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Experiments have revealed that membrane proteins often self-assemble into locally ordered clus-
ters. Such membrane protein lattices can play key roles in the functional organization of cell
membranes. Membrane protein organization can be driven, at least in part, by bilayer-mediated
elastic interactions between membrane proteins. For membrane proteins with anisotropic hy-
drophobic thickness, bilayer-mediated protein interactions are inherently directional. Here we
establish general relations between anisotropy in membrane protein hydrophobic thickness and
supramolecular membrane protein organization. We show that protein symmetry is distinctively
reflected in the energy landscape of bilayer-mediated protein interactions, favoring characteris-
tic lattice architectures of membrane protein clusters. We find that, in the presence of thermal
fluctuations, anisotropy in protein hydrophobic thickness can induce membrane proteins to form
mesh-like structures dividing the membrane into compartments. Our results help to elucidate the
physical principles and mechanisms underlying the functional organization of cell membranes.

1 Introduction
Many essential biological functions of cell membranes rely on the
organization of membrane proteins into specialized membrane
regions with differentiated structure and function1. Notably, re-
cent advances in high-resolution imaging techniques have shown
that integral membrane proteins, such as the receptor compo-
nents of various signaling networks, can self-assemble into large
clusters comprising hundreds of proteins2,3 with locally ordered
lattice architectures4–6. Clustering can directly impact the func-
tional characteristics of membrane proteins by, for instance, fa-
cilitating localized signal transduction7 and increasing precision
and adaptation in signal processing8,9. The differentiated cluster-
ing of a particular type of membrane protein can also influence
how other, unclustered, membrane proteins and lipids diffuse and
interact with each other10,11. Elucidation of the physical mecha-
nisms and principles governing the self-assembly and architecture
of membrane protein lattices is therefore of critical importance for
a quantitative understanding of the supramolecular organization
and associated collective functional properties of cell membranes.

Supramolecular organization of membrane proteins can be
driven by direct protein-protein interactions12–14. Moreover, ex-
periments15–20 and computational modeling21–25 suggest that
lipid bilayer-mediated interactions between membrane proteins
provide a general design principle for membrane organization

a Department of Physics & Astronomy and Department of Biological Sciences, University
of Southern California, Los Angeles, CA 90089, USA.
‡ Present address: R & D Center, Arcelik A.S., Tuzla, Istanbul, 34950, Turkey.

independent of any specific protein-protein contacts. Bilayer-
mediated protein interactions are typically longer-ranged than di-
rect protein-protein interactions in the membrane. Clustering of
membrane proteins via bilayer-mediated protein interactions has
been studied extensively within the framework of continuum elas-
ticity theory15,26–50. For membrane proteins that do not have per-
fect rotational symmetry in the plane of the membrane, bilayer-
protein interactions tend to be anisotropic. The continuum elas-
ticity theory of membranes implies that anisotropy in bilayer-
protein interactions can strongly affect the regulation of pro-
tein function by lipid bilayer mechanics24,25,51,52 and induce di-
rectionality in bilayer-mediated protein interactions45,47,49,52–54.
Directional, bilayer-mediated protein interactions provide a phys-
ical mechanism for the self-assembly as well as local ordering of
membrane protein lattices, and can induce cooperativity among
the proteins forming membrane protein lattices24,25,45,50,52,54,55.

Based on the structural biology of membrane proteins, one may
distinguish between two, not mutually exclusive, molecular ori-
gins of anisotropy in bilayer-protein interactions and, hence, di-
rectionality in bilayer-mediated protein interactions. On the one
hand, the shape of the cross section of membrane proteins in the
plane of the membrane may not show continuous rotational sym-
metry about the protein center. The resulting directionality of
bilayer-mediated protein interactions can yield, depending on the
oligomeric state and shape of the membrane protein, distinctive
supramolecular lattice architectures of membrane protein clus-
ters52,55. On the other hand, the shape of a membrane protein
may show, to a first approximation, continuous rotational symme-
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try in the plane of the cell membrane, but the bilayer-protein in-
teractions along the bilayer-protein interface may change with the
azimuthal angle about the protein center (see Fig. 1). The aim of
this article is to explore this latter scenario, and to establish gen-
eral relations between the azimuthal symmetry of bilayer-protein
interactions and the supramolecular organization of membrane
proteins. We thereby focus on bilayer-mediated protein interac-
tions due to protein-induced lipid bilayer thickness deformations,
which have been found to play a central role in the supramolecu-
lar organization of a variety of membrane proteins15–20,23.

To single out the effect of azimuthal protein symmetry on the
directionality of bilayer-thickness-mediated protein interactions,
we consider here cylindrical membrane protein shapes with a pe-
riodic variation in the protein hydrophobic thickness along the
bilayer-protein interface (Fig. 1). On the one hand, such peri-
odic variations in the protein hydrophobic thickness may arise in
protein oligomers composed of repeating protein subunits, which
is a general motif of membrane protein structure56,57. On the
other hand, cylindrical membrane inclusions with varying hy-
drophobic thickness provide a mathematical representation of
non-cylindrical membrane protein shapes45,51, and can thus be
used to model bilayer-protein interactions even for membrane
proteins that have a constant hydrophobic thickness and a non-
cylindrical shape. We show that the bilayer-thickness-mediated
interactions between such “crown-shaped proteins” yield self-
assembly of protein clusters with distinctive ground state lattice
architectures determined by the azimuthal symmetry of bilayer-
protein interactions. For the case of crown-shaped proteins with
one-fold rotational symmetry, our calculations predict that ther-
mal perturbations to the corresponding ground state lattice archi-
tectures can yield mesh-like supramolecular protein assemblies
with typical mesh sizes > 20 nm, thus producing membrane com-
partmentalization at scales that exceed the typical size of indi-
vidual proteins1,58,59. Taken together, our results provide gen-
eral links between anisotropy in bilayer-protein interactions and
supramolecular membrane protein organization, and suggest sim-
ple physical mechanisms underlying the structural and functional
organization of cell membranes.

