a non-momentum-conserving heat bath. The

dimensionless time is t =
p

ms2/e, where e sets the energy scale

of the potential and other parameters are as previously defined.

The system temperature is given by T

⇤ = k

b

T/e. The volume frac-

tion, f , of the system is determined by dividing the total excluded

volume of all particles by the total volume of the box.

Simulations are initialized with N = 4096 PSCs (aside from the

dodecahedra, which are run with N = 1512 and 3600) randomly

placed in a cubic box with periodic boundary conditions; specific

numbers of PSCs are listed in the results section. The system

is randomized by thermalizing it at T

⇤ = 1.0, for 1 million time

steps. All simulations begin dilute, and are compressed to the de-

sired volume fraction over 106
time steps by isotropically shrink-

ing the box dimensions. Finally, the system is equilibrated at the

final volume fraction by running for a number of time steps be-

tween ⇠ 1.9⇥ 108
and ⇠ 1⇥ 109

. All simulations use a time step

Dt = 0.005
p

ms2/e. Every system is simulated over a range of

volume fractions between f = 25% and 60%; specific information

on each PSC is given in the “Results” section. Simulations are

performed using the Highly Optimized Object-oriented Molecu-

lar Dynamics (HOOMD)-blue software package

56

, a GPU-based

Molecular Dynamics (MD) code. All clusters are treated as rigid

bodies

52

, and thus the bonds within a cluster remain fixed over

time.

The system pressure, P

⇤
, is calculated via the virial stress ten-

sor

57

. To determine equations of state, pressure data were taken

from the final 10% of the run in all cases. We obtained statistically

independent measurements by calculating the pressure autocor-

relation function for each trajectory, r

p

(t) = h(p(t)�hpi)(p(t+t)�hpi)i
h(p(t)�hpi)2i

.

The pressure autocorrelation is a function of the lag time t be-

tween pressure measurements, and is unity if pressures at any

time t are perfectly correlated with those at t + t, �1 if they are

perfectly anticorrelated, and 0 if they are uncorrelated. Brack-

ets indicate averages taken over a dynamic trajectory, at every

1–16 | 3
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value of t for which system pressure was measured. We visually

inspected r

p

(t) for the final tenth of each trajectory, and chose a

corresponding conservative lag time t, specific to each trajectory,

beyond which we determined by eye that r

p

(t) had become dis-

tributed randomly about 0. We then used only pressure measure-

ments spaced by these values of t in our calculations of average

pressure for each state point and used the number of data points,

taken as independent measures, to assess the mean pressure and

its standard error.

All phases are identified through a combination of visual in-

spection of the structure as well as its calculated diffraction pat-

tern, radial distribution function (RDF), and bond-orientational

order diagram (BOD)

58,59

. Structures are denoted by their Pear-

son symbols, consisting of a lower-case letter indicating the crys-

tal system (e.g., c for “cubic” in cF4), an upper case letter in-

dicating the lattice centering (e.g., F for “face-centered”), and a

number indicating the number of particles per unit cell (e.g., 4).

In its long form it is combined with a prototype compound that

adopts this structure (e.g., Cu in cF4-Cu).

3 Results

Four of the five Platonic PSCs produced thermodynamically sta-

ble, or at least metastable, crystalline phases. Here we describe

the phases found in our simulations and the thermodynamic pa-

rameters at which they are found. We did not observe a tetra-

hedral PSC phase accessible via self-assembly, but we did ob-

serve that a constructed ordered crystal of tetrahedra remains

stable under thermalization, and that a crystallographically re-

lated ordered crystal grows from a seed crystal; these points

will be elaborated on in the “Discussion” section. All other Pla-

tonic PSCs (cube, octahedron, icosahedron, and dodecahedron)

demonstrate one or more crystalline phases that are accessible

via self-assembly following compression from the initial low den-

sity, disordered state. Each of these systems is fluid at low f ,

crystallizes into one or more ordered phases at higher f , and in

most cases remains disordered when compressed to the highest f
investigated, failing to crystallize on the time scales of our simula-

