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Geometry and kinetics determine the microstruc-
ture in arrested coalescence of Pickering emulsion
droplets
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Athertona,c

Arrested coalescence occurs in Pickering emulsions where colloidal particles adsorbed on the sur-
face of the droplets become crowded and inhibit both relaxation of the droplet shape and further
coalescence. The resulting droplets have a nonuniform distribution of curvature and, depending
on the initial coverage, may incorporate a region with negative Gaussian curvature around the
neck that bridges the two droplets. Here, we resolve the relative influence of the curvature and
the kinetic process of arrest on the microstructure of the final state. In the quasistatic case, de-
fects are induced and distributed to screen the Gaussian curvature. Conversely, if the rate of
area change per particle exceeds the diffusion constant of the particles, the evolving surface in-
duces local solidification reminiscent of jamming fronts observed in other colloidal systems. In this
regime, the final structure is shown to be strongly affected by the compressive history just prior to
arrest, which can be predicted from the extrinsic geometry of the sequence of surfaces in contrast
to the intrinsic geometry that governs the static regime.

1 Introduction
Pickering emulsions incorporate micro- or nano-scale colloidal
particles that adsorb onto the fluid-fluid interface of the con-
stituent droplets. The presence of these particles stabilizes the
emulsion against phase separation by inhibiting processes like co-
alescence where droplets combine1–3. Arrested coalescence oc-
curs when two initial droplets with coverage fraction φi above
some critical value φc coalesce. As the doublet relaxes toward
a spherical shape due to surface tension, the particles become
crowded and inhibit further relaxation, producing a nonspherical
droplet with a rigid interfacial shell that prevents further coales-
cence of additional droplets. The point of arrest can be predicted
from φi and the relative size of the two droplets: once φ for the
combined droplet would exceed φc = π/

√
12 ≈ 0.9, the value of

hexagonal packing in 2D, the coalescence will be arrested. If φi is
increased, coalescence is arrested at an earlier point. Arrest can
also be achieved by other offsetting rheological resistance such as
internal viscoelastic fluids4.

In addition to increased stability, arrested coalescence is a
straightforward method for sculpting non-spherical droplets.

aDepartment of Physics and Astronomy, Tufts University, 574 Boston Avenue, Medford,
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bComplex Fluids Group, School of Chemical Engineering, UNSW Sydney, Sydney, Aus-
tralia
cEmail: timothy.atherton@tufts.edu

While other studies1–3 have shown how to control the shape of
the arrested droplets, the particle microstructure of the arrested
structures has not been studied. The purpose of this paper is,
therefore, to predict the microstructure from the final shape and
to disentangle the static and kinetic influences.

Where relaxation of the doublet proceeds sufficiently slowly
that the particles are in quasistatic equilibrium with the host
shape, the problem may be approached from the view of spher-
ical crystallography5, for which Pickering emulsion droplets—
colloidosomes—have proven an ideal model system6. On curved
surfaces, dislocations in the crystal—particles with a contact num-
ber ci other than 6—are required to accomodate the curvature.
Moreover, because the shape is a closed surface, the structure
is subject to the topological constraint that ∑i qi = 6χ, where
qi = ci− 6 is the defect charge and χ the Euler characteristic of
the surface is 2. Dislocations beyond those required by topol-
ogy occur if the cost of forming a dislocation is favorable relative
to distorting the lattice7–15 and form grain boundaries or scars
to help screen the Gaussian curvature6,9. Nonuniform curvature
leads to localization of the defects15–18.

Kinetic effects remain unexamined in the assembly of colloido-
somes before, but have received extensive attention in other re-
lated systems. The response of solid amorphous materials under
deformation is described by the shear-transformation-zone (STZ)
theory19–21, whereby localized clusters of molecules (the epony-
mous STZs) undergo irreversible non-affine rearrangements in re-
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Fig. 1 Ansatz fluid-fluid interface shape. (A) Simulation of different stages of coalescence parametrized by λ . (B-D) Differential geometry of the
family of surfaces: (B) Gaussian curvature; (C) Mean curvature; (D) Normal velocity and (E) local rate of area change γ. All quantities are plotted as a
function of λ (at fixed volume) and distance z/a along the rotational symmetry axis of the surface.

sponse to applied shear stresses. The STZ provides a wealth of
theoretical tools for characterizing such systems. A second source
of inspiration are studies that probe solidification in complex flu-
ids: Under impact, for example, dense suspensions of colloidal
particles rapidly solidify from the point of impact with a prop-
agating dynamic jamming front22. Similar processes have been
observed with other kinds of forcing such as shear and exten-
sion23–25. More generally, arrested coalescence falls into the in-
teresting class of nonequilibrium systems that develop a “mem-
ory” of their evolution26.

