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Abstract 

We investigate wrinkling patterns in a tri-layer torus consisting of an expanding thin outer 

layer, an intermediate soft layer and an inner core with a tunable shear modulus, inspired by pattern 

formation in developmental biology, such as follicle pattern formation during the development of 

chicken embryos. We show from large-scale finite element simulations that hexagonal wrinkling 

patterns form for stiff cores whereas stripe wrinkling patterns develop for soft cores. Hexagons 

and stripes co-exist to form hybrid patterns for cores with intermediate stiffness. The governing 

mechanism for the pattern transition is that the stiffness of the inner core controls the degree to 

which the major radius of the torus expands – this has a greater effect on deformation in the long 

direction as compared to the short direction of the torus. This anisotropic deformation alters stress 

states in the outer layer which change from biaxial (preferred hexagons) to uniaxial (preferred 

stripes) compression as the core stiffness is reduced.  As the outer layer continues to expand, stripe 

and hexagon patterns will evolve into zigzag and segmented labyrinth, respectively. Stripe 

wrinkles are observed to initiate at the inner surface of the torus while hexagon wrinkles start from 
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the outer surface as a result of curvature-dependent stresses in the torus. We further discuss the 

effects of elasticities and geometries of the torus on the wrinkling patterns. 

1 Introduction

Wrinkling patterns are ubiquitous in nature and engineering structures1-16, from follicle 

pattern in the avian skin6 to folded tissues7-9, from stretchable electronics10 to swelling gels14-16. 

To explore the fundamental principles of the formation and evolution of wrinkling patterns, 

layered soft materials are widely adopted in experiments and theories17-23, such as a bilayer 

structure with a relatively stiff film (coating) bonded to a relatively compliant substrate. Taking 

the flat bilayer structure as an example, it has been well documented that the wrinkling patterns 

are determined by the stress states in the film and the ratio between the shear modulus of the film 

and substrate17-19, 24-28. Recent work has focused on the effect of curvature on the wrinkling 

patterns28-41. Hexagonal patterns, for example, were predicted to be more stable on curved 

substrates 28 and observed in elastomer spherical bilayer structures29-32. Dimpled patterns were 

found to form crystalline-like structure with topological defects on sphere surface31. A recent study 

further showed that substrate curvature delays the critical strain for wrinkles on a cylinder40. 

Although non-uniform curvatures have been shown to play important roles in the spheroidal shapes 

of natural fruits and vegetables41, there is still a general lack of understanding of the formation and 

evolution of wrinkling patterns on surfaces with curvature gradients. 

In this paper, we study the wrinkling patterns on a torus because it is a simple model with 

variable curvatures and closely mimics the shape of an embryo during early development42. The 

torus contains three layers, including an outer film bonded to an intermediate layer as well as an 

inner core with tunable stiffness (Fig. 1). The materials in the three layers are modeled as a nearly 

incompressible neo-Hookean model with the same Poisson ratio ( ). The 𝜐0 = 𝜐1 = 𝜐2 = 0.475
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outer film is 10 times stiffer than the intermediate layer (i.e., ) and undergoes 𝜇0 𝜇1 = 10

isotropically volumetric expansion to drive surface wrinkling on the torus. The inner core controls 

the global deformation of the torus.  This geometric confinement may be characterized by the 

elastic ratio  between the shear moduli of the core and the intermediate layer. 𝐶 = 𝜇2 𝜇1

This tri-layer torus serves as a minimal mechanical model of the skin morphologies in 

growing embryos, where the outer and intermediate layers can be seen as epidermis and dermis 6, 

43-45, respectively. The stiff core can mimic the skeleton. In real biological structures, each 

component can have a different growth rate. The geometric confinement of the skeleton is not only 

determined by the modulus but also the relatively small growth rate compared to other components. 

To reduce the number of parameters in our model, we only let the outer layer expand and vary the 

modulus of the inner core to tune the geometric confinement. The elastic moduli of epidermis and 

dermis during the early embryo development have not been reported yet, although numerous 

studies have focused on their mechanical properties of mature skins 46-48. Here, we choose 𝜇0 𝜇1

, which leads to the generation of stable hexagon patterns for a bi-layer mechanical structure = 10

subject to equal bi-axial compression. It should also be noted that active tissue contraction in the 

dermis6 is not explicitly modeled here and deserves further attention.