tions. Figure 2 shows a variety of the self-assembled crystal struc-

tures obtained via simulation at intermediate f between these

limits. Figure 3 shows approximate equations of state, with all

fluid and crystalline phases included, but excluding state points

at high f for which the system failed to assemble into a crystalline

structure on simulation timescales; in the equation of state, each

data point is a separate simulation. To construct the equation

of state each volume fraction was obtained as the final density

after a relatively rapid compression from a dilute fluid system,

as described above, to the desired final volume fraction. After

this volumetric “quench”, the system was equilibrated for a pro-

longed time, during which crystallization might occur. We did

not attempt to observe a solid–solid transition by gradually com-

pressing the volume, but instead obtained a new volume frac-

tion by carrying out a new simulation starting from a dilute con-

centration and compressing relatively quickly to the new volume

fraction. The crystal structures discussed initially in the follow-

ing paragraphs are based on the positions of the core spheres for

each PSC. Because the tetrahedron was the only PSC that did not

directly self-assemble we list results for this PSC last, after first

reporting those that readily self-assembled from the fluid phase.

We conclude the section with a summary of observed PSC halo

sphere crystal structures.

3.1 Cubic PSC
The cubic PSC was run at 40 final volume fractions between

f = 35 � 54%, with N = 4096 spheres, for 500 ⇥ 106
timesteps.

At low final volume fractions, as with all PSCs, the system is not

sufficiently dense to crystallize. However, as a volume fraction of

f = 40% is approached, a phase transition to a FCC-type structure

(cF4-Cu, or, for short, cF4) occurs, where here and elsewhere we

are referring to the structure of the core spheres, unless stated

otherwise. Between f = 40.5 � 51% the system forms two dif-

ferent phases that are related to the hexagonal hR3-Po-type. Al-

though the unit cell of hR3-Po has c/a ⇡ 1, the two structures ob-

served here exhibit c/a ⇡ 0.8 and c/a ⇡ 1.9, respectively, the latter

dominating the phase region, while appearances of the former are

scattered throughout the entire range of packing fractions. The

low-c/a phase is similar to the eponymous hR3-Po phase; both

have coordination polyhedra (CP) (i.e., the local environments of

the core spheres of each PSC) that correspond to distorted octa-

hedra, with coordination numbers CN = 6, but with another set

of six neighbors at a similar distance. The coordination of the

high-c/a phase however is clearly CN = 12 and corresponds to

a distorted cuboctahedron; it is therefore closely related to the

FCC-type structure that forms at low packing fractions. The cu-

bic PSCs form a configuration in which “faces” of the cubes do

not prefer to align; instead, the system adopts a 3D interdigitated

phase that best accommodates the packing of the halo spheres.

Such interdigitation of cubes modeled by spheres has been previ-

ously observed in simulations

60

. At high values of f = 52�54%,

the cubic PSCs form a monoclinic phase (mP2). The highest den-

sity phase observed for the cubic PSC is shown in Figure 2a, and

its equation of state is shown in Figure 3a.

3.2 Octahedral PSC
The octahedral PSC was run at 60 volume fractions between f =

39�56%, with N = 4096 spheres, for 500⇥106
time steps. Up to

f = 45%, no crystallization occurs and the system remains in the

fluid state. Above this volume fraction, but below f = 51%, the

system forms a BCC structure (cI2-W), which is shown in Figure

2b. The CP for the cI2-phase is a rhombic dodecahedron (or a

combined cube and octahedron). At the higher values of f = 51�
55%, the system forms either a cI2, a cF4 phase, or both phases

(cI2 and cF4) coexist simultaneously within a single simulation

box; thus both phases are at least metastable at these volume

fractions. The equation of state for the octahedral PSC is shown

in Figure 3b.

