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Modern fabrication tools have now provided a number of platforms for designing flat sheets that,
by virtue of their nonuniform growth, can buckle and fold into target three-dimensional structures.
Theoretically, there is an infinitude of growth patterns that can produce the same shape, yet almost
nothing is understood about which of these many growth patterns is optimal from the point of view
of experiment, and few can even be realized at all. Here, we ask the question: what is the optimal
way to design isotropic growth patterns for a given target shape? We propose a computational
algorithm to produce optimal growth patterns by introducing cuts into the target surfaces. Within
this framework, we propose that the patterns requiring the fewest or shortest cuts produces the
best approximations to the target shape at finite thickness. The results are tested by simulation
on spherical surfaces, and new challenges are highlighted for surfaces with both positive and
negative Gaussian curvature.

Shape-morphing materials have been proposed as an advanced
manufacturing tool to produce three-dimensional geometries
from initially flat substrates. Dubbed “4D printing”1, the idea
is that materials are patterned to grow non-uniformly upon some
stimulus, and the strains induced by this growth are alleviated
by buckling into precise three-dimensional target shapes. This
patterning can be achieved by manipulating the composition of a
polymer gel2–4, the deposition of fibers5, or the configuration of
nematic order parameter6–8. Nature demonstrates what could be
achieved: buckling due to non-uniform strains have been impli-
cated in the shaping of bacterial films9, the blooming of flowers10

and the shaping of organs11.
Yet, all materials have limitations, whether it is limited range of

growth or a limited pattern resolution. As an example, consider
the hydrogel system of Na et al.4, in which the local crosslink den-
sity of a polymer film can be programmed. When swelled with
water, regions of high crosslink density swell less than those with
lower crosslink density, leading to buckling into three dimensions.
This growth is bounded however: areas can grow anywhere from
two to six times but no more (or less). In light of these limita-
tions, one major obstacle to adopting 4D printing more broadly
is the lack of understanding of the broader principles behind how
growth patterns should be designed around these physical limita-
tions.

In this paper, we ask the following question: how do we design
the optimal shape of an initially flat domain and a local pattern of
isotropic growth in order to produce a specific target shape? To

∗ Department of Physics, University of Massachusetts, Amherst, MA 01003, USA; E-
mail: csantang@physics.umass.edu

Fig. 1 A target surface (with some additional cuts) can be deswelled to a
flat domain. The inverse swelling map can be used to recover the target
surface. The surfaces are colored with respect to the conformal factor
per vertex Ωi.

answer this question, we first formulate an optimization problem
for growth that can be applied to arbitrarily shaped surfaces with
a disk topology. We then introduce the notion of cutting the sur-
face and find that the swelling range can be reduced significantly
further, albeit at the expense of a thickness-dependent fidelity.
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1 Formulation and methods
1.1 Optimal, isotropic growth
We assume that a small patch of area located at point x in the
initial flat domain grows by a factor of Ω(x) = eu(x). In the limit
of zero thickness, the relationship between the target shape and
the initial flat domain is given by a conformal map which takes
infinitesimal circles on the initial domain to circles on the target
shape12,13. Consequently, the Gaussian curvature at the point on
the buckled sheet convected from x, which we denote K(x), is
given by Gauss’ theorema egregium,

2K(x)eu(x) =−∇
2u(x). (1)

For surfaces of constant Gaussian curvature, K(x) = K, the pre-
vious equation reduces to Liouville equation. which admits a gen-
eral solution in terms of some meromorphic function f (z) satisfy-
ing f ′(z) 6= 0 in its domain of definition14.