2 Modeling anisotropic bilayer-protein in-
teractions

Lipid bilayer-mediated interactions between membrane proteins
may arise15,26–50,52–55,60,61 from protein-induced lipid bilayer
curvature or thickness deformations, as well as bilayer fluctua-
tions. We focus here on protein-induced lipid bilayer thickness
deformations, which have been found to induce protein clustering
in experiments on a broad range of membrane proteins15–20,23,
and which provide a general mechanism for the regulation of pro-
tein function by bilayer mechanics39,62,63. In the simplest model,
the energy cost of protein-induced lipid bilayer thickness defor-
mations is given by the continuum elastic energy62–64
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Fig. 1 (a) Side and (b) top-down views of the lipid bilayer thickness
deformations induced by membrane proteins with anisotropic
hydrophobic thickness. The protein-induced lipid bilayer thickness
deformations u were calculated by minimizing eqn (1) using finite
elements (FEs) 47,49,55, and depend on key molecular properties of the
lipids and proteins (see Sec. 2), the protein center-to-center distance d,
and the protein orientations ω1,2. We single out the effect of anisotropy
in protein hydrophobic thickness on the directionality of
bilayer-thickness-mediated protein interactions by employing the crown
model of membrane proteins in eqn (2), which is illustrated in the lower
right corner of panel (b) with the surface enclosed by the two black
curves representing the hydrophobic surface of the membrane protein.
The protein hydrophobic thickness is also indicated by black curves in
the main panels of (a) and (b), with minima and maxima in the protein
hydrophobic thickness being denoted by − and + signs in panel (a). We
set here s = 2, ω1 = 0, ω2 = π/2, and d = 8 nm. The same color scale in
u is used for panels (a) and (b) with umin =−0.6 nm and umax = 0.4 nm.

where the thickness deformation field u(x,y) is one-half the
protein-induced perturbation in bilayer hydrophobic thickness, Kb

is the lipid bilayer bending rigidity, Kt is the lipid bilayer thickness
deformation modulus, and a is one-half the hydrophobic thick-
ness of the unperturbed lipid bilayer. In eqn (1) we have, for
simplicity, set the membrane tension equal to zero. The values of
the effective parameters Kb, Kt , and a in eqn (1) depend on the
molecular properties of the lipids forming the lipid bilayer, such
as the lipid tail length65. We use here the values Kb = 20 kBT ,
Kt = 60 kBT/nm2, and a = 1.6 nm typical for a broad range of in
vitro and in vivo systems39,63,66. Once the values of Kb, Kt , and a
have been fixed, the model in eqn (1) has the appealing property
that it does not involve any free parameters, with the (minimal)
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energy cost of protein-induced lipid bilayer thickness deforma-
tions being determined solely by the boundary conditions on u at
the bilayer-protein interfaces.

Following the standard elasticity theory of lipid bilayer-protein
interactions39,63, we assume that integral membrane proteins
are much more rigid than lipid bilayers, and therefore model
membrane proteins as rigid membrane inclusions with fixed hy-
drophobic thickness. As examined previously45,47,49,52,55 and
discussed above, directionality of bilayer-thickness-mediated pro-
tein interactions may originate from a non-circular cross section
of membrane proteins in the plane of the membrane. We con-
sider here the complementary scenario in which directionality of
bilayer-thickness-mediated protein interactions arises solely from
azimuthal variations in the protein hydrophobic thickness along
the bilayer-protein interface, with a circular cross section of the
membrane protein. In particular, we focus on the crown model
of membrane proteins45,49 (Fig. 1), which allows us to single
out the effect of anisotropy in protein hydrophobic thickness on
supramolecular membrane protein organization. In this model,
each membrane protein i is modeled as a cylindrical membrane
inclusion with a hydrophobic thickness Ui that varies along the
bilayer-protein interface according to45,49

Ui(θi) =U0
i +δi cos(s(θi−ωi)) , (2)

where θi is the azimuthal angle associated with a polar coordi-
nate system with the center of membrane protein i as the origin,
U0

i is the average hydrophobic mismatch, δi is the magnitude of
mismatch modulations, s is the protein symmetry, and ωi is the
orientation of membrane protein i (Fig. 1). The values of U0

i , δi,
and s in eqn (2) generally depend on the specific type of mem-
brane protein under consideration. For the numerical calcula-
tions described here we use U0

i = −0.1 nm and δi = 0.5 nm49.
Furthermore, we use a protein radius Ri = 2.3 nm49, which corre-
sponds to the approximate size of the closed pentameric state of
the bacterial mechanosensitive channel of large conductance67.
In accordance with previous work36,62,68, we impose zero-slope
boundary conditions at the bilayer-protein interface.