From fully three-dimensional finite element (FE) simulations, we observe the onset of a 

wrinkling pattern that transitions from stripes to hexagons as the elastic ratio 𝐶 is increased from 

 to  and identify eight different wrinkling patterns, which can be categorized into three 0.01 1000

groups based on the patterns near the onset of wrinkles. In contrast, only one group, starting from 

the hexagon, is found on cylinders and spheres. By analyzing the stress states in the outer film in 

the tri-layer torus, we uncover the important roles of the non-uniform curvature and anisotropic 

deformation in determining the initiation and propagation of the wrinkling patterns. A phase 
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diagram of the eight wrinkling patterns on the torus is established in terms of expansion of the 

outer film and elastic ratio C, which represents the driving force for wrinkles and confinement, 

respectively. We further discuss the influence of the anisotropic deformation on the distributions 

of topological defects in the dimpled patterns on tori. The rich wrinkling patterns revealed in our 

study will provide rational guidelines for designing multifunctional structures with complicated 

surface morphologies and may also shed light on the developmental patterns found in animal hairs, 

feathers and scales.

2 Results

2.1 Pattern transition at different confinements

We first investigated the effect of the elastic ratio on the formation and evolution of 

wrinkling patterns on the torus. Only a quarter of the tri-layer torus was employed in this section 

thanks to the symmetry of the structure. All the simulations were performed with ABAQUS49, the 

detailed information of which can be found in the supplementary materials. As we varied the elastic 

ratios (increasing level of constraint to the torus major radius) and the outer film expansion, we 

observed three typical wrinkling patterns as shown in Fig.2. Note that the color scale corresponds 

to values of maximum principal logarithmic strain. For the smallest elastic ratio ( ), partial 𝐶 = 1

stripe patterns initiate at the inner surface of the torus at a critical expansion. As the expansion 

further increases, the stripe patterns propagate through the whole torus and eventually become 

zigzag patterns. For the largest elastic ratio ( ), featuring significant constraint of the torus 𝐶 = 100

diameter, partial hexagonal patterns occur at the outer surface first, propagate to the inner surface 

and then develop into segmented labyrinth patterns. For the intermediate elastic ratio ( ), 𝐶 = 20

stripe patterns first emerge and both stripe and hexagonal patterns coexist for a large expansion. 
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This may provide a new way to make a Janus torus featuring different patterns at the inner and 

outer surfaces. At even larger expansion, both zigzag and segment labyrinth patterns are observed. 

Hexagon-like patterns were reported in studies of follicle patterns in avian skin and chicken 

skin samples cultured on gels 6, 43. A similar spreading wave of the hexagon pattern was also 

founded in feathers in avian skin, which was attributed to the integration of biological signaling 

and mechanochemical coupling 43. In addition, it is interesting to note that the epidermal scales in 

reptiles often emerge first at the outer surface of the embryo42. Although the pattern formation in 

the reptilian embryo involves reaction-diffusion50-53, growth6 and mechanochemical coupling45, 

the curvature effects on wrinkling patterns we have observed here are very likely to exist in these 

biological patterns by virtue of the significant curvatures present. This calls for future studies that 

directly connect to developmental mechanobiology systems.

2.2 Phase diagram of the wrinkling patterns on torus

We observed eight wrinkling patterns in three typical torus structures in the proceeding 

section, which include partial stripe, full stripe, partial hexagon, full hexagon, hybrid stripe-

hexagon (H1), zigzag, segmented labyrinth, and hybrid zigzag-segmented labyrinth (H2). We ran 

more simulations to cover a wider range of the elastic ratio ( ) and 𝐶 = 𝜇2 𝜇1 = 0.01~1000

construct a phase diagram of these wrinkling patterns in terms of the elastic ratio and expansion 

value (Fig. 3). It should be noted that we identified different wrinkling “phases” by visual 

inspection. While this qualitative approach does not capture exact phase boundaries, it does reveal 

salient features of the phase diagram. Among these patterns, zigzag, segmented labyrinth and their 

hybrid are post-buckling patterns which evolve from the onset of wrinkling. We focused therefore 

on the patterns near the onset of wrinkles and cast them into three wrinkling regimes. We 