Our basic procedure is outlined schematically in Fig. 1. We
start with a target shape with a single boundary which, in princi-
ple, may penetrate into the bulk of the shape in the form of a long
cut. We then fix K(x) on the target surface and use Eq. (1) to solve
for u(x)2. Thus, if we proceed to shrink the target surface accord-
ing to the areal distortion Ω−1 = exp[−u(x)], we would obtain a
flat domain. Mathematically, the map connecting the final shape
to the target shape itself is determined uniquely from a single har-
monic function on the target surface mapping the boundary of the
flat domain to the boundary of the target shape15. Finally, this
flat domain, when subjected to nonuniform growth by the areal
distortion Ω(x) = exp[u(x)] will, at least in principle, reproduce
the target surface in the limit of zero thickness13. Yet, there are
an infinite number of maps between the target shape and a flat,
disk-like domain depending on how we choose the boundary and
the boundary conditions for u(x) on the target shape; any one of
these solutions would be a pattern of growth that, in theory, was
guaranteed to produce the same target surface in the limit of zero
thickness.

Thus, we require a criterion that allows us to determine both
the ideal boundary and the appropriate boundary conditions on
u(x). To do so, we consider two measures of the range of
growth in a given pattern of growth. The Chebyshev measure,
ωC ≡ ln(Ωmax/Ωmin), where Ωmin and Ωmax are the smallest and
largest growth factor respectively, is the most natural experimen-
tally. For example, in any experimental realization, we require ωC

be smaller than a critical value. As a second quantity, we consider
the Dirichlet measure,

ωD =
1
2

∫
d2x [∇u(x)]2 , (2)

which penalizes gradients of growth.
If the actual boundary shape of the target surface is fixed, it

can be shown that the extrema of the Dirichlet measure always
have u(x) constant on the boundary16. Thus, it only remains to
identify an appropriate boundary shape on the target surface. For
ωC, less is known, however. It was first conjectured by Chebyshev
and proven by Gravé17–19 that, so long as the Gaussian curva-
ture does not change sign, the optimal Ω(x) will be constant on

!1

Fig. 2 A schematic of what a slit separating one triangular face from
another. A longer cut is built from a sequence of slits.

Fig. 3 Cut paths on the spherical surface (left) and planar projections
(right) after using the minimum area distortion boundary conditions. We
consider 3 (top) and 6 (botton) independent cuts on surface triangulations
of nearly 10000 vertices. In both cases we stopped cutting at ωC ≈ 0.91
and normalized with ω

(0)
C ≈ 3.18.

the boundary and take on either its maximum or minimum value
depending on the sign of K. Thus, when K > 0 (or K < 0), the
solutions to both optimization problems are the same; on sur-
faces with both positive and negative Gaussian curvature, how-
ever, there is neither a requirement that they lead to the same
solution nor that the Chebyshev measure is even well-defined on
surfaces with both signs of Gaussian curvature.

It is also possible to use different energy measures. Sharp et
al.20, also consider a modified version of the Dirichlet energy
ωmod

D = 1
2
∫

d2xa(x) [∇u(x)]2 that uses the function a(x) to pe-
nalize distortion non-uniformly. Additionally, the energy ωH =
1
2
∫

d2xu(x)2, called Hencky energy, which makes use of the mate-
rial strain u(x) can be used as a distortion measure. Nonetheless,
it is still necessary to determine the appropriate boundary condi-
tions for u(x) that minimize these measures and whether or not
the resulting mapping is unique as in the case of the Chebyshev
and standard Dirichlet measures. In what follows, we call any
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Fig. 4 Swelling ratio ωC as a function of the cut length lc normalized to
the spherical radius Rsph. We show the results for 1, 3, 6 and 12 radial
cuts from left to right. In the inset we show the results for 3, 6 and 12
independent cuts (•) and compare them with their radial counterparts
(◦) from left to right. The horizontal line corresponds to the target area
distortion ωC = log(2.5) = 0.91.

conformal projection with u(x) constant on the boundary a Cheby-
shev map, and we explicitly set u(x) = 0 on the boundary. Under
this boundary condition, the length of the boundary, including
cuts, remains constant. We lose no generality by doing this, how-
ever, since an overall shift of u(x) = u(x)+u0 can be absorbed into
a rescaling of the Gaussian curvature, K(x)→ e−u0 K(x), without
changing ωC or ωD.