Arrested coalescence has some common features with these
other systems, but, importantly, the deformations involved are
spatially varying due to the curvature and not driven by exter-
nal influences. To develop our description, the rest of the paper
is structured as follows: in Section 2 we analyze the differential
geometry of the shapes that occur in arrested coalescence and de-
velop a framework for analyzing the kinetic contribution. We then
separate the influence of geometry and kinetics on the microstruc-
ture by comparing static packings produced with a fixed shape in
section 3 and kinetic packings produced as the shape relaxes to-
wards the final spherical ground state in section 4. Prospects for
exploiting these effects are discussion in the concluding Section
5.

2 Theory

In this section, we analyze the influence of the evolving shape on
the structure adopted by N spherical particles of radius r embed-
ded upon it. A central assumption of this work is that the evo-
lution of the surface is predetermined and not modified by the
presence of the particles, whose centers of mass are constrained
to the surface but are free to move around it according to some
dynamics to be specified. This assumption agrees with experi-
mental observations of Pickering emulsions1,2,27.

An analytical ansatz to describe the shape evolution of a pair
of spherical droplets as they relax following coalescence was pro-
posed by Garabedian et al.28. After initial contact, the surface is
described by the level set,

a2λ 2(x2 + y2)+a2z2

(x2 + y2 + z2)2 = 1, (1)

where a is the half length of long axis and the aspect ratio λ ∈
[0,1] controls the extent of coalescence as shown in Fig. 1A. The
value λ = 0 corresponds to the two droplets just touching each
other and λ = 1 represents the final state as one spherical droplet.
The center is located at the origin and the z axis is the axis of
rotational symmetry. The value a is chosen for each λ to hold the
total volume of the surface constant. Experimentally observed
arrested structures in1,4 are well described by Eq. (1), justifying
the assumption of specified shape evolution.

To understand the influence of the evolving shape on arrested
particle structures, we now study the differential geometry of the
family of surfaces described by Eq. (1). The distribution of dislo-
cations in static packings is known to be controlled by the distri-
bution of Gaussian curvature, which acts like a nonuniform back-
ground defect charge distribution in addition to the discrete de-
fect charges for the elastic term in free energy14. We therefore
display in Fig. 1B the Gaussian curvature along the axis of rota-
tion z as a function of λ where a is also varied to maintain a fixed
volume of π/3.

During the initial stages of relaxation, i.e. λ . 0.7, the neck
of the doublet creates a region where the Gaussian curvature K is
negative while at the ends of the droplet the curvature approaches
a constant value because here the surface is almost spherical.
In this regime, the neck region should induce negative defects,
which requires additional compensating positive defects to meet
the overall topological constraint. As λ increases, the profile K(z)
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becomes smoothed over time until it approaches a uniform con-
stant value for the spherical final state. Beyond λ = 0.7, there-
fore, we expect to see the defect distribution skewed towards the
cap where the K is largest, reducing to a uniform distribution as
λ → 1. These predictions for the static case will be tested in Sec-
tion 3.

We now turn to kinetic effects. The process driving arrest is the
shrinking of surface area, quantified by Ȧ the rate of change of
the area of the surface. This quantity plays a similar role to the
strain rate for media under deformation, though we emphasize
that here strain is more complicated as it is spatially varying. We
shall also assume some other process that relaxes the configura-
tions toward their equilibrium state. Here, the relaxing process
will be diffusion with an in-plane diffusion coefficient D and as-
sociated timescale τd defined through 2r =

√
2Dτd .

Since Ȧ and D have the same dimensions, a natural dimension-
less parameter that quantifies the importance of kinetics emerges,

Γ =
Ȧ

ND
=

1
N

dA
dt

τd

2r2 =
1

2r2N
τd

τr

dA
dT

, (2)

where τr is the time of full relaxation which may be used to nondi-
mensionalize time T = t/τr; this quantity measures the rate of
change of area per particle relative to the diffusion constant. The
ratio,

θ = τd/τr (3)

also emerges as a measure of the relative influence of diffusion
and relaxation and is in practice the independent variable that
will be varied to construct our ensemble of simulations. For the
surfaces described by Eq. (1), the quantity dA/dT is almost lin-
early related to λ for all but small values of λ < 0.1 (Fig. S1)
where the ansatz is a poor approximation to the experiment1,
and so we shall not investigate arrest in this regime.