For membrane proteins in close enough proximity, the protein-
induced lipid bilayer thickness deformations overlap, resulting in
bilayer-thickness-mediated protein interactions27,28,32,34–36,52,60.
The bilayer-thickness-mediated protein interactions implied by
eqn (1) for the crown-shaped proteins in eqn (2) can be cal-
culated using analytic45,49,51,52 and finite element (FE)47,49,55

methods. Both of these approaches allow the accurate minimiza-
tion of eqn (1) for membrane proteins of arbitrary symmetry and
shape for arbitrary protein separations and protein orientations.
For the calculations described here we employed the FE scheme
described in detail in Ref.49, which is particularly suitable for
systems composed of many (strongly) interacting membrane pro-
teins. This FE scheme allows47,49,55 the numerically reliable and
efficient minimization of eqn (1) subject to the bilayer-protein
boundary conditions even for membranes containing hundreds
of (strongly) interacting membrane proteins with complicated
bilayer-protein boundary conditions, and is therefore suitable for
exploring the supramolecular organization of membrane proteins

with anisotropic hydrophobic thickness.

3 Directionality of bilayer-mediated protein
interactions

Before exploring the bilayer-mediated protein interactions im-
plied by eqn (2), it is useful to consider the particularly straight-
forward scenario of a single membrane protein with a circular
cross section in the plane of the membrane and a constant hy-
drophobic thickness, which corresponds to δi = 0 in eqn (2). For
such a single membrane protein, the protein-induced lipid bilayer
thickness deformation field u only depends on the radial coor-
dinate about the protein center, with the u minimizing eqn (1)
being given by a sum of zeroth-order modified Bessel functions
of the second kind62,69. As a result, one obtains49,62,69, in the
radial direction about the protein center, a series of expansion
and compression zones of u, with an approximately exponential
dampening of the magnitude of u.

When two cylindrical membrane proteins with constant hy-
drophobic thickness come into vicinity of each other, the bilayer
thickness deformation fields induced by the two proteins over-
lap, yielding bilayer-thickness-mediated protein interactions. De-
pending on the separation of the two proteins, the overlap be-
tween expansion and compression zones of u may be in phase
or out of phase, resulting in favorable or unfavorable interac-
tions between membrane proteins36,45,47,49,52, respectively. For
membrane proteins with non-cylindrical shapes or with—as in the
crown model in eqn (2)—azimuthal variations in the protein’s
hydrophobic thickness, the protein-induced lipid bilayer thick-
ness deformations bear a characteristic signature of the protein
anisotropy (Fig. 1). As a result, for such membrane proteins the
sign and magnitude of bilayer-thickness-mediated protein inter-
actions not only depend on the protein separation but also on the
protein orientation.

Figure 2 shows the energy of bilayer-thickness-mediated pro-
tein interactions for a pair of crown-shaped proteins as a function
of the protein orientations ω1 and ω2 for three different protein
symmetries s = 1, 2, and 3 at small (strong interactions, d = 6 nm
in Fig. 2a) and intermediate (weak interactions, d = 10.5 nm in
Fig. 2b) protein separations. To understand how the “egg-carton”
energy landscapes in Fig. 2 emerge from the anisotropic bilayer
deformations induced by the two proteins, it is useful to consider
three distinctive pair configurations: (i) the +/− configuration,
in which the bilayer-protein boundary regions with maximal and
minimal hydrophobic thickness face each other (Fig. 1) and which
occurs, for instance, at ω1 = 0 and ω2 = 0 for odd s and at ω1 = 0
and ω2 = π/s for even s; (ii) the −/− configuration, in which
the bilayer-protein boundary regions with minimal hydrophobic
thickness face each other and which occurs, for instance, at ω1 = 0
and ω2 = π/s for odd s and at ω1 = π/s and ω2 = π/s for even s;
(iii) the +/+ configuration, in which the bilayer-protein bound-
ary regions with maximal hydrophobic thickness face each other
and which occurs, for instance, at ω1 = π/s and ω2 = 0 for odd s
and at ω1 = 0 and ω2 = 0 for even s.

We first consider the energy landscapes in Fig. 2a obtained for
small protein separations. For the +/− configuration, the undu-
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Fig. 2 Bilayer-thickness-mediated pair interaction energies Gint for two
crown-shaped proteins with s = 1, 2, and 3 in eqn (2) as a function of the
protein orientations ω1 and ω2 at the center-to-center protein
separations (a) d = 6 nm and (b) d = 10.5 nm, computed by minimizing
eqn (1) using FEs 47,49. The color scale in Gint corresponds to
(gmin,gmax) = (−22,76) kBT in panel (a) and to (gmin,gmax) = (−0.6,1) kBT
in panel (b). The dashed lines indicate contours with Gint = 0.

lations of the thickness deformations induced by the two proteins
are out of phase. This means that, due to the substantial overlap
of compression and expansion zones, the bilayer thickness defor-
mations in the membrane region separating the two proteins are
strongly frustrated, yielding highly unfavorable bilayer-thickness-
mediated protein interactions (Fig. 2a). In contrast, for protein
configurations with protein-induced lipid bilayer thickness de-
formations that are in phase with each other, such as the +/+

and −/− configurations in Fig. 2a, there is substantial overlap of
compression or expansion zones, which reduces the overall de-
formation footprint of the two proteins and yields highly favor-
able bilayer-thickness-mediated protein interactions. Note that
we used here an average protein hydrophobic thickness U0

i < 0,
which generally results in a greater magnitude of u in compres-
sion zones than in expansion zones. As a result, the −/− configu-
ration in Fig. 2a generally yields more favorable bilayer-thickness-
mediated protein interactions than the +/+ configuration. As the
proteins are rotated about their centers at fixed d, the energy of
bilayer-thickness-mediated protein interactions changes smoothly
between the +/−, −/−, and +/+ configurations. However, the
period and precise location in ω1,2 of the +/−, −/−, and +/+

configurations vary with the protein symmetry s, resulting in dis-
tinctive energy landscapes for s = 1, 2, and 3 in Fig. 2a.