1.2 Discrete conformal maps

In order to produce a discrete representation of a conformal map,
we imagine that both our target surface and initial flat domain
have been decorated with the same random triangulation, cre-
ated by randomly flipping the internal edges of a hexagonal tri-
angulation. The triangulation T is characterized by V vertices
joined by E edges and spanned by F faces. We label the vertices
with an integer i, and define a function, ui, on the vertices. If the
vertices i and j are connected by an edge, we define the length
of the edge as li j. One can then define a discretized version of
conformal equivalence using16

l̃i j = e(ui+u j)/4li j. (3)

The discrete equivalent of the Gaussian curvature for interior
and boundary vertices i is given by the angle deficit16:

Ki =

{
2π−∑n ∆θi,n, inT,
π−∑n ∆θi,n, at∂T.

(4)

The angles ∆θi,n can be determined entirely from the lengths li j

of the flat triangulation through the law of cosines. Solving this
non-linear system of equations accounts for finding a discrete con-
formal flattening of the surface of interest. We then set ui = 0 on
the boundary vertices. Every internal vertex of the triangulation
then determines a nonlinear equation for the ui by setting Ki = 0
on each internal vertex of the triangulation. This gives us an al-

ternate set of edge lengths from which we can determine a new
embedding of the triangulation in the plane. The resulting map
from the triangulation on the curved surface to the triangulation
on the conformally flat domain is a discrete conformal map, and
is determined uniquely for a given boundary16.

We build up cuts to the surface by sequentially separating pairs
of adjacent faces so that they are no longer constrained to share
edges, which we call slits for clarity (Fig. 2). Thus, each cut is a
concatenation of individual slits connected to the original bound-
ary of the domain (Details in Appendix A.2 ).

The Chebyshev measure, ωC, generalizes naturally to the dis-
crete case. For the Dirichlet measure, ωD, we use the discretized
form21:

ωD =
1
2 ∑
〈i, j〉

wi j(ui−u j)
2, (5)

where

wi j =

{
(cotαi j + cotβi j)/2, for interior edges,

cotαi j/2, for boundary edges.
(6)

Here αi j and βi j are the opposite angles of the interior edge li j

and similarly for boundary edges which only have one opposite
angle. Notice that since ui = 0 for all boundary vertices, we only
need to sum over the interior edges in Equation 5.

At each step in the algorithm, we create a slit with one vertex
on the boundary of the domain on the edge that reduces either
ωC or ωD the most. In this paper we mainly focus on minimizing
ωC since we expect equivalent results to the Dirichlet measure
ωD for surfaces with fixed Gaussian curvature sign. We minimize
with respect to ωD when we relax the fixed sign constraint (See
Appendix A.2). Because this is a greedy algorithm, once a cut
is formed, further slits tend to extend the length of a cut. How-
ever, if we seed the edges with one or more initial slits, all of the
subsequent cuts appear to grow uniformly fast. Fig. 1 shows a
conformal projection from an almost-complete sphere of radius R
and area ASC = (4/5)Asph in which a disk around the south pole
has been removed. In the figure, three cuts have been introduced
into the surface so that, after flattening, the resulting domain has
three lobes.

There could be different optimal cutting techniques producing
similar or better results. For example, Sharp et al.20 considered
a non-greedy variational approach that decreases the area distor-
tion while penalizing the cutting length. In this case, however,
the authors focus on finding the cuts on the smooth formulation
rather than along the edges of some precomputed discretization.
Additionally the main focus of their exposition is to partition a
given surface into two or more subregions. Our algorithm can be
seen as the special case where disconnected regions of low dis-
tortion are forbidden since in those cases the resulting discrete
conformal parameterizations cannot be realized by swelling ex-
periments.

As we will see, cutting driven by ωC and ωD primarily produce
the same results so long as K has one sign. On mixed or more
complex surfaces, however, there can be differences.
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Fig. 5 Normalized total Gaussian curvature of a sphere with 1, 2, 3 or 6
cuts as a function of thickness t/Rsph. In all cases ωC ≈ 1.17.