3.3 Icosahedral PSC
The icosahedral PSC was run at 40 volume fractions between f =

35� 54%, with N = 4096 spheres, for 500⇥ 106
time steps. At

volume fractions of f = 36% and below, the system is a fluid. At

volume fractions between f = 36.4�47.3% the system forms the

4 | 1–16
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a) b) c)

d) e)

Fig. 2 Results of various assemblies. In all assembly images only the core (center) spheres are shown, in gray, for clarity. Bond-orientational order
diagrams (BODs) calculated for core spheres for each phase are located in the upper right corner of each panel, the Platonic PSC is shown in the
upper left corner, and associated diffraction patterns are shown in the lower right corner. To demonstrate the packing of the full PSC, including halo
spheres, panels a–c additionally show the full PSC unit cell in the lower left corner; in panels d and e the unit cells are omitted for clarity, due to their
higher complexity. a) hR3 phase formed by cubes; b) body-centered cubic (BCC; cI2) phase formed by octahedra; c) face-centered cubic (FCC; cF4)
phase formed by icosahedra; d) hP7 and e) cP20 phases formed by dodecahedra.
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Fig. 3 Equations of state for the four PSCs that readily self-assemble
crystalline structures: a) cube, b) octahedron, c) icosahedron, and d)
dodecahedron. Each state point corresponds to a separate simulation,
and the system pressure, P

⇤, is calculated via the virial stress tensor. All
plots contain error bars (representing the standard error of the mean of
the pressure, collected over the course of a given run), but error bars are
all smaller that the size of the symbols. Noise in the curves is the result of
some systems not being homogeneously crystalline, possessing regions
of defects. Lines are drawn as a guide to the eye, and do not represent
exact phase boundaries.

FCC structure (cF4); this phase is shown in Figure 2c. The CP

for the cF4 phase is a cuboctahedron. At volume fractions of f =

48.1� 50.6% the system forms cI2. Between f = 47.3%� 48.1%
a mixture of cI2 and cF4 occurs. The equation of state for the

icosahedral PSC is shown in Figure 3c.

3.4 Dodecahedral PSC
The dodecahedral PSC was run at 72 volume fractions between

f = 34� 52%, with N = 1512 spheres, for 1000⇥ 106
timesteps;

an additional set of runs was performed at 10 volume fractions in

the range f = 30�43% with N = 3600 for 500⇥106
timesteps. As

with all clusters, at low volume fractions (f < 35.7%) the system

is a fluid. Between volume fractions of f = 35.7�36.6% the core

spheres adopt a FCC configuration (i.e., cF4). While FCC still

dominates at higher concentrations, multiple competing phases

for the cores are observed in the range f = 36.7 � 39.3%: the

so-called g-brass phase, cI52-Cu5Zn8, the b -manganese structure,

cP20-Mn, and the topologically close-packed Frank-Kasper phase

hP7-Zr3Al4. The CPs of all these structures have 12 to 15 vertices

and are reminiscent of icosahedra or other Frank-Kasper poly-

hedra typically found in intermetallic compounds. The hP7 and

cP20 structures are shown in Figure 2d and 2e respectively; im-

ages displayed are from the N = 3600 PSC runs. The equation

of state for the dodecahedral PSC is shown in Figure 3d, with

all data points taken from the N = 1512 PSC runs. Additionally,

as shown in the lower left portion of Figure 3d, at two volume

fractions FCC crystals were found within what was otherwise a

region of fluid. To investigate, we performed a series of 10 inde-

pendent melting simulations in which we isotropically expanded

all box edges (L = 1.0� 1.125x) from the structure obtained via
self-assembly at f = 35.2%. The FCC structure was stable down

to a volume fraction of f = 30.51%, melting for lower values of

f ; this indicates that the structure is at least thermodynamically

metastable, but difficult to access at low f .