We shall also construct a local version of (2),

γ =
ȧ

nD
, (4)

where a is the area of some region of interest Ω on the surface and
n is the number of particles in that region. The quantity γ captures
the local rate of expansion or contraction per particle measured
relative to their diffusion, and therefore predicts regions where
the particles may become crowded. Note that (4) captures only
one form of deformation, scaling, imparted on the particles by the
evolving surface. As shown in Fig. S2, the local deformation in
the neck also involves stretching in the azimuthal direction.

The quantity Ȧ can be computed from more fundamental ob-
jects as follows. Consider a one-parameter family of surfaces
X(λ )—Eq. (1) is an example—that describes the shape evolution
of the surface. The rate of change of area can then be written,

Ȧ =
∫

∇ ·N
(

dX
dλ
·N
)

dλ

dt
dA, (5)

where N is the local outward surface normal and the integral is
over the surface. The first factor is the divergence of the normal
and can be rewritten in terms of the mean curvature H, while the
second factor in (5) is the normal component of the velocity (with

1.0 1.20.8

A

B C

Fig. 2 (A) Trajectories followed by particles at different starting
locations that move only under constraint forces as the surface evolves.
(B) An arrested configuration at λ = 0.6 with equal size particles of
radius r0 can be conformally mapped onto (C) a configuration with
different sized particles on final spherical state λ = 1 by transporting the
particles along the normal trajectories shown in A and scaling them
according to a local r/r0.

sign measured with respect to the outward normal) as the surface
evolves according to λ (t). The integrand of (6) is identified as ȧ
and hence an explicit formula for γ can be constructed,

γ =
1

nD
dλ

dt

∫
Ω

2H
(

dX
dλ
·N
)

dA (6)

where the integral is taken over a region of interest on the surface
containing n particles.

The three factors in (6) each contain different information: the
first, dλ

dt supplies the overall time dependence and is strictly pos-
itive. The second, H, can be directly calculated from instanta-
neous configurations of the surface. It is famously related to the
capillary pressure difference across the surface ∆p through the
Young-Laplace equation,

∆p = 2σH (7)

where σ is the surface tension and therefore measures the local
generalized force acting to minimize the surface area. The final
factor in (6) dX

dλ
·N captures the velocity induced by evolution of

the surface and necessarily incorporates the effect of the volume
constraint.

We note that (6) reveals an elegant distinction: the microstruc-
ture of the static packings is determined by the Gaussian curva-
ture, an intrinsic quantity, while the role of kinetics is determined
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by extrinsic quantities—those that depend on how the surface is
embedded—such as the mean curvature. Previous literature has
focussed on the role played by the Gaussian curvature on pack-
ing7–15,29 as well as crystallization and nucleation30–33, while
little attention has been paid to the role of extrinsic geometry.

We now examine the ramifications of (6) for the kinetics of
arrest on the present surface (1). First, the time dependence
λ (t) is chosen such that the radius of the neck scales ∝ t1/2. This
form was proposed for the inertial regime where Reynolds num-
ber is large by Eggers et al.34 and confirmed experimentally35,36

to hold in the early stages of coalescence. We use this power law
for the whole process for simplicity.

Next, the mean curvature H is displayed in Fig. 1C and like
the Gaussian curvature exhibits a negative region at the neck for
early stages of the relaxation. The normal velocity is shown for
different λ in Fig. 1D and the product of these terms in Fig. 1E.

To help interpret these quantities, consider a single free particle
at rest on the initial surface that moves only subject to constraint
forces as the surface evolves and neglect the inertia of the parti-
cles which is assumed to be damped by the surrounding fluid. The
constraint forces must act in the direction locally normal to the
surface and hence the particles follow trajectories such as those
in Fig. 2A shown for different starting positions around the dou-
blet.

In some locations, for example the caps, the trajectories in Fig.
2A are strictly convergent and the product H

(
dX
dλ
·N
)

is negative

for all λ , indicating that particles here tend to be compressed as
the doublet relaxes. By contrast, in the neck a region of strong
compression exists for λ < 0.6 which becomes expansive as the
surface approaches the final spherical state. These features arise
because the discriminant γ arises both from the sign of the mean
curvature and whether the motion is locally inward or outward.
At the caps, H is positive but the motion is inward; conversely at
the neck H is negative, at least for low values of λ , but the motion
is outward.