Fig. 6 Cut paths on an ellipsoidal surface (left) and optimal projections
(right) for 1 (top) and 2 (botton) independent cuts. We use the same
number of vertices as in Fig. 3 and we stopped cutting right after ωC ≈
0.24 and ω

(0)
C ≈ 0.54 for both cases.

1.3 Simulations of surface growth

In order to test the maps produced, we performed simulations of
a growing elastic sheet using a modified version of the Seung-
Nelson model22. We triangulate the initial flat domain, label the
vertices with an integer, and assign a length l̃i j to each edge join-
ing vertex i to vertex j. Denoting the position of vertex i by Xi,
we assume each edge has an elastic energy

Eelastic =
1
2
[(Xi−X j)

2− l̃2
i j]

2. (7)

To incorporate bending energy, if two faces, I and J are joined by
an edge, then we add a term

Ebending =
1
2

t2 (n̂I − n̂J)
2 , (8)

where t is the effective elastic thickness of the sheet and n̂I is the
unit normal vector of face I. Also note that the two energy con-
tributions are normalized by the elastic thickness t. We minimize
the energy Eelastic +Ebending with respect to the vertex positions,
Xi, using a BFGS minimization algorithm or conjugate gradient
algorithm provided in Mathematica, using a previously published
protocol23 to avoid “mis-folds” and non-smooth shapes using the
metric

l̃i j(α) = α ltarget
i j +(1−α) linitial

i j . (9)

Taking α from slightly above 0 on an initial domain with a small
(less than 1%) curvature to bias the initial buckling to 1 on the
final target surface. We can tune the thickness t in order to make
it much smaller compared to any other relevant spatial dimen-
sions. This ensures we are in an elastic energy regime where the
stretching component dominates over bending and nearly isomet-
ric deformations are preferred.

2 Results

2.1 Optimal growth patterns for spheres

We start by generating cut patterns on the sphere of radius Rsph

shown in Fig. 1. In order to have a more local view of the area dis-
tortion we define the distortion per vertex as ωC,i = log(Ωi/Ωmin)

and always normalize it with respect to ω
(0)
C = log(Ω(0)

max/Ωmin),

where Ω
(0)
max corresponds to the largest swelling change of the un-

cut or reference domain. When no cuts are present, our numerics
reproduce stereographic projection of the sphere to a disk in the
plane, a pattern that is known to reproduce a spherical shape at
small thickness2,3. Also note that as was shown by Milnor19,
there are some rough estimates of the distortion introduced by
projections (not necessarily conformal) from the sphere to the
plane. One way this can be done is by enclosing the spherical sur-
face between two semicircles. The angle, α < π, at the intersec-
tion of the two semicircles can be used to estimate the distortion
ω ≥ωc as ω = logsec(α/2). Nevertheless, this angle is not a useful
estimate of the distortion of cut domains since it is not sensitive to
the boundary changes introduced by the cuts which are expected
to greatly reduce the flattening distortion. Typical results for the
optimal shapes of 3 and 6 cuts and the associated growth patterns
are shown in Fig. 3. As expected for the case of positive Gaus-
sian curvature, cutting to minimize the Chebyshev measure and
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Fig. 7 Thickness dependence of the normalized total Gaussian curvature
of half an ellipsoid with 1 (solid) or 2 (dashed) cuts. In both cases ωC ≈
0.23.

Dirichlet measure produce the same results: one or more radial
cuts. In both cases, the Chebyshev measure, ωC = ln(Ωmax/Ωmin),
decreases rapidly as the cuts penetrate further into the sphere un-
til it reaches a plateau (Fig. 4). In addition, we checked that, if
we measure cut length lc in units of the sphere radius Rsph, the
data using different triangulations and different numbers of ver-
tices collapses (not shown). Based on these numerical results, we
expect that the true optimal cut shape is purely radial and that the
meandering is numerical noise. Indeed, when we compare ωC of
the optimal cuts from the greedy algorithm to ωC of purely radial
cuts along the lines of longitude of the sphere, we find excellent
agreement, with the radial cuts having a slightly lower ωC for the
same length of cuts (inset of Fig. 4).