3.5 Tetrahedral PSC

For the tetrahedral PSCs, self-assembly studies produced no or-

dered crystalline phases over a range of volume fractions f =

35 � 60%. This region was targeted specifically because it is

known that there are feasible crystalline packings of tetramers

in this range of volume fractions

61

where the halo spheres of the

tetramer adopt a FCC packing, while the core spheres can adopt a

different, but commensurate, diamond (cF8) packing. This con-

struction is shown in Figure 4a–b.

To test the stability of the pre–assembled tetrahedral PSC sys-

tem, we constructed the diamond / FCC packing of PSCs by hand

and performed melting studies. The system shown in Figure 4a–

b was created in such a way that halo spheres are just touch-

ing, but do not overlap. Melting runs were performed by resiz-

ing the box isotropically in all directions to the chosen volume

fraction over 105
time steps, and then equilibrating for 100⇥106

time steps; 15 volume fractions were chosen linearly spaced be-

tween f = 44.07� 74.26%. The results show that the diamond

/ FCC structure remains stable at volume fractions in the range

of f = 54.3� 74.26%, while completely melting for volume frac-

tions below f = 48.82%; in between, a transition crystal related

to the diamond structure via an elongation in the z-direction with

Pearson symbol hP2 appears. This structure appears despite the

fact that the box resize was isotropic, so this elongation repre-

sents a symmetry breaking in the system. Three example phases

are shown in Figure 4c–h: the first is the constructed crystal, the

second is the transition hP2 crystal, and the third is the fluid; also

pictured are just the core spheres and bonds drawn out to the first

peak of the radial distribution function (RDF).

We further investigated the robustness of the diamond crystal

by performing seeded crystal runs. In these runs, a thin slab of

the diamond/FCC crystal (3 to 4 tetrahedra thick) was left frozen

at the center of the box. The non-frozen portion of the crystal was

melted by extending the length of the box in the [100]-direction,

and allowing the PSCs to equilibrate. The system was then re-

compressed to between 1�1.125x of its original length along [100]
over 500⇥106

time steps, and then further equilibrated for an ad-

ditional 500⇥106
time steps. An example of this is shown in Fig-

ure 5a–d. The structure is observed to recrystallize into the hP2
phase. Figure 5d shows the arrangement of the core spheres, and

the unit cell of the new crystal is inset at the lower left. This hP2
crystal has the same structure as that obtained by partially melt-

ing the perfect diamond crystal, shown in Figure 4d, indicating

that this phase is at least metastable over a finite range of volume

fractions.
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a)

c)

f )

d)

g)

e)

h)

b)

Fig. 4 Diamond crystal melting runs from a perfect crystal. The top row shows the constructed diamond crystal cores, a), and halo spheres, b). The
middle row shows a series of volume fractions run from, c,f), the perfect cF8-crystal to, d,g), a partially melted transition structure (with Pearson symbol
hP2, and space group P3̄m1) to finally, e,h), a fully melted structure. The bottom row shows the corresponding core spheres, with bonds drawn out to
the first peak of the radial distribution function (RDF). The BODs for the structures are show in the top and bottom rows.
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a)

b)

c)

e)

f )

d)

Fig. 5 Example snapshots taken from seeded melting runs. A seed layer of 2
5 of the box was frozen, while the remaining PSCs were melted by

increasing the x-axis, and equilibrating the non-frozen tetrahedral PSCs. The box was then resized over 500⇥ 106 timesteps, and further equilibrated
for 500⇥106 timesteps. The subfigures show stages where, a) the non-frozen beads have melted, b) the structure has begun to re-crystallize, and c)
re-crystallization has progressed farther. In d) just the cores from c) are shown, with bonds drawn corresponding to the first peak of the RDF. The unit
cell for the new structure is shown from two directions in the right column, panels e) and f): the hP2-structure is related to diamond, but with a slightly
elongated z-axis that breaks connections between layers of the structure.
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Shape Pearson CORE � CORE
CORE � CORE �HALO