At an intermediate protein separation d = 10.5 nm, we find
in Fig. 2b energy landscapes of bilayer-thickness-mediated pro-
tein interactions that are qualitatively similar to those obtained
in Fig. 2a at small protein separations but with much weaker
interaction energies. In particular, we find energy differences
of less than 2 kBT between the most favorable and most unfa-
vorable protein configurations in Fig. 2b, but energy differences
of almost 100 kBT for the corresponding protein configurations

in Fig. 2a. Furthermore, we find that favorable and unfavor-
able regions of the interaction energy landscapes are reversed
in Fig. 2b compared to Fig. 2a. This can be understood by not-
ing that, as discussed above, eqn (1) implies alternating expan-
sion and compression zones of u in the radial direction about
the protein center62,69. As a result, a decrease or increase in
d can lead to a switch between overlapping expansion or com-
pression zones of the protein-induced bilayer thickness deforma-
tions49,52 and, hence, a shift in the “phase” of the energy land-
scape. Taken together, the results in Fig. 2 show that anisotropy
in protein hydrophobic thickness can yield strong directionality in
bilayer-thickness-mediated protein interactions, with a subtle de-
pendence of the energy landscape of bilayer-thickness-mediated
protein interactions on the protein orientation and separation as
well as the protein symmetry.

4 Ground state lattice architectures
The results in Sec. 3 suggest that, similarly as in the case of mem-
brane proteins with a non-circular cross section in the plane of the
membrane52,55, the directionality of bilayer-thickness-mediated
interactions between crown-shaped proteins may affect large-
scale protein organization, with different protein symmetries fa-
voring different protein lattice architectures. Figure 3 shows the
bilayer-thickness-mediated protein interaction energy per pro-
tein, Gint, for protein clusters composed of hundreds of crown-
shaped proteins with s = 1, 2, and 3 in eqn (2) as a function
of the center-to-center distance between neighboring proteins, d.
Table 1 summarizes the energetically most favorable protein con-
figurations implied by Fig. 3.

We consider in Fig. 3 the three regular tilings of the Euclidean
plane corresponding to honeycomb, square, and hexagonal lat-
tice architectures. As discussed below, trimers of crown-shaped
proteins provide an energetically favorable nearest-neighbor in-
teraction motif, and we therefore also allow in Fig. 3 for kagome
lattices, which combine regular triangular and hexagonal tilings.
All of the results in Fig. 3 were obtained from the full multi-body
interaction energies calculated through minimization of eqn (1)
using FEs47,49,55. We consider in Fig. 3 values of d such that
d > dst, where dst is the smallest protein separation allowed by
steric constraints on lipid size. We used here dst = 5.6 nm so that
the minimum edge-to-edge protein separation > 1 nm. We em-
ployed, for each s and lattice symmetry in Fig. 3, a fixed set of pro-
tein orientations ωi. We obtained these ωi by optimizing, through
Monte Carlo simulations with simulated annealing of pair inter-
action potentials (see Appendix A), ωi at d = 6 nm, which corre-
sponds to the strongly-interacting regime in Fig. 2. In the absence
of any constraints on the protein separation preventing d → d+

st ,
the strongly-interacting regime is expected to set the ground state
lattice architecture of membrane protein lattices. If there are ad-
ditional constraints on d prohibiting d→ d+

st , protein orientations
different from those studied here may be dominant from an ener-
getic perspective.

We first consider crown-shaped proteins with s = 1 (see
Fig. 3a). We find that all of the lattice symmetries considered
in Fig. 3a yield a qualitatively similar dependence of Gint on d.
In particular, for 8 nm / d / 11 nm the interaction energies are
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Fig. 3 Interaction energy per protein due to bilayer-thickness-mediated
protein interactions, Gint, for honeycomb, square, hexagonal, and
kagome lattices of crown-shaped proteins versus center-to-center
distance between neighboring proteins, d, for (a) s = 1, (b) s = 2, and (c)
s = 3 in eqn (2) calculated by minimizing eqn (1) using FEs 47,49,55. We
constructed the honeycomb lattices from 216 proteins, the kagome
lattices from 222 proteins, and the square and hexagonal lattices from
225 proteins each. The vertical lines show d = dst. The coloring of
crown-shaped proteins in the insets follows the u-scale in Fig. 1. For
each lattice symmetry, the protein orientations were fixed as indicated in
the insets using Monte Carlo simulations with simulated annealing of
pair interaction potentials at d = 6 nm (see Appendix A). The protein
configurations in the insets correspond to d = 6 nm. The leftmost inset in
panel (a) shows Gint in units of kBT at d = dst as a function of the protein
number n in square (squares), hexagonal (circles), and kagome
(triangles) lattices together with the fits of this data to eqn (3) (solid
curves).

weakly unfavorable, and |Gint| < 1 kBT for d ' 11 nm. In con-
trast, for d / 8 nm we find (strongly) favorable Gint for all the
lattice symmetries considered in Fig. 3a, with the energetically
most favorable states corresponding to the smallest value of d al-
lowed by steric constraints, d = dst. Qualitatively similar interac-
tion potentials arise for pairs of membrane proteins with constant
hydrophobic thickness and circular as well as non-circular cross
sections in the plane of the membrane36,45,47,49,52,55.