If we allow each independent cut to have a length larger than
one full radial length, the algorithm eventually adds slits to the
initial surface in a somewhat disordered fashion. This behavior
is characterized by the tendency of the growing cut to constantly
branch. As this happens, we observe that both ωC and ωD ap-
pear to plateau (not shown). The increasing cut length as we
approach ratios ωC ≈ 0, makes the generated patterns of little to
null usage given the boundary layers developed on patterns with
an overly extended boundary. This suggests that a better strategy
comes from choosing the minimum number of independent cuts
that allow us to reach the desired distortion while avoiding the
unwanted plateau regime. For the case of the spherical surface
we are considering, this will depend on the covered surface area.

To see how the resulting patterns with different numbers of cuts
perform in reproducing the original spherical shape at finite thick-
ness, we performed simulations using the modified Nelson-Seung
model described in Section 1.3. We see that we are able to recover
the original sphere upon swelling the optimal domains at small
thicknesses precisely as expected. We use the integrated Gaus-
sian curvature as well as the integrated mean curvature squared
as two independent ways of calculating the fidelity of our shapes
after swelling. The Gaussian curvature in the spherical case,
K = 1/R2

sph, is constant and equal to the mean curvature squared.
Thus, both integrated measures produce the same result. In gen-

!!!!!!!!!!!!!!!!!!!!!!!
!
!
!
!
!
!
!
!
!
!
!
!

!

!

!

!

!

!

!

!

!

!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

"""""""""""""""""""""""
"
"
"
"
"
"
"
"
"
"
"
"
"

"

"
"

"

"
"

"

"

"

"""""""""""""""""""""""""""""""""""""""""""""

0 2 4 6 8 10 12

ω
C

0.1

0.0

0.2

0.3

0.4

0.5

lc/r0

Fig. 8 Cut-length dependent ωC for Chebyshev (•) and Dirichlet energy
(◦) driven cuts for a Gaussian bump surface. We consider 3 indepen-
dent cuts. The inset figures highlight the common regime as well as the
branching regimes for the 2 different cutting methods.

eral, given their intrinsic and extrinsic origin, these two shape
measures should be considered independently. In Fig. 5, we plot
the normalized total Gaussian curvature of the swelled and buck-
led domain for 1, 2, 3, and 6 cuts at fixed ωC ≈ 1.17. We note that
fewer cuts result in a better approximation to the original sphere
given that the normalized integrated Gaussian curvature is closer
to its ideal value of 1 as we vary the thickness. We can rationalize
this behavior by noting that the total length of boundary is itself
shorter with fewer cuts.

2.2 Surfaces with non-constant Gaussian curvature

We next look at surfaces with varying Gaussian curvature. In Fig.
6, we consider half of an ellipsoid satisfying the equation x2/a2 +

y2/b2 + z2/z2, with a = 2.5 and b = c = 1. This surface has K > 0
everywhere and is given by:

K =
(abc)2[

(abcosθ)2 + c2(a2 sin2
φ +b2 cos2 φ)sin2

θ
] , (10)

where φ ∈ [0,2π) and θ ∈ [0,π]. When the cuts are not seeded on
the boundary, they naturally emerge at either of the two poles and
rapidly moves toward the closest maximum of Ω in the absence
of any cuts. In order to produce patterns with two cuts, therefore,
we seed initial cuts at both poles simultaneously and find that the
cuts subsequently grow symmetrically.

Both ellipsoids in Fig. 6 are cut until ωC reaches the same, fixed
factor (ωC ≈ 0.24). Unlike the case of the sphere, the ellipsoid
with two cuts has a shorter boundary than the ellipsoid with one
cut; as might then be expected, the surface with two cuts better
reproduces the original ellipsoidal shape upon growth (Fig. 7
and Fig. 10). Indeed, the ellipsoid with a single long cut never
manages to close, and its total Gaussian curvature is about 20%
of the initial shape even for the thinnest structures we were able
to produce.