HALO �HALO �HALO

cF8

cI2

cI2

cI2

cF4

cF4

cF4

cF4

cF4

hR3

a)

b)

c)

d)

e)

hP2

Pearson

cI24

cP1

tI8

cI52

Fig. 6 Table of BODs for assembled crystal structures of all five PSCs.
For each PSC, the corresponding Pearson symbol, first for structures
formed by the core spheres and last for structures formed by the halo
spheres, is given. In between, the core–core, core–halo, and halo–halo
BODs are given. For the Pearson symbol column, each symbol corre-
sponds to the similarly positioned BODs in subsequent columns. a) The
seeded tetrahedral PSC structures, and structures self–assembled by
the b) cubic PSC, c) octahedral PSC, d) icosahedral PSC, and e) do-
decahedral PSC. In the case of the tetrahedral PSC a), halo spheres
are arranged on a FCC (cF4) lattice. For the icosahedral PSC d), halo
spheres are observed to crystallize readily.

Table 1 Platonic Polyhedra Phases - Faceted vs. PSC

Shape Faceted Polyhedron PSC Polyhedron

Cube cP1-Po cF4-Cu | hR3-Po

Octahedron hR3-X cI2-W | cF4-Cu

Icosahedron cF4-Cu cF4-Cu | cI2-W

Dodecahedron cP20-Mn cF4-Cu | cP20-Mn |
cI52-Cu5Zn8 | hP7-Zr3Al4

3.6 Halo Sphere Crystals
Finally, Figure 6 summarizes the observed PSC halo sphere crys-

tal structures, along with the corresponding crystal structures ob-

served in the core spheres for all five Platonic PSCs. It is impor-

tant to note that the halo spheres did not crystallize as readily as

their cores – meaning that in some cases, while the core spheres

formed an ordered structure, their halo spheres did not. In all

cases where both the core and halo spheres crystallized a given

crystalline arrangement of the core spheres produced only one

corresponding crystalline arrangement of halo spheres. For the

tetrahedral PSCs, all reported phases contained halo spheres ar-

ranged on a FCC (cF4) lattice, while core spheres occupied ei-

ther a cF8 or an hP2 structure. For the cubic PSCs, halo spheres

were arranged on a cP1 lattice when the core spheres occupied a

FCC (cF4) lattice; additionally, halo spheres were found to cor-

respond to a tI8 structure when core spheres were positioned in

an hR3 structure. For the octahedral PSCs, halo spheres were ar-

ranged on a FCC (cF4) lattice when the core spheres occupied a

BCC (cI2) lattice. For the icosahedral PSCs, halo spheres were

arranged in a cI24 structure when the core spheres occupied a

BCC (cI2) lattice. For the dodecahedral PSCs, halo spheres were

arranged on a BCC lattice (cI2) when the core spheres occupied a

FCC (cF4) lattice; additionally, halo spheres were found to lie on

a FCC (cF4) lattice when core spheres formed a cI52 structure.

4 Discussion

Our simulations demonstrate that, aside from the tetrahedron, all

purely repulsive Platonic polyhedral sphere clusters self-assemble

into one or more ordered phase(s). Despite the simplicity and

difference in geometry of the PSCs relative to their polyhedral

counterparts, we report here that some of their assemblies are

similar to those formed by faceted polyhedra

5,40,41,43,62,63

.

The following phases have been reported for hard Platonic

polyhedra

41

: cP1-Po for cubes, hR3-X for octahedra, cF4-Cu

for icosahedra, and cP20-Mn for dodecahedra. While the self–

assembled structures observed in systems of faceted polyhedra

also occur in the self-assembly simulations of PSCs for dodeca-

hedra and icosahedra, the octahedral PSCs assemble a higher-

symmetry version of the structure formed by their faceted coun-

terparts (cI2-W), and the structures in the cubic system differ even

more. Table 1 summarizes results for the self-assembly of hard

Platonic polyhedra and the PSC polyhedra investigated in this pa-

per.