Table 1 Summary of energetically most favorable protein lattice
symmetries and corresponding azimuthal ordering motifs in Fig. 3 for
s = 1, s = 2, and s = 3 in eq. (2). For s = 1, we find an effectively
degenerate ground state lattice architecture, with the interaction
energies Gint associated with hexagonal, square, and kagome lattices
lying within 1 kBT of each other (see main text).

Protein symmetry Lattice symmetry Azimuthal ordering
s = 1 Hexagonal (degenerate) +/+/+ and −/−/−
s = 1 Square (degenerate) +/+ and −/−
s = 1 Kagome (degenerate) +/+/+ or −/−/−
s = 2 Square +/+ and −/−
s = 3 Hexagonal +/+/+ and −/−/−

At d ≈ dst, the interaction energies associated with the square,
hexagonal, and kagome lattices in Fig. 3a lie within 1 kBT of each
other, suggesting an effective degeneracy in the preferred lattice
architecture of crown-shaped proteins with s = 1. The competi-
tion between square, hexagonal, and kagome lattices depends on
the specific values of the model parameters considered. The rela-
tive energies of these lattice architectures also depend on bound-
ary effects arising from the finite size of the membrane protein
lattices considered in Fig. 3a. However, we find that the differ-
ences in Gint between square, hexagonal, and kagome lattices re-
main within 1 kBT of each other as the number of crown-shaped
proteins in the lattice, n, is increased (Fig. 3a, leftmost inset). To
explore the limit n→ ∞, it is instructive to fit Gint to its expected
asymptotic dependence on n,

Gint(n) = G∞ +
1√
n

G′ , (3)

where G∞ is the interaction energy per protein in infinite lattices
and G′ captures finite size effects. Taking n to be even, we find
in the leftmost inset of Fig. 3a that (G∞,G′) ≈ (−21.1,20.5) kBT ,
(−21.7,30.8) kBT , and (−21.5,23.4) kBT for square, hexagonal,
and kagome lattices, respectively. Odd n yield different boundary
effects and, hence, different values of G′ in eqn (3) but, within the
numerical accuracy used here, the same values of G∞ as even n.
Figure 3a therefore suggests that, in the limit n→ ∞, the hexago-
nal lattice provides the most favorable lattice architecture by only
a fraction of 1 kBT per protein. As a result, we expect that the
effective degeneracy of square, hexagonal, and kagome lattices
as the energetically most stable (ground) state of the system in
Fig. 3a persists even in the limit of large n. This degeneracy is
expected to make the lattice architectures in Fig. 3a susceptible
to thermal perturbations, which we discuss further in Sec. 5.

Some of the lattices of crown-shaped proteins with s = 1 in
Fig. 3a exhibit intriguing patterns in the protein orientation. In
particular, we find that the energetically most favorable square,
hexagonal, and kagome lattices show, in addition to translational
ordering, distinctive azimuthal ordering of neighboring proteins
(see Table 1). In contrast, the directional interactions between
crown-shaped proteins with s= 1 are frustrated in honeycomb lat-
tices, thus preventing similar azimuthal ordering of neighboring
proteins. For the kagome lattice, we find azimuthal ordering ac-
cording to a +/+/+ or a−/−/− pattern, in which three nearest-
neighbor proteins are oriented so that the portions of their lipid-
protein interfaces with Ui(θ)>U0

i or Ui(θ)<U0
i in eqn (2) point
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towards each other. Such +/+ /+ or −/− /− triplets of crown-
shaped proteins with s = 1 provide a shared locus for large lipid
bilayer thickness deformations and, as discussed further in Sec. 5,
are therefore highly favorable from an energetic perspective. For
the hexagonal lattice, similar triplet motifs are favored, but with
each crown-shaped protein being part of a +/+ /+ triplet and
a −/− /− triplet. This interaction pattern results in alternating
“bands” of membrane regions in the hexagonal lattice with in-
creased or decreased hydrophobic thickness. In the square lattice,
each crown-shaped protein forms one +/+ and one −/− interac-
tion pair with its nearest neighbors. This can be understood by
noting that, as shown in Fig. 2, such +/+ and−/− configurations
are minima of the pair interaction energy. In the square lattice we
thus obtain, similarly as in the hexagonal lattice, bands of mem-
brane regions with increased or decreased hydrophobic thickness.

For crown-shaped proteins with s = 2 (see Fig. 3b), we find
that the honeycomb, square, and kagome lattices yield a quali-
tatively similar dependence of Gint on d as obtained with s = 1
in Fig. 3a. In contrast, hexagonal lattices of crown-shaped pro-
teins with s = 2 yield, due to frustration in the azimuthal ordering
of neighboring proteins, highly unfavorable interactions at small
d. As d is increased in hexagonal lattices with s = 2, Gint de-
creases and attains a minimum, with |Gint|< 1 kBT for d ' 11 nm.
In contrast, the bilayer-thickness-mediated protein interactions in
honeycomb, square, and kagome lattices become increasingly fa-
vorable as d is decreased, with Gint < 0 for d / 8 nm. In particular,
the square lattice allows each protein to interact with all its near-
est neighbors in +/+ or −/− configurations (Fig. 3b, inset), and
hence provides a particularly favorable arrangement for crown-
shaped proteins with s = 2. Figure 3b suggests that the square
lattice with d = dst yields the ground state lattice architecture for
crown-shaped proteins with s = 2 (Table 1). The kagome lattice
provides the second most favorable lattice architecture in Fig. 3b,
for which, similarly as in Fig. 3a, −/− /− triplets yield an ener-
getically favorable nearest-neighbor interaction motif (Fig. 3b, in-
set).