For a prototypical surface with both signs of Gaussian curva-
ture, we consider a Gaussian bump described by the height func-
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tion z(r) = z0 exp
(
−r2/2R2) with Gaussian curvature24:

K =
α2e−r′2

R2
1− r′2(

1+α2r′2e−r′2
)2 , (11)

where r′ = r/R and α = z0/R. The Gaussian curvature is positive,
zero, and negative for r <R, r =R, and r >R respectively. Without
cuts, the conformal projection with Ω constant on the boundary
can be written in terms of coordinates (ρ,θ) with metric ds2 =

Ω(ρ)
(
dρ2 +ρ2dθ 2). The swelling factor Ω(ρ), after some work,

can be shown to satisfy the first order equation (additional details
in Appendix A.1):

1
2Ω(ρ)ρ

d
dρ

(
Ω(ρ)ρ2

)
=

[
1+

z2
0ρ2

R4 Ω(ρ)e−Ω(ρ)ρ2/R2

]−1/2

. (12)

Notice that the right-hand side of Equation 12 is always less than
1. This implies that

Ω′(ρ)ρ

2Ω(ρ)
+1≤ 1, (13)

or that Ω′(ρ) ≤ 0. Thus, we see that the Gaussian bump, while
not having strictly positive Gaussian curvature, nevertheless sat-
isfies the property that Ω(ρ) on the boundary is a minimum value.
Note, however, that once cuts are introduced, there is no longer a
guarantee that the minimum value of Ω occurs on the boundary.

In Fig. 8, we show the results of applying our algorithm to
the Gaussian bump by choosing slits to minimize the Dirichlet
energy and introducing slits that minimize the Chebyshev param-
eter ωC. Only once the cutting procedure has reached the plateau
regime and the introduction of slits proceeds in a seemingly ran-
dom fashion, do we see any deviation between these two cases.
If we choose ωC before the plateau regime, we are able to recover
the original Gaussian bump shape in both the case of one and
three cuts upon swelling (Fig. 9 and Fig. 10). The fidelity of
the finite-thickness shape using the one-cut pattern, which has a
shorter boundary than the three-cut pattern, appears to be better
as a function of thickness.

It is worth mentioning that the branched cuts are consistent
across geometries, discretizations, and levels of refinement. It
seems that once the cuts reach the vicinity of an interior max-
imum, new highly delocalized maxima emerge and the cutting
paths branch in order to account for the new maxima. The pres-
ence of branches appear to be a clear indication of the viability
and limits of a greedy strategy on overly cut surfaces.

Finally, we note that our procedure does not produce viable re-
sults on more general surfaces with mixed positive and negative
Gaussian curvature. Consider, for example, the undulated surface
shown in Fig. 11. Without cuts, the conformal map that mini-
mizes the Dirichlet energy (and has constant Ω on the boundary)
also has many minima and maxima in Ω within the domain. In
this case, the two cutting procedures deviate quickly and the re-
sulting cuts are once again highly branched.

3 Conclusions
To conclude, we have shown how different kinds of cutting paths
can be used to lower the distortion associated with the swelling

Fig. 9 Thickness dependence of the normalized total Gaussian curvature
of a bump with 1 (dashed) and 3 (solid) cuts. We use z0 = R = 1. In both
cases ωC ≈ 0.13.
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Fig. 10 (a) Thickness dependence of the normalized total mean curva-
ture squared for the ellipsoidal surface (Fig. 7). We considered 1 (solid)
and 2 (dashed) cuts. (b) Analogue calculation for the Gaussian bump
(Fig. 9) with 1 (dashed) and 3 (solid) cuts.

6 | 1–9Journal Name, [year], [vol.],

Page 6 of 9Soft Matter



of elastic sheets. Most of the patterns we studied are currently
inaccessible given the limitations of the experimental methods.
Nevertheless, we have highlighted a path to circumvent this is-
sue by introducing cuts on a surface. We have demonstrated, at
least for simple enough geometries, that length-minimizing cut-
ting paths tend to follow geodesic trajectories from nearby bound-
ary points. Additionally, with the help of finite thickness simula-
tions, we observed that in situations where the target area distor-
tion is small compared to the distortion of the uncut domain, it
is sometimes necessary to introduce multiple independent cuts in
order to buckle into the desired structure.