recognized that at lower  ( ), the first stable wrinkling pattern is dominated by stripes, 𝐶 0.10~10
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which is defined as regime I. The stripe pattern later develops into zigzag pattern during the post-

buckling at large deformation as the expansion increases. When the elastic ratio  exceeds 10, the 𝐶

stripe pattern first covers the full surface of the torus following which a hexagon pattern appears 

at the outer surface while stripes remains in the region near the inner surface, yielding a hybrid 

stripe-hexagonal pattern. We denoted this as regime II. We found that the upper bound of the 

elastic ratio for this regime is . This hybrid stripe-hexagonal pattern transitions into hybrid 30

zigzag-segmented labyrinth for large expansions. If we further increase the elastic ratio, we see a 

third regime ( ) where the first stable pattern is hexagonal. The hexagonal 𝐶 = 𝜇2 𝜇1 = 30~1000

pattern in regime III first occurs at the outer surface and propagates to the inner surface at larger 

expansion and finally transitions into segmented labyrinth. It is interesting to notice that global 

buckling of a bi-layer hydrogel torus has been recently achieved by printing aqueous precursor in 

a yield stress fluid that preserves the toroid shape until polymerization54. This may provide a 

promising means to explore the phase diagram of wrinkling patterns predicted in our work.

2.3 Stress states in the outer film

It is well known that in the case of uniaxial compression, wrinkles usually exhibit stripe 

patterns (sinusoidal profiles)21.  When subjected to equal biaxial compressive stresses, a thin film 

bonded on a substrate can buckle into different patterns such as checkerboard, herringbone, 

hexagonal, and labyrinthine25-28. To gain insights into the pattern evolution on tori, we investigated 

the distribution of the compressive stresses in the poloidal ( ) and toroidal ( ) directions. 𝜎ΦΦ 𝜎θθ

Here, toroidal and poloidal directions represent the long and short circular paths around the torus 

(Fig. 1a), respectively. We noticed that both poloidal ( ) and toroidal ( ) stresses are negative, 𝜎ΦΦ 𝜎θθ

so we only focused on their magnitude in the following analysis.  Prior to wrinkling, the stresses 

in the outer film are periodic functions of  for tri-layer tori with different elastic ratios, as shown Φ

Page 6 of 19Soft Matter



7

in Fig. 4(a). Since the stresses inside the outer film are caused by constrained expansion, global 

deformation of the torus will relax the constraints and thus tend to release the stresses. It can be 

seen in Fig. 4(a) that both poloidal ( ) and toroidal ( ) stress decrease when reducing the 𝜎ΦΦ 𝜎θθ

elastic ratios because the global deformation increases as the elastic ratio decreases. The toroidal 

stress, however, drops much faster than the poloidal stress, indicating an anisotropic confinement. 

The stresses vary along the poloidal direction with maxima or minima at  and  , Φ = 0, 2π Φ = π

which correspond to the center of the outer and inner side of the torus, respectively. This is 

consistent with our observation that wrinkling patterns can initiate from the center of the outer or 

the inner surface. We analyzed therefore the stress components of these two specific locations (the 

center of the outer surface  and the center of the inner surface  ) and computed the Φ = 0, 2π Φ = π

ratio between the poloidal and toroidal stresses  (Fig. 4(b)). By comparing the three 𝜎ΦΦ/𝜎θθ

regimes in the wrinkling phase diagram in Figure 3, we found that, in regime I,  is larger 𝜎ΦΦ/𝜎θθ

than  at both locations, which deviates from equal bi-axial compressive states and thus 1.10

explains the initiation and propagation of stripe patterns. In regime III, the stress ratios at both 

locations are lower than , close to the equal bi-axial compressive stress state, which can lead 1.04

to hexagonal patterns on curved structures. Regime II is more complicated, as demonstrated in 

more wrinkling patterns and the intermediate ranges of the stresses. It can be seen that the stress 

states tend more toward uniaxial compression at the inner surface and toward bi-axial compression 

at the outer surface. This explains why the stripe pattern starts at the inner surface while the 

hexagonal pattern emerges at the outer surface later.