A second interpretation for ȧ is as the generator of a confor-
mal mapping between nearby surfaces X(t)→ X(t + δ t). A pack-
ing on any surface in the family can be conformally mapped
onto any other surface by transporting the particles along the
normal trajectories and scaling them at each step according to
r→ r

√
1+(ȧ/a)δ t. In Fig. 2B and C , we use this property to map

an arrested packing at λ = 0.6 onto a spherical surface λ = 1.

Considering coalescence scenarios with varying Γ, we expect
for Γ� 1 to recover the static results as diffusion can fully relax
the structure. Conversely, as Γ ≥ 1, we expect that the history
of compression and expansion will become imprinted upon the
structure. To test this, we employ two different algorithms fully
described in section 6 below. Static packings are produced on
shapes of fixed λ using a Monte Carlo inflation algorithm inspired
by the Lubachevsky–Stillinger algorithm37; we supplement this
algorithm to ensure rigidity of the final packings and analyze the
packings in Section 3. A second algorithm, which reproduces the
scenario described above with particles diffusing on the evolving
surface, is used to create arrested structures as a function of Γ

which are analyzed in Section 4.

3 Statics
We first establish the role of the nonuniform geometry on the final
states observed in arrested coalescence in the purely static case,
where the particles are packed onto the surface so as to maximise
the packing fraction φ . Using the protocol described in Meth-
ods, we generate N = 100 rigid packings each for surfaces with
λ ∈ [0.3,1] and determine the neighbour graphs from the Delau-
nay triangulation. Representative packings are shown in Fig. 3A,
where the particles are colored by coordination number ci com-
puted from the neighbour graph. Visually, and also from inspec-
tion of the density-density pair correlation function g(s)38 (Fig.
S3), these packings appear largely crystalline with the expected
scars distributed over the whole surface.

The changing morphology is expected to have a number of ef-
fects from prior work. As the surface evolves from a bisphere
at λ = 0 to a single sphere at λ = 1 at constant volume, the ra-
tio r/R, where r is the particle radius and R the local radius of
curvature at the cap, should decrease by a factor of 21/3. The re-
duced influence of curvature is known to produce longer scars6.
To verify this, scars are individually identified following39 by
deleting all vertices with six-fold coordination from the neigh-
bour graph, leaving a disjoint defect subgraph visualized below the
corresponding packings in Fig. 3B. The majority of scars exhibit
a linear morphology independent of λ , but the average length
increases up to around λ = 0.6 as shown in Fig. 3C while the
fraction of singletons decreases (Fig. 3C inset).

Additionally, strong negative Gaussian curvature at the neck for
low λ is expected to induce dislocations in excess of those topo-
logically required. We follow40 in defining the excess number of
dislocations,

nd =
1
2

(
∑i |qi|

12
−1
)
, (8)

where the sum is over particles and qi = ci− 6 is the dislocation
charge of the ith particle, and display nd(λ ) in Fig. 3D. As λ

increases, the neck region becomes flatter and nd decreases with a
minimum at λ = 0.6. Above this value, more dislocations emerge
to accommodate the positive curvature. Variation in the packing
fraction φ(λ ), also shown in Fig. 3D, is due to the dislocations
since φ and nd closely follow inverted trends.

Since the shape away from the neck is spherical, changes in nd

with λ are due to the curvature distribution around the neck. To
test this, spatially resolved plots of the bond orientational order
parameter ψ6 = 〈exp(i6θ)〉41 are calculated as described in Meth-
ods and shown in Fig. 3E for several λ . As the neck evolves, these
distributions exhibit a transition: for λ = 0.3, the region near the
neck has lower ψ6 than the region at the cap, with a local maxi-
mum at around z/a = 0.2, while for λ = 0.6 the neck has enhanced
ψ6, and a less ordered region away from the neck. As λ increases
further, the amplitude of this variation is reduced and becomes
spatially uniform for the spherical case λ = 1. Consistent with
the relation between φ and nd , plots of the defect number density
(Fig. S4) closely resemble the inverted form of ψ6. The mean
value of ψ6 around the neck is shown as a function of λ in the
inset of Fig. 3E and mirrors the trend exhibited by the packing
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Fig. 3 Influence of static geometry on the microstructure. (A) Representative packing configurations for λ = 0.3,0.6,0.8,1.0 and (B) their defect
subgraphs. (C) Average scar length as a function of λ computed from defect subgraphs. Inset: Fraction of singletons as a function of λ . (D) Packing
fraction φ (black) and excess dislocations nd (grey) as a function of λ . (E) Bond orientational order parameter ψ6 distribution along the rotational
symmetry axis of the surface z/a. Inset shows the order parameter of the neck region for different stages of coalescence. (F) Charge distribution along
the rotational symmetry axis of the surface z/a from packing (solid lines) and integrated Gaussian curvature (dashed lines) for λ = 0.3,0.6 and (inset)
λ = 0.8,1.0.

fraction.