Finding minimum distortion conformal maps is a problem that
has been explored before. Nevertheless this has been done either
analytically for simple geometries or numerically for fixed bound-
ary domains. Our main contribution consists of relaxing the fixed
boundary constraint in order to reach a specific distortion pro-
vided some experimental limitations. In this paper we explored
the paths generated by a greedy algorithm. The procedure we
used only focuses on local changes and it is possible that there
exist cutting paths that require less cutting to attain the desired
distortion.

For the cases where the Gaussian curvature remains sign-fixed,
our results confirm an equivalence between minimizing either the
Dirichlet energy ωD or the Chebyshev parameter ωC. Nonetheless,
there are apparently situations where the sign requirement can
be violated while both cutting criteria still behave similarly. We
realized one of those situations in domains with axial symmetry,
like the Gaussian bump, whose swelling minimum is located at
the boundary regardless of the change in Gaussian curvature sign.

As previously stated, there could be more sophisticated and
complicated cutting approaches. Nevertheless, the method we
use is a reasonable candidate when the desired distortion can be
obtained without introducing strong boundary layer effects. An-
other interesting feature that speeds up the computations is that
although the method is greedy, it does not need to consider all
the accessible boundary but only the portion generated by the
cut. This relies on the observation that cuts tend to grow into the
surfaces.

During the present work we considered swelling pattern with
a disk or simply-connected topology. One possible extension to
this could be implemented by adding holes or cone singularities
at surface points with high local distortion. Exploring the effect
of internal holes might require a generalization of the methods
used during this work in order to deal with non-disk topologies.
This poses a further challenge given that is not completely un-
derstood whether it is possible to extend the minimum distortion
theorems used on this paper to system without a disk topology.
Moreover, it is not clear if we can conformally flatten a domain
with holes before turning it first into a topological disk. This and
other generalizations will be left for future studies.
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Fig. 11 Cut-length dependent ωC for Chebyshev (•) and Dirichlet energy
(◦) driven cuts for an undulating sphere. We show results for a single cut
and use the insets to demonstrate the cutting paths for both methods.

A Appendices
A.1 Conformal projection of the Gaussian bump

The shape of the Gaussian bump is R(r,θ) = rr̂(θ)+ z0e−r2/(2R2)ẑ,
where r̂(θ) and ẑ are the unit vectors associated respectively with
the (r,z) coordinates of the axis-symmetric surface. The initial
metric is:

ds2 =
[
1+ z′(r)2

]
dr2 + r2dθ

2. (14)

We are aiming to rewrite this in terms of a new metric ds2 =

Ω(ρ)[dρ2 + ρ2dθ 2]. To do that, we have to apply a change of
variables between the (r,θ) and (ρ,θ) planes. To do that, start
with the metric in the (r,θ) plane and change variables to r =

f (ρ). Then:

ds2 =
[
1+ z′( f (ρ))2

]
f ′(ρ)2dρ

2 + f 2(ρ)dθ
2. (15)

Comparison to the target metric shows that f (ρ)=
√

Ω(ρ)ρ (from
the dθ term). The first term then shows that:[

1+ z′
(√

Ω(ρ)ρ
)2
][

d
dρ

(√
Ω(ρ)ρ

)]2
= Ω(ρ). (16)

Therefore,

d
dρ

(√
Ω(ρ)ρ

)
=±

√√√√ Ω(ρ)

1+ z′
(√

Ω(ρ)ρ
)2 . (17)

Finally,

1√
Ω(ρ)

d
dρ

(√
Ω(ρ)ρ

)
=±

[
1+ z′

(√
Ω(ρ)ρ

)2
]−1/2

. (18)

Now, we can put this in a slightly more convenient form using:

d
dρ

g2(ρ) = 2g(ρ)g′(ρ). (19)

Therefore,

g′(ρ) =
1

2g(ρ)
d

dρ
g2(ρ). (20)
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Algorithm 1: Discrete Conformal Flattening with a Desired
Distortion
Input: Surface triangulation T = (V,E,F), a conformal

flattening (a discrete conformal mapping of T on R2),
distortion given by ωcurrent

C , a target distortion given by
either ω

target
C (ω

target
D or any other measures can be used

instead), a set containing N (number of independent
cuts) subsets Vseed = {{vseed}}. Each subset initially only
contains a single vertex which act as independent
cutting seeds.