We next sought to understand the locations of pattern initiation in light of the stress 

distributions associated with non-uniform curvatures. In regime I, the value of  determines the 𝜎ΦΦ

location of the pattern initiation because the stripes all orient along the toroidal direction. We have 
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observed in Fig. 4(a) that  is larger at the center of the inner surface than the outer surface, 𝜎ΦΦ

which causes the stripe pattern to originate at the inner surface. In regime III, both  and  𝜎ΦΦ 𝜎θθ

have maximum values at the center of the outer surface, so the hexagonal patterns start there.

3 Discussion

3.1 No pattern transition on cylindrical and spherical structures 

To check whether the transition between stripe and hexagon is unique to the torus due to 

its non-uniform curvature and anisotropic confinement, we ran simulations of a tri-layer structure 

of a cylinder and a sphere, with the same cross-sections in Fig. 1(a). These cases feature constant 

mean and Gaussian curvatures. In the simulations of cylinders, we applied symmetric boundary 

conditions to the two ends along the axial direction to mimic an infinitely long structure, which 

fully confines the global deformation. For spherical structures, we only simulated an eighth of the 

structure due to symmetry and can observe isotropically global deformation. In other words, the 

sphere is under isotropic confinement. For all elastic ratios studied, we only obtained hexagon 

patterns and did not observe transitions to stripes in cylinders and spheres (Fig. 5). We further 

explored the radius of the cylinder and sphere as parameters and found that the critical wrinkling 

strains increased systematically with mean curvature (see Fig. S1). These findings agree well with 

a recent study on curvature-delayed growth of wrinkles on cylinders40. This means that wrinkles 

should appear earlier for lower mean curvatures for structures with uniform curvature. This is 

another difference from wrinkles on the torus in regime III, where hexagons initiate at regions of 

higher curvature.

3.2 Effect of elasticities and geometries on the pattern transitions on tori

 So far, our discussion on the torus is based on a fixed modulus ratio between the outer and 

intermediate layers (i.e., ) and the same geometry (i.e., and ). We 𝜇0/𝜇1 = 10 𝑅 = 150 𝑎 = 31
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further explored a range of material and geometry properties in the simulations to test the 

generality of our findings. We first changed   from  to  and confirmed that stripe patterns 𝜇0/𝜇1 10 20

form at low confinement (i.e., ) and hexagonal patterns at high confinement (i.e., 𝜇2/𝜇1 = 10 𝜇2/

) (see Fig. S2). It should be noted that labyrinth-like wrinkles are found on spheres with 𝜇1 = 100

large radius-to-thickness ratio37; however, this cannot be observed in the current simulations 

because of prohibitively high computational demand. Nevertheless, we expect more wrinkling 

patterns can emerge if we further enlarge the parameter spaces of the modulus ratio  and 𝜇0/𝜇1

radius-to-thickness ratio .𝑎/ℎ

We then ran simulations of a structure with and observed the similar 𝑎 = 41, 𝑅 = 150 

pattern transition from low confinement to high confinement (see Fig. S3). For these slender tori, 

we have observed that stripe patterns initiate at the inner surface and hexagonal patterns start at 

the outer surface of the torus. For more general tori, their mean curvature and Gaussian curvature 

can be expressed as,

 and .                                       (1)𝐻 =
𝑅 + 2𝑎cosΦ

2𝑎(𝑅 + 𝑎cosΦ) 𝜅 =
cosΦ

𝑎(𝑅 + 𝑎cosΦ)

It can be seen that the mean curvature can change sign for tori with ratio between a and R 

larger than 0.5. To test the effect of negative mean curvature on the wrinkling patterns, we 

compared the results from two simulations with , and  . For these 𝑎 = 41, 𝑅 = 70 𝑎 = 81, 𝑅 = 150

two cases, we fixed , , and . For the smaller torus ( ), ℎ = 1 𝑟1/𝑟2 = 3 𝜇2/𝜇1 = 10 𝑎 = 41, 𝑅 = 70

we observed a toroidally oriented stripe pattern at a low confinement and a hybrid pattern at high 

confinement (Fig. 6a). For the larger torus ( ), we observed a hybrid pattern at a 𝑎 = 81, 𝑅 = 150

low confinement and the hexagon pattern at high confinement (Fig. 6b). For these simulated tori 

with larger aspect ratios (i.e., a/R > 1/2), we also found compressive stresses in the poloidal ( ) 𝜎ΦΦ

and toroidal ( ) directions, which vary similarly to the slender tori as we change the confinement. 𝜎θθ
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This indicates that the same mechanism governs the pattern transitions on tori with different aspect 

ratios. Post-buckling patterns are not shown here because we focused on the pattern transitions. 