As shown in Fig. 3F and its inset, the defect charge density ρ(z)
(solid lines) can be well predicted from the integrated Gaussian
curvature together with the topological constraint (dashed lines).
These results explain the transition in the shape of ψ6(z) observed
in Fig. 3E: For λ = 0.3, strongly negative Gaussian curvature at
the neck tends to induce negative defects. Hence, additional pos-
itive charges must be generated at the ends to satisfy the topo-
logical constraint. Conversely, for λ = 0.6, fewer negative defects
are induced and the neck region has almost zero Gaussian curva-
ture leading to an overall enhancement of the order. Defects are
needed outside the neck area to satisfy the charge constraint and
also to match the positive curvature.

These results show that the role played by static geometry on
the structures produced by arrested coalescence is generally con-
sistent with the picture developed in the spherical crystallography
literature5. Nonetheless, the family of surfaces studied here is un-
usual in that it incorporates regions of negative Gaussian curva-
ture for some parameters but is also subject to the topological con-
straint imposed by constant Euler characteristic. This contrasts to
studies on tori14, where negative Gaussian curvature is always
present, or on capillary bridges15,29,42 where the Euler character-
istic is not constant. The tension between the Gaussian curvature
distribution and the topological constraint leads to interesting ef-
fects: For instance, the extremum in ψ6(λ ), φ(λ ) and nd(λ ) occurs
at λ = 0.6, where the neck is slightly negatively curved and not at
λ = 0.7 where the Gaussian curvature at the neck becomes zero.
Moreover, the fact that the neck can both diminish and enhance
order depending on the particular distribution of K is surprising
and could be further exploited as a means of controlling the local
order in future work.

4 Kinetics

Having established the purely static role of the shapes, we are
now equipped to untease the more subtle role of kinetics. To do
so, a set of arrested states is generated using the protocol de-
scribed in Methods, with N = 800 particles and suitable particle
radius to promote a point of arrest λa for two different scenarios:
an early arrest case with λa ≈ 0.3, where the curvature of the neck
is extremely negative and, as per Section 2 a strong compressive
region exists close to the neck prior to arrest. The second case is
where arrest occurs later at λa≈ 0.6, the point at which extrema in
the packing fraction, defect density and bond orientational order
were found to occur in the previous section; for this scenario par-
ticles at the neck are being pushed apart by the constraint forces.
In both cases, compressive regions exist in both scenarios around
the caps.

The ratio of diffusion time scale to the total relaxation time
θ = τd/τr is varied from 2−8 to 24 to control the relaxation speed,
with 50 samples for each value. The corresponding values of Γ =

|Ȧ|/(ND) at the point of arrest, linearly related to θ as discussed
in Section (2), is calculated for each simulation. Faster relaxation,
as expected, generically leads to less ordered structures for both
early and late arrest scenarios as shown in Fig. 4A where 〈ψ6〉 is
displayed as a function of Γ. Overall the order is higher for late
arrest which is consistent with the static results of Fig. 3E and
is therefore geometric in origin. Faster relaxation also halts the
arrest at a earlier point. For early arrest, λa decreases from 0.34
to 0.32 as θ increases from 2−8 to 24, with λa from 0.63 to 0.59 for
late arrest.

A significant difference in the two scenarios emerges, however,
when the spatially resolved order of the arrested states is exam-
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Fig. 4 Influence of kinetics on the microstructure. (A) Mean bond
orientational order parameter ψ6 of all particles as a function of Γ.
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Γ = (0.0023,0.0091,0.037,0.15,0.59,2.38,9.5). (D) ψ6 distribution as a
function of the aspect ratio of the arrest point for fast relaxation Γ∼ 10.
Inset: Local rate of area change per particle at the neck as a function of
λ for fast relaxation.

ined. Shown in Fig. 4B and C is ψ6(z) for λa ≈ 0.6 and λa ≈ 0.3
respectively. Different traces correspond to different values of Γ

and, as before, the left and right portions of the doublet are com-
bined into one plot. In both cases, the static order parameter
distribution, shown by the red dashed line, is recovered for suffi-
ciently slow relaxation.