This relationship between crystals formed by the PSCs and their

purely polyhedral counterparts can be exploited by experimental-

ists for whom the construction of faceted particles is difficult or
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expensive, but the assembly of polyhedral clusters of spheres is

easier. Furthermore, in any given assembled structure, the halo

and core particles form distinct, albeit related, structures – a fact

that can be exploited to design specific crystals such as the previ-

ously mentioned photonically relevant diamond structure. Such

an approach is conceptually similar to the use of polyhedral DNA

cages to assemble colloidal spheres in a diamond structure. Of

the five Platonic PSCs, all except the cube and dodecahedron have

been experimentally realized

30,45,64

. Thus, structures formed by

sharp, faceted polyhedral particles can be made accessible to ex-

perimentalists for whom the construction of these particles is dif-

ficult or undesirable, since similar structures are also formed by

assemblies of PSCs.

We have observed a wide diversity of ordered crystal structures

formed as determined by the positions of the core particles in

each PSC. Cubic, icosahedral, and dodecahedral PSCs all assem-

ble into the sphere-packing cF4 at low packing fractions, their

behavior approaching that of spherical shapes in that regime. Do-

decahedral PSCs form cF4 at lower packing fractions and a se-

ries of other structure types typical of intermetallic compounds at

higher packing fractions: gamma brass (cI52), beta manganese

(cP20), as well as the Frank-Kasper phase hP7. All of these struc-

ture types have similar coordination numbers and while their lo-

cal motifs are distinct and are all clearly observed, the formed

global structures in these simulations are somewhat ambiguous.

In most cases the halo spheres also arrange into a periodic struc-

ture. The halo spheres necessarily sit in locations that are comple-

mentary to the structure formed by the core particles, effectively

in the interstices of the core-core crystal structure. Figure 6 illus-

trates this for all five Platonic PSCs: core-halo BODs (formed by

mapping the positions of the halo spheres with respect to their as-

sociated core particle onto the surface of a sphere) are essentially

dual to core-core BODs (formed by mapping the positions of the

core particles with respect to their nearest core-particle neighbors

onto the surface of a sphere), signifying that halo spheres occupy

positions that are interstitial in the core-core crystals.

As we reported in the “Results” section, we observed that the

interstitial placement of the halo spheres with respect to the core-

core crystal structure caused nested crystals to emerge, in which

the core particle of the PSC arranges in one structure, while the

halo spheres adopt a different one. Examples can be seen in Fig.

7 for the octahedra and icosahedra and in Fig. 4 for the tetrahe-

dra. For the tetrahedral PSC, core particles form a diamond (cF8)

structure while halo spheres form an FCC (cF4) structure, Fig. 4;

for the octahedral PSC, core particles form a BCC-like (cI2) struc-

ture while halo spheres form an FCC-like (cF4) structure, Fig. 6c;

and for the icosahedral PSC, core particles form a BCC (cI2) struc-

ture while the halo spheres decorate a complex structure where

the PSCs stack in columns and spheres have a fixed twist with

respect to the column axis, Fig. 6d.

We found the structural relationship between the halo particles

and the core particles of the octahedral PSC to be of particular

interest. We observed a shift in cluster orientations that took

place concurrently with a phase transition from one solid core-

core crystal structure to another; this process is depicted in detail

in Figure 8. To better understand this transition, we investigated

a)

c) d)

b)

Fig. 7 Nested crystal assemblies. The top row shows the octahedral
PSC: a) “cores” adopt a cI2 configuration, while b) “halos” adopt a BCC–
like configuration. The bottom row shows the icosahedral PSC: c) “cores”
also adopt a cI2 configuration, while d) “halo” spheres additionally order,
all adopting the same orientation in the cI2 lattice. BODs are shown in
the upper right corner of all subfigures, while the PSCs are depicted for
each shape in subfigures a) and c).