As can be seen in Fig. 6, the values of the mean and Gaussian curvatures have big differences in 

these two structures, which may explain the formation of different patterns. To fully elucidate the 

coupling effects between the gradients and values of the curvatures, future investigation of 

wrinkling patterns on ellipsoids and surfaces with zero mean curvature (e.g., catenoids) or zero 

Gaussian curvature (e.g., cones) are needed. In addition, it is harder to globally deform the 

intermediate layer in the larger torus because the required force scales with the area of the cross 

section. This additional confinement may eliminate the formation of a fully developed stripe 

pattern.

4 Conclusions

We found eight wrinkling patterns in tri-layer tori and established a phase diagram to 

describe these patterns. The key control variables of the phase diagram are the film expansion and 

the anisotropic deformation, characterized by the elastic ratio between the inner core and 

intermediate layer. Stripe patterns emerge at weak confinements because the anisotropic 

deformation of the torus relaxes the stress along the toroidal direction and makes the compressive 

strain along the circular direction more dominant. At strong confinements (large C), hexagons 

appear due to nearly equal bi-axial compressive stress in the outer film. Hybrid stripe-hexagon 

patterns happen at intermediate confinement levels. In addition, the non-uniform curvature leads 

to a stress gradient in the outer film, despite the uniform driving force (expansion of the outer 

film). This stress gradient causes stripes to initiate at the inner surface, and hexagons to initiate 

from the outer surface. 
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We further found that the size and shapes of the torus play roles in determining the 

wrinkling patterns. For some tori, only a subset of the wrinkling patterns discovered here are 

observed. A phase diagram of wrinkling patterns with higher dimensional order is needed for 

general tori, which will be investigated in future studies. It should also be noted that real biological 

structures are more complicated than the purely mechanical system we adopted here. Therefore, 

another important future research direction will seek to understand the coupling effects of the 

elasticity, chemical signaling, and curvature on various biological patterns during the early 

development of embryos.

Materials and Methods 

All details associated with the finite-element method appear in SI Appendix, Supplementary 

Methods.
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Fig. 1. (a) Schematic of the torus (major radius  , minor radius ). (b) Cross-section of the tri-= 150 𝑎 = 31

layer torus with a solid film (dark blue, shear modulus , thickness  ) adhered to a softer substrate 𝜇0 ℎ = 1

(light blue, shear modulus , radius ) and an inner core (red, shear modulus , radius ).  𝜇1 𝑟1 = 30 𝜇2 𝑟2 = 10

We normalize all the geometry quantities with the thickness of the outer film ( ) and all the elastic moduli ℎ

as well as stress with the shear modulus of the intermediate layer ( ).𝜇1
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Fig. 2. The formation and evolution of wrinkling patterns on a quarter of torus as outer film expansion 

increases. The different surface morphologies, from top to bottom, are displayed for varying elastic ratios 𝐶

. The colors indicate the maximum principal logarithmic strain.= 𝜇2 𝜇1
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Fig. 3. The phase diagram of wrinkling patterns in terms of elastic ratios and expansion. H1 and H2 

represent the hybrid stripe-hexagon and hybrid zigzag-segmented labyrinth, respectively. 
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Fig. 4. Stresses in the outer film. (a) The absolute value of compressive stresses along toroidal (left, )  𝜎θθ

and poloidal (right, ) directions.  (b) Ratios between poloidal and toroidal stresses at the outer𝜎ΦΦ

  and inner   surface lines of the torus as a function of elastic ratio .  (Φ = 0, 2π) (Φ = π) 𝐶 = 𝜇2 𝜇1
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Fig.5. Hexagonal patterns on cylinders (a) and eighth of spheres (b) at three different elastic ratios, which 

are . The colors indicate the maximum principal logarithmic strain.𝐶 = 𝜇2 𝜇1 = 0.10, 10, 1000
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Fig.6. Patterns on torus with  (a) and   (b) at two different elastic ratios, 𝑎 = 41, 𝑅 = 70 𝑎 = 81, 𝑅 = 150

which are . The colors indicate the maximum principal logarithmic strain.𝐶 = 𝜇2 𝜇1 = 0.10, 1000
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