For late arrest, the quasistatic limit includes an enhancement of
ψ6 in the flatter central area and reduced order closer to the cap.
As Γ increases, the distributions remain similar in shape but are
reduced in amplitude and as Γ > 1, the orientational order con-
verges on a uniform constant value of ≈ 0.83. In contrast, for late
arrest the distribution of ψ6 remains similar in form as a function
of Γ: there is a strong reduction in the order parameter around
the neck and a uniform distribution near the cap. Increasing Γ

reduces the order globally, shifting the curves down by as much
as 0.1 but does not change their overall form.

To characterize this transition more carefully, a new ensemble
of simulations with different arrest points λa is run in the kineti-
cally dominated regime Γ ≈ 10 and the resulting distributions of
ψ6 are shown in Fig. 4D. Comparing these with equivalent plots
for static packings in Fig. 3E, we see that for arrest earlier than
λ ∼ 0.5, the static and dynamic order distributions appear simi-
lar, although the overall values of ψ6 are reduced, shown as pur-
ple curves. The signature of the geometry therefore remains im-
printed on the microstructure independently of Γ. For arrest after
λ ∼ 0.5, the distributions no longer resemble the static distribu-
tions, having approximately uniform ψ6 ≈ 0.83, shown as yellow

curves. Rapid relaxation therefore appears more readily able to
wash out variations caused by the nonuniform curvature for late
arrest. The boundary of the two regimes at λa = 0.55 is displayed
as the red curve and is entirely different from the static distribu-
tion, incorporating two minima. The transition coincides with the
point at which the neck ceases to promote compression as shown
in the inset of Fig. 4D where γ at the point of arrest is plotted as
a function of λ .

Time-resolved analysis

Time resolved analysis of the microstructure in the kinetically
dominated regime Γ� 1 allows us to probe the transition fur-
ther. The particle number density is plotted at several time points
t/t f in Fig. 5A for the late arrest scenario λa ≈ 0.6, together with
plots of the ψ6 distribution calculated as described in Methods in
Fig. 5B and snapshots of the configuration in Fig. 5E. Here t f

is defined to be the time at which arrest occurs. Corresponding
plots and visualizations for early arrest λa ≈ 0.3 are displayed in
Fig. 5C, D and F respectively. Movies corresponding to Fig. 5E
and F are supplied as Supplementary Material.

These plots reveal how the history of expansion and compres-
sion predicted in Section (2) causes the evolution in order. Fig.
1E shows the area change profiles across the surfaces with differ-
ent aspect ratios. The cap area is compressed during the evolution
of surfaces while the neck area initially is compressed and then
expanded.

For the late arrest scenario, particles are initially uniformly or-
dered, except close to the neck. As relaxation proceeds, com-
pression at the cap produces a denser region that converges to
ψ6 ∼ 0.83, reminiscent of the jamming fronts observed in22. This
value is similar to the order at the cap in static packings. At the
neck, the particles are initially less ordered because of the strong
concentration of negative Gaussian curvature, and the initial com-
pressive region that increases the local density begins to widen
the disordered region. As λ passes 0.4, however, the widening
stops, and as λ increases further the ordered region growing in
from the caps completely overcomes the disordered neck region,
yielding the final state uniform in density and ψ6.

For the early arrest scenario, order at the cap changes very little
through the course of the simulation, remaining similar to the
static value. The initially disordered region at the neck begins
to widen, as it does for the late arrest scenario, and reaches a
maximum width at around λ = 0.25. After this, the neck region
begins to uniformize but does not completely do so, freezing in
the disordered region that is also seen in the static case.

The influence of kinetics on the microstructure therefore de-
pends critically on the arrest point: the history of compression
and expansion of the surface, quantified by γ, can freeze in dis-
ordered regions caused by the underlying curvature even where
kinetics might be expected to wash out the effect of geometry. For
early arrest, the strong initial compression leads to a disordered
region that is frozen in at all relaxation speeds tested, while for
late arrest fast relaxation fully blurs out the nonuniform distribu-
tion of order promoted by geometry. The evidence of this section
suggests that, at least crudely, it is the form of γ immediately prior
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Fig. 5 Time resolved evolution of the microstructure for the kinetically dominated regime. Distributions of (A) particle number density and (B)
bond orientational order parameter ψ6 as a function of time for late arrest λa ≈ 0.6 and fast relaxation Γ = 9.5. (C) and (D) Corresponding plots for
early arrest λa ≈ 0.3. (E) and (F) Representative visualizations for λa ≈ 0.6 and λa ≈ 0.3 respectively; particles are colored by ψ6.

to arrest that is most important for determining the microstruc-
ture: for example, the late arrest scenario λa ∼ 0.6, the compres-
sive regions that exist early in the relaxation appear to have little
influence on the final state.