Finally, we consider crown-shaped proteins with s = 3 (see
Fig. 3c). We find that the hexagonal lattice provides the ener-
getically most favorable arrangement of crown-shaped proteins
with s = 3 for a wide range of d, as well as the ground state lat-
tice architecture at d = dst (Table 1). The stability of the hexag-
onal lattice architecture for s = 3 arises from the compatibility
between the six-fold symmetry of the hexagonal lattice and the
three-fold protein symmetry of crown-shaped proteins with s = 3,
which allows each protein to interact with all its nearest neigh-
bors in highly favorable +/+/+ or −/−/− triplet configurations
(Fig. 3c, inset). We also note that the kagome lattice in Fig. 3c,
in which each protein is part of a +/+ /+ as well as a −/− /−
triplet, yields similar interaction energies as the square lattice.
The square lattice has a higher protein packing density than the
kagome lattice, but does not permit similarly favorable azimuthal
ordering of neighboring proteins. The comparable energies asso-
ciated with the kagome and square lattices in Fig. 3c thus illus-
trate the competition between translational and azimuthal order-
ing in setting the energetically favorable lattice architectures of
crown-shaped proteins.

5 Membrane protein meshes
While bilayer-thickness-mediated interactions between crown-
shaped proteins favor the lattice architectures shown in Fig. 3
and Table 1, thermal fluctuations are generally expected to per-
turb, or even disrupt, these lattice architectures. In particular,
the effective degeneracy in the ground state lattice architecture
of crown-shaped proteins with s = 1, and the relative weakness
of the lattice interaction energies for s = 1 compared to s = 2 and
s = 3 in Fig. 3, suggest that lattices of crown-shaped proteins with
s = 1 are particularly susceptible to thermal perturbations. In this
section, we explore, based on crown-shaped proteins with s = 1,
the effect of thermal perturbations on the large-scale organization
of membrane proteins with anisotropic hydrophobic thickness.

The effective degeneracy in the ground state lattice architec-
ture for s = 1 in Fig. 3a suggests that various local interaction
motifs, such as different protein pair and triplet configurations,
yield comparable interaction energies for crown-shaped proteins
with s = 1. Figure 4 illustrates that, even for small protein num-
bers, there indeed exist several distinct, and energetically favor-
able, protein configurations with interaction energies within just
a few kBT of each other. The basic building blocks for these fa-
vorable protein configurations are the +/+ and −/− pair and
+/+ /+ and −/− /− triplet configurations discussed in Sec. 4.
From the perspective of large-scale protein organization, one ex-
pects that the +/+ and −/− pair interaction motifs favor elon-
gated structures while the triplet interaction motifs may give rise
to branched structures. In the presence of thermal fluctuations,
pairs and triplets of crown-shaped proteins may thus produce
large-scale, mesh-like structures reminiscent of cross-linked poly-
mer networks70.

To further investigate the effect of thermal fluctuations on the
supramolecular organization of crown-shaped proteins with s= 1,
we performed finite temperature Monte Carlo simulations (see
Fig. 5). Even with the efficient FE approach for the minimiza-
tion of eqn (1) used here, finite temperature Monte Carlo simu-
lations of hundreds of interacting crown-shaped proteins present
formidable computational challenges. To render the computa-
tions more tractable, we made two simplifying assumptions in
Fig. 5. First, we did not consider the full multi-body interac-
tions between crown-shaped proteins but, instead, employed the
pair interaction potentials implied by eqn (1), which we calcu-
lated using FEs47,49,55. Second, we did not allow in Fig. 5 for
the collective dynamics71,72 of crown-shaped proteins or effects
arising from the hydrodynamics of the lipid bilayer73,74. Due to
the simplifying assumptions summarized above, we only expect
the FE computations and Monte Carlo simulations used for Fig. 5
to capture broad features of the finite temperature organization
of crown-shaped proteins with s = 1, and not the precise numer-
ical values of the bilayer-thickness-mediated protein interaction
energies or the dynamics of protein diffusion.

The Monte Carlo simulations in Fig. 5 were performed at room
temperature starting from random initial conditions. Figure 5
suggests that crown-shaped proteins with s = 1 can self-assemble
into mesh-like structures. For a given average areal density of
crown-shaped proteins, φ , we quantified the structure of the pro-
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Gint= -18.6 kBT Gint= -12.4 kBT Gint= -7.4 kBT

Gint= -16.8 kBT Gint= -15.8 kBT Gint= -12.2 kBT

Gint= -18.6 kBT Gint= -15.8 kBT Gint= -15.6 kBT

Fig. 4 Examples of energetically favorable configurations of
crown-shaped proteins with s = 1 for the protein numbers n = 3 (first
row), n = 4 (second row), and n = 5 (third row) together with the
corresponding interaction energy per protein due to
bilayer-thickness-mediated protein interactions, Gint. We obtained Gint
from the full multi-body interaction energies via minimization of eqn (1)
using FEs 47,49,55. In each protein configuration, the nearest-neighbor
protein separation is given by d = dst. The coloring of crown-shaped
proteins follows the u-scale in Fig. 1.