Output: A discrete conformal flattening with ωC ≤ ω
target
C .

while ωcurrent
C ≥ ω

target
C do

1. Define the empty set Voptimal = {}.

2. forall subset {vseed}k in Vseed do

1. forall Vertex vi in {vseed}k do

1. Find the set of internal vertices Vint connected to
the boundary vertex vi;

2. if Vint is empty then go to 6;

3. forall vertices v j in Vint do

1. Cut along the internal edge [vi,v j];

2. Compute a discrete conformal flattening
consistent with the modified boundary;

3. Compute the distortion ω
modified
C of the

modified triangulation;

4. if ω
modified
C < ωcurrent

C then

1. ωcurrent
C = ω

modified
C ;

2. Define voptimal = v j and eoptimal = [vi,v j]
as the optimal vertex and edge respectively;

5. Undo the cut along the edge [vi,v j];

4. Cut along eoptimal and make it a permanent cut.

5. Add the boundary vertex voptimal to the sets
{vseed}k and Voptimal.

6. continue

3. if Voptimal is empty then exit;

Using g(ρ) =
√

Ω(ρ)ρ, we find:

1
2Ω(ρ)ρ

d
dρ

(
Ω(ρ)ρ2

)
=±

[
1+ z′

(√
Ω(ρ)ρ

)2
]−1/2

. (21)

Finally, we need to choose the appropriate sign on the right-
hand side (the positive sign here) and substitute in z′(r) =

z0r/R2e−r2/(2R2). This finally yields:

1
2Ω(ρ)ρ

d
dρ

(
Ω(ρ)ρ2

)
=

[
1+

z2
0ρ2Ω(ρ)

R4 e−Ω(ρ)ρ2/R2

]−1/2

, (22)

which is equation 12.

A.2 Numerical Details and Cutting Pseudocode
In this Appendix we describe some of the details as well as the
pseudocode of the algorithm we used to add cuts on surfaces. The
algorithm is designed to split edges connecting one boundary and
one interior vertex. The choice of initial boundary vertices can be
either user-defined or seeded by any desired method. During this
work we seeded the cuts by taking advantage of the symmetry
of the uncut surface. We found that, at least for the considered
cases, doing this had the advantage of requiring less cutting steps
as compared to the case where the cuts were seeded randomly.
For example, in the cases where we had azimuthal symmetry, it
was observed that the optimal results were obtained by seeding
N independent cuts with constant angle spacing. There is not an
a priori estimate of how many different cuts will be needed. The
number of cuts, N, can be tuned to reach the target distortion
with the minimum amount of cutting.

Given that the numerical methods we use are only valid for
simply-connected cases, the cuts can never separate the triangula-
tions into disconnected pieces. The algorithm exits when it either
reaches the desired distortion or runs out valid interior vertices to
extend the cuts. In order to solve the non-linear system of equa-
tion 6 we use a modified version of the Powell dogleg algorithm
suitable for sparse systems of equations25. This method requires
a linear system of equations solver. We use the PARDISO library
which is also suitable for sparse systems26. To estimate the er-
ror introduced by our discrete flattenings, we used the unitless
convex energy reported by Springborn et al.16 given that the pro-
cess of minimizing the convex energy is equivalent to solving the
non-linear system 6. In our case, we computed the magnitude
of the gradient of this energy and obtained values in the range
10−14−10−12. Finally, the pseudocode of our greedy algorithm is
the following:
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