Non-Affine Response

The picture developed thus far is of the response of the particles to
local expansion or compression induced by the evolving surface,
but this neglects other kinds of deformation that may be present.
Consider a group of particles with initial coordinates xi(λ ) that
all lie in some probe ball |xi−x0| < ρ and are transported from
xi(λ )→ x′i(λ + δλ ) consistent with Eq. (1). Their final location
is determined both by the moving surface constraints, which lo-
cally induce scale and shear deformations as illustrated in Fig. 2,
as well as interaction with other particles. This very complex en-
vironment can potentially induce non-affine deformations of the
local particle configuration. To resolve these, we use the quantity
D2

min as constructed by Falk and Langer19,

D2
min = min∑

j

[
∆x j(λ )−E ·∆x j(λ +δλ )

]2
, (9)

where ∆x j(λ ) = x j(λ )−x0(λ ) is the displacement of the jth parti-
cle from a reference particle on the surface λ , E is a strain tensor,
and D2

min is to be minimized with respect to the components of E.
Hence, D2

min is a measure of the residual motion of the particles
that cannot be explained by the affine deformation E closest in a
least-squares sense.

In Fig. 6B, we show the mean D2
min per particle as a function

of simulation time for a late arrest λa ≈ 0.6 simulation; spatially
resolved plots at different time points are shown in Fig. 6A. Non-
affine deformation is significant both early in the evolution and

as the arrest point is approached; it is always localized to vary-
ing degrees in the neck. For early times, large D2

min is due to the
strong curvature of the neck where transport of the particles along
the normal by the surface constraint induces non-affine motion.
Conversely, approaching the arrest point the solidification fronts
growing from either end as identified above (Fig. 5) must meet
in the middle. Here, interparticle interactions are primarily re-
sponsible for the non-affine motion as the curvature at the neck
is rather weak.

Spatially resolved analysis of D2
min reveals a complex picture

and considerable caution must be used in interpreting these
events. Tantalizingly, however, we do see spatially localized plas-
tic deformations reminiscent of the Shear Transition Zones that
govern the plastic response of amorphous metallic glasses and
were the original reason D2

min was introduced19–21. In Fig. 6C-F
we show two events, each with a sequence of snapshots of par-
ticle configurations close to the arrest point displaying particle
configurations colored by D2

min and ψ6. The first event, depicted
in Fig. 6C&D, more closely resembles an STZ in that it is a spa-
tially localized and evanescent region with large D2

min and little
visible nearby rearrangement. The second, shown in Fig. 6E&F,
is a plastic rearragement that leads to the formation of a dislo-
cation. It is accompanied by spatially extended lineslips revealed
in ψ6 and hence is not an STZ. We see many similar events of
both types, and events with large D2

min occur for all local values of
ψ6 defying a simple categorization. A systematic analysis of the
non-affine response and its interaction with the spatially evolving
manifold therefore remains for future work.

5 Conclusion
This work has demonstrated a rich interplay between geometry
and kinetics in determining the structure of arrested coalescence
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droplets. In contrast to other kinds of colloidosomes, such as
spheres, the dramatic shape changes and strong curvatures that
occur here lead to interesting effects. While the static influence
on the structure was found to be well predicted by the integrated
Gaussian curvature together with the topological requirement on
the defect charge, the shapes produced by arrested coalescence
form an unusual example of a system both with variable amounts
of negative Gaussian curvature and a topological constraint. The
role of kinetics is quantified by the parameter Γ=Ȧ/(ND) the ratio
of the rate of change of area per particle to its diffusion constant.
As Γ→ 0, the microstructure closely resembles the static packing
scenario where the system distributes defects to match the Gaus-
sian curvature.

At finite Γ, kinetics tends to blur out variation in the order as
the structure can no longer be fully relaxed. Disordered regions
can nonetheless remain because, as the surface relaxes, local re-
gions of compression induce solidification that can trap them,
hence retaining a memory of the evolution. The growing solid
regions resemble dynamic jamming fronts observed under impact
and shear of dense suspensions of colloidal particles, but here
are induced by the locally changing metric of the surface rather
than by an external influence. Prediction of the local compression
rate from differential geometry of the surface, Eq. (6), shows
that kinetic influences depend on geometric quantities such as
the mean curvature that are extrinsic in origin, i.e. depending
on the embedding. Moreover, significant non-affine deformations
occur both due to the complex geometry of these systems and
the solidification fronts growing from the caps. Some of these
resemble Shear Transition Zones observed in amorphous materi-
als19–21, but many others do not and a complete understanding
of the non-affine response remains to be developed.