tein meshes through the average mesh area, 〈Apoly〉. To calcu-
late 〈Apoly〉 we connected the centers of nearest-neighbor crown-
shaped proteins by straight lines yielding, for protein chains that
close up over the scale of the simulation domain, finite polygonal
loops. For each polygonal loop we calculated the loop area, from
which we computed the associated “free” area of the polygonal
loop available to proteins inside the loop, Apoly, by subtracting
the portion of the loop area effectively occupied by the proteins
forming the boundary of the polygonal loop (Fig. 5, insets). For
the latter calculation, we modeled the effective cross section of
crown-shaped proteins in the plane of the membrane by a disk of
area Ap = πR2, where R = Ri +Rl with Rl = 0.5 nm to take into
account steric constraints arising from the finite size of lipids. We
obtained 〈Apoly〉 by averaging Apoly over the simulation domain,
multiple Monte Carlo steps, and Monte Carlo runs with distinct
(random) initial conditions (see Fig. 5 and Appendix A).

Depending on the areal density of crown-shaped proteins, the
average mesh area 〈Apoly〉 associated with the protein meshes in
Fig. 5 can exceed the effective protein area Ap by more than one
order of magnitude, thus yielding sizable membrane compart-
ments. The finite temperature, mesh-like organization of crown-
shaped proteins in Fig. 5 should be contrasted with the compact
ground state lattice architectures in Fig. 3a produced by bilayer-
thickness-mediated protein interactions in the absence of ther-
mal fluctuations. The protein meshes found in our Monte Carlo
simulations are only transiently stable. Characterization of the
dynamics of protein meshes will require more detailed model-
ing of the diffusion dynamics of crown-shaped proteins in mem-

Fig. 5 Average mesh area 〈Apoly〉 in mesh-like, finite temperature
structures formed by crown-shaped proteins with s = 1, scaled by the
effective protein area Ap, versus average protein areal density φ . In our
simulations we employed a square-shaped simulation box of edge
length L = 100 nm with periodic boundary conditions. We therefore have
φ = nAp/L2, where n is the protein number. All results were obtained
through room temperature Monte Carlo simulations with pair interaction
potentials (see Appendix A) and d > dst. For each value of φ reported,
we performed 30 Monte Carlo simulations with different,
randomly-generated initial conditions. In each simulation we carried out
107 Monte Carlo steps, and sampled the protein configuration every 106

steps. The error bars indicate the standard errors about 〈Apoly〉. The
insets show snapshots of the simulation domain at various φ . The
crown-shaped proteins with effective area Ap are indicated in black.
Membrane compartments are colored for ease of visualization. When
computing 〈Apoly〉 we did not consider contributions due to very small
loops formed by six or fewer proteins.

branes71–74. Figure 5 suggests a non-monotonic dependence of
〈Apoly〉 on φ with 〈Apoly〉 being maximal for some φ . Such a non-
monotonic dependence of 〈Apoly〉 on φ can be understood intu-
itively by noting that, at small φ , the protein meshes are not
large enough to span the entire system, with (infinitely) large
protein-free domains percolating through the system and a few
small closed loops of crown-shaped proteins (see the leftmost in-
set in Fig. 5). As φ is increased, the protein meshes span a larger
and larger fraction of the system, and 〈Apoly〉 increases. But, for
large enough φ , the mesh structure is disrupted by the high pro-
tein density, resulting in a decrease in the average mesh area.

6 Conclusions
Bilayer-mediated interactions between membrane proteins pro-
vide a general physical mechanism for the self-assembly of
membrane protein lattices. One particularly favorable mode
of bilayer-mediated protein interactions is provided by bilayer-
thickness-mediated protein interactions arising from a hydropho-
bic thickness mismatch between membrane proteins and the un-
perturbed lipid bilayer27,28,32,34–36,45,47,49,52,60. Since different
membrane proteins, or even different conformational states of the
same membrane protein, often show distinct hydrophobic thick-
nesses, protein-induced lipid bilayer thickness deformations are a
ubiquitous feature of bilayer-protein interactions15–20,23–25,39,63.
For membrane proteins with a non-circular cross section or
anisotropic hydrophobic thickness, bilayer-thickness-mediated
protein interactions not only depend on the protein separation
but also on the protein orientation45,47,49,52,55. Based on a sim-
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ple model of anisotropic protein hydrophobic thickness, we have
established here general relations between the azimuthal symme-
try of bilayer-protein interactions and the supramolecular organi-
zation of membrane proteins.

Our results show that the symmetry of the protein hydropho-
bic thickness is reflected in the directionality of bilayer-thickness-
mediated protein interactions, with the energy landscape of
bilayer-thickness-mediated protein interactions depending cru-
cially on protein symmetry. Carrying out multi-body calcula-
tions of bilayer-thickness-mediated protein interactions in sys-
tems composed of hundreds of membrane proteins, we find that
distinctive protein symmetries yield distinctive ground state lat-
tice architectures of membrane protein clusters. In particular, for
membrane proteins with one-fold rotational symmetry [s = 1 in
eqn (2)] our results suggest an effective degeneracy in the ground
state lattice architecture, with square, hexagonal, and kagome
lattices being approximately equally favorable. In contrast, mem-
brane protein dimers with two-fold rotational symmetry [s = 2
in eqn (2)] imply a ground state lattice architecture with square
symmetry, while membrane protein trimers with three-fold rota-
tional symmetry [s = 3 in eqn (2)] yield a hexagonal ground state
lattice architecture. Distinctive membrane protein lattice archi-
tectures are expected to produce distinctive collective responses
of membrane protein lattices8,9,18,55, and can thus affect the bio-
logical function of membrane proteins in cell membranes.