relative cluster orientation via computing the set of minimal an-

gles through which each cluster must be rotated such that it is ori-

ented in the same direction as each of its N nearest neighbors. We

averaged this set of minimal angles for N = 14, producing an av-

erage minimal angle per cluster. Cluster symmetry was taken into

account: we regarded all halo spheres as indistinguishable, and

thus the octahedral PSC had a set of “equivalent orientations,"

or rotations that resulted in clusters that were identical for the

purposes of this study. The minimal angle calculated for each

cluster pair is the smallest angle of rotation among all equivalent

orientations of both clusters. Note that the nature of the angu-

lar distribution of randomly sampled rotations, in addition to the

underlying cluster symmetry, means that the distribution of the

average minimal rotation angle between an orientation chosen

randomly and a set of 14 orientations also chosen randomly is

not flat. Rather, it is peaked around q ⇠ 41� and has the shape

displayed in Supplementary Figure S2.

Distributions of per-cluster average minimal angles to neigh-

boring clusters for various system densities are shown in Figure

8, along with accompanying simulation snapshots (with particles

rendered as perfect polyhedra and colored by average minimal

angle to N = 14 nearest neighbors for convenience and clarity)

and corresponding BODs. As would be expected, at low densities

the system is disordered, as evidenced by both the coloration of

the particles and the uniformity of the BOD (see Figure 8a). The

distribution of average minimal angles is peaked at around 40�,
which is close to the peak of the random distribution described in
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a) b)

d)c)

AVERAGE ANGLE OF DEVIATION BETWEEN NEAREST NEIGHBORS

10 40 70
0

300

600
� = 44.9%

70

10 40 70
0

300

600
� = 51.3%

10 40
0

� = 45.1%
400

200

10 40 70
0

400

200

� = 49.3%

Fig. 8 Phases of octahedral PSCs, demonstrating the orientational cor-
relation between PSCs that arises as the system’s final volume fraction
is increased; each panel is a separate simulation performed at the vol-
ume fraction indicated in the insets. a) Low volume fraction that does
not crystallize (f = 44.9%). b) Intermediate volume fraction chosen just
within the crystalline region cI2 (f = 45.1%). c) High volume fraction cho-
sen just prior to the order-order transition (f = 49.2%). d) High volume
fraction after transition into a second solid phase, cF4 (f = 51.3%). Clus-
ters are colored according to the “average angle of deviation between
nearest neighbors", or minimal angle through which they must be rotated
to match the orientations of their nearest neighbors, averaged over 14
nearest neighbors for each cluster. Additionally, clusters are rendered as
perfect polyhedra, where the vertices of each polyhedron are placed at
the centers of the halo spheres of the PSC, and the center of each poly-
hedron is placed at the center of the core sphere of the PSC. The BOD
along the 3̄–axis of the crystal is also shown for each system, along with
a histogram of the average angle of deviation between nearest neighbors
for every particle in the system snapshot.

the previous paragraph and shown in Supplementary Figure S2.

At intermediate values of f , the system begins to crystallize, as

seen in Figure 8b. Several indicators mark this transition: first,

the BOD now has regular peaks (indicative of a BCC structure),

rather than a uniform pattern. Second, the peak of the average

minimal angle distribution shifts below 40�, indicating a devia-

tion from random orientational correlation between clusters and

their nearest neighbors.

As f increases, the orientational correlation between the clus-

ters increases, as seen both in the coloration of the particles in

Figure 8c and the shift of the peak of average minimal angle to

lower and lower values. Additionally, a second peak at higher

values begins to emerge in the distribution of average minimal

angles. Finally, at the highest values of f in our study, a bimodal

distribution of particle orientations is readily apparent, reflected

in both the distribution of average minimal angle and the crystal

structure displayed in Figure 8d. In this structure, all particles in

a column along the 3̄–axis prefer to align. Furthermore, there are

two “types” of orientations that can readily be seen in the trian-

gular faces of the octahedra. The faces point either up or down in

the plane perpendicular to the 3̄–axis; “down” orientations are al-

ways surrounded by 6 “up” orientations, while “up” orientations

are always surrounded by 3 “down” and 3 “up” orientations. The

inset of Figure 8d is marked with “up” (green) and “down” (red)

arrows to further illustrate this behavior.