Arrested colloidosomes, which possess a natural parameter Γ

that quantifies the degree of nonequilibrium behavior and “re-
member” the evolution of the shapes that produced them, may
serve as a model system for exploring memory formation in mat-
ter26. The remarkably rich influence of kinetics also suggests the
possibility of exploiting it as a means to control the microstruc-
ture of colloidosomes. One can imagine designing a shape using
Eq. (6) that incorporates compressive regions prior to arrest and
selectively locks in disordered regions that become targets for fur-
ther coalescence events in multistage assembly. The extent of the
design space for this remains unknown, however: The Young-
Laplace equation Eq. (7) implies that the mean curvature and the
local normal velocity are not independent, but that they differ
here is because of the overall volume constraint.

A final direction to be pursued is the connection of these ar-
rested shapes to jamming, a transition to rigidity as a function of
density that occurs in particulate media43,44. While the kineti-
cally arrested structures observed here are not jammed, in that
they may possess unconstrained collective motions of particles,
the static packings we use as a comparison are because this is ex-
plicitly enforced. Two of the present authors recently proposed
that rigid structures formed as a result of shape evolution form
a new class called “metric jamming” 18 where the final state is
rigid both with respect to perturbations of the particles and the
manifold on which they are embedded. Analysis of the arrested
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coalescence problem along these lines may help determine the
longevity of the undoubtedly metastable arrested structures, as
well as provide tools to determine their mechanical properties.

6 Methods
Static packings—Particles are initially dispersed with their cen-
ter of mass on the surface at zero radius, diffused by Brownian
motion according to the Langevin equation,

x
′
i(t +∆ tp) = xi(t)+ηi

√
2D∆tp, (10)

where ηi is a random step drawn from Gaussian distribution along
the tangent plane, and D is the diffusion constant such that the
variance of stepsize for Brownian motion in time t is 2Dt. We may
therefore define a characteristic diffusion time scale τd that gives
a standard deviation of stepsize equal to the particle diameter,

2r =
√

2Dτd . (11)

As the particles diffuse, their radii r are increased (inflation
moves) very slowly, with δ r√

2Dt
∼ 10−4 in unit time. Collective

motions that undo overlap are found at each stage by gradient
descent on an artificial potential,

Voverlap =

{
r2− rx x < r

0 x≥ r
, (12)

that penalizes overlap. The simulation is halted when no further
move is possible without inducing overlaps.

Generically, packings produced by this algorithm need not be
rigid, i.e. there may exist collective motions of particles that can
unjam the system and allow further relaxation of the surface. We
therefore adapt18 a linear programming approach45 to identify
these collective motions, execute them, and restart the packing
simulation. Before applying the linear program, the configuration
is conditioned by minimizing an artificial soft repulsive potential
imposed between all pairs of particles; this tends to push the par-
ticles away from one another. This process is repeated until a
rigid final state is achieved.

Dynamic simulations—A second algorithm was used to un-
derstand how the relaxation process affects the final structure.
For these simulations, particles are initially dispersed by random
sequential deposition with a fixed particle radius ron the surface
of λ = 0. During the simulation, diffusion moves are made as
before in Eq. (10). During relaxation moves, the particles are
constrained to the surface with overlaps prevented to first order
using Lagrange multipliers46. After each relaxation step, Eq. (12)
is minimized to remove overlaps. If not all overlaps could be
undone, the timestep is reduced. The algorithm halts when the
timestep of relaxation is smaller than a threshold δ t.

Order parameter calculation—Spatially resolved plots of the
bond orientational order parameter ψ6 = 〈exp(i6θ)〉41 (the aver-
age is taken from neighbor particles) are calculated by first, pro-
jecting each particle and its neighbors to the tangent plane of the
center particle to calculate the order ψ i

6 for that particle. The
surface is then divided into 24 equal-area axially symmetric re-
gions and the symmetry of the shape is exploited by collapsing

corresponding regions for positive and negative z; the mean ψ6 is
computed for all particles in each region.

For kinetic simulations, neighbors of particles are not deter-
mined from Delaunay triangulation since the particles are gen-
erally not densely packed during the coalescence. Instead, we
define neighbors as particles within the center-to-center distance
of 1.5 times diameter. In practice, this definition changes the nu-
merical values of ψ6 very little and doesn’t change the trend of
evolution.
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We disentangle the influence of shape and kinetics in the structure of arrested Pickering 
emulsion droplets after coalescence.
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