In general, the translational and rotational ordering of mem-
brane proteins found here may be perturbed, or even disrupted,
by thermal fluctuations, heterogeneities in cell membrane com-
position, or protein interactions other than the bilayer-thickness-
mediated protein interactions considered here, such as direct
protein-protein interactions and bilayer-curvature-mediated pro-
tein interactions. The effective degeneracy in the ground state
lattice architecture found for s = 1 makes the supramolecular or-
ganization of membrane proteins with s = 1 particularly suscep-
tible to such perturbations. Indeed, our results suggest that ther-
mal fluctuations transform the ground state lattice architecture of
membrane proteins with s = 1 into transiently stable, mesh-like
structures. These protein meshes divide the membrane into com-
partments with in-plane areas that can be more than one order of
magnitude greater than the cross-sectional area of individual pro-
teins in the plane of the membrane. Bilayer-thickness-mediated
protein interactions thus provide a mechanism for membrane
compartmentalization at scales of tens of nanometers, which
may allow the transient trapping of membrane proteins and
lipids in specific membrane regions. Supramolecular organiza-
tion of cell membranes into membrane compartments is thought
to be crucial for many essential biological functions of cell mem-
branes1,58,59,75,76. Unlike other potential mechanisms for mem-
brane organization58,59, the protein meshes found here emerge
directly from bilayer-mediated protein interactions and, in partic-
ular, do not rely on interactions with structures outside the cell
membrane such as the cytoskeleton.

The bilayer-thickness-mediated protein interactions considered
here are reminiscent of capillary interactions between micron-
and submicron-sized particles at fluid-fluid interfaces77. Simi-
larly as capillary interactions, bilayer-thickness-mediated protein

interactions can be studied analytically using multipole expan-
sions45. Indeed, multipole expansions allow exact analytic solu-
tions for the bilayer-thickness-mediated interactions between two
crown-shaped proteins, which are in excellent agreement with
the corresponding numerical solutions obtained from the FE ap-
proach used here49. However, capillary and bilayer-thickness-
mediated interactions have different physical origins, with the lat-
ter being short-ranged55. Finally we note that, based on recent
advances in computational protein design78,79, it is becoming
increasingly feasible to design membrane proteins with specific
properties, such as the periodic variations in protein hydrophobic
thickness considered here. The results described here may help
in the design of membrane proteins that self-assemble in mem-
brane environments into supramolecular structures with prede-
fined properties. The approach developed here may thus provide
insights into large-scale membrane protein organization not only
in naturally occurring but also artificial membrane systems80.
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Appendix

A Monte Carlo simulations
To fix the protein orientations in Fig. 3, and to explore in Fig. 5 the
effect of thermal fluctuations on the supramolecular organization
of crown-shaped proteins with s = 1, we carried out Metropolis
Monte Carlo simulations81 with pair interaction potentials. For
the results presented in Fig. 5, we performed our Monte Carlo
simulations at room temperature Trm = 298 K. For Fig. 3, we
searched for low-energy protein orientations using a simulated
annealing Monte Carlo approach with linear cooling82, decreas-
ing the (effective) temperature in the Monte Carlo simulations
from T ≈ 5Trm to T = 0.

For the parameter values used here, the bilayer-thickness-
mediated protein interactions effectively vanish for d ' 15 nm.
To accelerate pair evaluations in our Monte Carlo simulations
we therefore implemented cell list structures81 using a cutoff
d = 15 nm on the range of bilayer-thickness-mediated protein
interactions. In particular, we constructed a table of bilayer-
thickness-mediated interaction energies Gint(d,ω1,ω2) for protein
pairs, which we computed using FEs with a translational resolu-
tion ∆d = 0.25 nm and a resolution ∆ω = 3◦ in the relative protein
orientations. During Monte Carlo runs, we estimated the pair in-
teraction energies for arbitrary values of (d,ω1,ω2) by first round-
ing ω1 and ω2 to their closest values in the aforementioned table,
and then linearly interpolating Gint(d,ω1,ω2) with respect to d to
obtain the interaction energy for the appropriate value of d.

For the results in Fig. 5 we performed, at each Monte Carlo
step, on average one displacement and one rotation trial per pro-
tein. For Fig. 3, the positions of the proteins were kept fixed
according to the lattice structures of interest and we only allowed
rotation trials. We used in our Monte Carlo simulations the trans-
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lation and rotation increments δd = 0.1 nm and δω = 2◦, respec-
tively. We note that, assuming a unit time step δ t = 10−9 s, these
displacement and rotation increments correspond to a transla-
tional diffusion coefficient DT ≈ δd2/4δ t ≈ 2.5 µm2/s and a rota-
tional diffusion coefficient DR≈ δω2/2δ t ≈ 6.1×105 rad2/s, which
are consistent with previous work on the diffusion of membrane
proteins in lipid bilayers21,83.
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Text for graphical abstract:

Azimuthal variations in membrane protein hydrophobic thickness can yield self-assembly of 
distinctive protein lattices and produce membrane compartmentalization.
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