The observed stability of the diamond / FCC structure is of sig-

nificant technological importance, as an open diamond structure

is known to possess a meaningful photonic band gap, a feature

that is crucial for photonic devices

11,12

. Because of the core

/ halo arrangement of the PSCs, this allows for two types of

spheres that can be chemically distinct. Such an arrangement

has been pursued for over a decade, and has only recently been

demonstrated in two separate realizations of DNA-bonded sphere

clusters

17,29

. In the first case, a binary system of tetramers and

spheres are used

29

; in the second case, a binary system of spheres

using grafted single-stranded DNA is used

17

. The first experimen-

tal system maps directly to our tetrahedral PSC

30,45,64

, but with

an additional sphere to create a binary superlattice corresponding

to crystal structure cF24–MgCu2; taken separately, the tetramers

were observed to form a pyrochlore structure, while the spheres

form a diamond structure

17

. Thus, these structures are immedi-

ately realizable in the lab, and are ready to be tested for applica-

tion and potential future integration into devices.

5 Conclusion

We simulated the self-assembly and crystallization behavior of all

five Platonic sphere clusters. These PSCs possess no interaction

aside from short-range repulsion, and show a diverse entropy–

driven assembly behavior that emerges from the shapes of the

various clusters. The types of crystal structures that form range

from simple phases like FCC to complex ones such as the b -Mn

structure. In general, our work shows a wealth of phases that

can be obtained from simple sphere clusters made from parti-

cles with repulsive interactions alone. Since multiple methods

are now available for making such clusters, their self-assembly

without the aid of DNA bridging or other directional or attractive

forces suggests a convenient way of realizing numerous complex

solid phases using relatively simple physical chemistry.

We also investigated the relationship between the core-core as-

sembled crystal structures and the location of the halo spheres in

all assemblies. We find that the halo spheres occupy interstitial

locations in the core-core assembled structures, demonstrated by

the duality between the core-halo bond-order diagrams and the

core-core bond-order diagrams of our simulations. The positions

of the halo spheres can sometimes be extremely well-ordered and

easy-to-access, as in the case of the icosahedra, but are frequently

frustrated resulting in structures that contain defects or are less-

ordered in general (as demonstrated by the halo-core and halo-

halo bond-order diagrams in Fig. 6). Why some of these clusters

so readily crystallize both halo and core spheres is not addressed

in this work, and is an open area for further studies.

Finally, we described the thermodynamic stability of a diamond

(core) / FCC (halo) structure made from tetrahedral PSCs. While
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the nested diamond/FCC phase was not directly accessible from

the fluid phase via our purely repulsive model, it was stable when

constructed. Furthermore, seeded crystal simulations grew a sta-

ble hP2 phase that is a lower–symmetry version of the diamond

structure. Why the pre-constructed crystal is stable, but yet nei-

ther accessible via self-assembly from the fluid nor able to be

grown by seeding the fluid is a compelling research question for

future studies. Nonetheless, our findings are encouraging in that

they suggest that further modifications to the interactions or the

arrangements of the particles in the PSC may be able to fully sta-

bilize the diamond/FCC arrangement. More generally, the large

number of crystal structures accessible with just a small sampling

of polyhedral sphere clusters (the Platonic PSCs) indicates the

enormous range of structures likely available when other PSCs,

such as those based on Archimedean, Johnson, or other polyhe-

dra, are considered. In addition, our work indicates the intrigu-

ing possibility of creating nested crystals of halo spheres within

crystals of core spheres, opening up a rich direction for colloidal

self–assembly. All of this is possible using the simplest building

blocks, i.e., spheres, and purely repulsive interactions.
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