
Stress Fluctuations in Transient Active Networks

Journal: Soft Matter

Manuscript ID SM-ART-01-2019-000205.R1

Article Type: Paper

Date Submitted by the 
Author: 31-Mar-2019

Complete List of Authors: Goldstein, Daniel; Brandeis University, Physics
Ramaswamy, Sriram; Indian Institute of Science, Physics
Chakraborty, Bulbul; Brandeis University

 

Soft Matter



Journal Name

Stress Fluctuations in Transient Active Networks†

Daniel Goldstein,∗a Sriram Ramaswamy,b‡ and Bulbul Chakrabortya

Inspired by experiments on dynamic extensile gels of biofilaments and motors, we propose a
model of a network of linear springs with a kinetics consisting of growth at a prescribed rate,
death after a lifetime drawn from a distribution, and birth at a randomly chosen node. The model
captures features such as the build-up of self-stress, that are not easily incorporated into hydro-
dynamic theories. We study the model numerically and show that our observations can largely
be understood through a stochastic effective-medium model. The resulting dynamically extending
force-dipole network displays many features of yielded plastic solids, and offers a way to incorpo-
rate strongly non-affine effects into theories of active solids. A rather distinctive form for the stress
distribution, and a Herschel-Bulkley dependence of stress on activity, are our major predictions.

1 Introduction
Conventional condensed matter can be driven out of equilibrium
by forcing at boundaries, e.g. through an imposed difference be-
tween velocities1,2 or temperatures3. The result of such exter-
nal driving can be quite dramatic: solids yield and flow under
stress4,5; suspensions thin, thicken6 and band7,8 under shear;
deformation creates and destroys crosslinks in physical gels, lead-
ing to viscoelastic properties distinct from polymer melts9. Ac-
tive matter10–13 refers to condensed systems whose constituents
are self-driven, that is, they are endowed with a local supply of
free energy which they are equipped to convert to directed move-
ment. The question we address in this work is how the strains
and stresses generated by active elements lead to transient, elas-
tic networks. Our primary interest is in the stress distributions
and intrinsic rheological properties of such a network. This the-
oretical question has been motivated by experimental observa-
tions of spontaneous flow in an isotropic active gel, and the tran-
sition from turbulent to coherent flow when these systems are
confined14.

Understanding the development of large-scale flows in active
matter is important for many biological systems. The frame-
work of active hydrodynamics15–18 incorporates the effects of in-
ternally generated stress, and has been extraordinarily success-
ful in describing the behavior of self-driven fluids. Active solids
have been investigated, in the context of cytoskeleton reorgani-
zation19,20, using hydrodynamic theories. These theories pre-
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dict the emergence of spontaneous oscillations and travelling
waves when motor-driven stresses within the cytoskeleton ex-
ceed a threshold. Recent work20 on the cytoskeleton as an active
elastomer includes network rearrangements that reconfigure the
connectivity of the actin filaments via crosslinks. This transient
network approach is the active analog of theories of viscoelastic
response in passive, unentangled but cross-linked polymer net-
works that reconfigure under external deformations9. For a re-
cent review of the rheology of active fluids see21.

Our work is motivated by a widely studied experimental sys-
tem consisting of microtubule bundles and motors14,22–24. The
main features that are of interest to our theoretical work are: (i)
The active units are bundles of microtubules (MT) drawn together
by depletion forces, and crosslinked by motor clusters that walk
along them. The motors induce relative sliding of microtubules
with opposite polarity leading, in the experiments25, to extensile
stresses and flow26. (ii) When no ATP is supplied to the motors
the system behaves as a passive, isotropic gel14. (iii) In the pres-
ence of ATP, the bundles exhibit a complex dynamics as they ex-
tend, bend, buckle, disassemble and reassemble22. (iv) There is a
bath of polarity-sorted bundles that are not extending, which be-
come incorporated into the network of dynamical bundles. The
microtubules are capped22, therefore, they do not polymerize or
depolymerize.

There are features of this experimental system that are difficult
to incorporate into existing hydrodynamic theories. For instance,
unlike extensile force dipoles, the MT bundles are dynamically
extending in length as they exert stresses on their environment.
These bundles can also induce states of self-stress in the network
due to internal activity. These are states in which stress builds up
between two material points while the points remain in force bal-
ance, and thus do not move in space27. Such states are also not
easily incorporated into theories of active fluids. In addition, as
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discussed above, network rearrangements are not naturally rep-
resented in theories of active solids. Motivated by these features,
we investigate a microscopic model of transient networks driven
by internal extensile activity. This is not meant to be a complete
theory since we neglect hydrodynamic interactions and treat the
MT bundles as “ghost” filaments without excluded volume inter-
actions. Our objective is to construct a piece of the theory that
describes the stress fluctuations originating from active network
reorganizations. As we show in this paper, the flows that develop
in these transient networks are characterized by stress distribu-
tions that are strongly non-Gaussian and whose temporal fluctu-
ations are large and intermittent. Any hydrodynamic theory of
these flowing states should account for these rather distinctive
stress fluctuations.

2 Model
We model the passive MT system by a mechanically rigid elastic
network of linear springs with spring constants k 27. Measure-
ments of the mechanical properties of a bundle with two fila-
ments25 using optical traps show that antipolar arrangements
can lead to both extensile and contractile forces. However, at
large motor concentrations the length of the bundle grows lin-
early with time. To model this growth, the equilibrium lengths of
the springs, s(t), are programmed to increase linearly with time
t. The strength of the activity is measured by a single parame-
ter α =

ds(t)
dt , which is the same for all springs. The nodes in the

spring network represent the points of contact between the MTs,
where the force is largest.

The observed disassembly and reassembly of the MT22 suggest
that a minimal model should be based on extensile dipoles that
are ephemeral: active units can disappear from the network and
new ones can be incorporated. When confined within an optical
trap25, the extending bundle buckles and ultimately fails. Force
measurements show that the force decreases with buckling be-
fore going to zero as the bundle breaks. In our model, we do
not include the softening of the spring preceding breakage but in-
corporate the nonlinearity through the “death” of a spring after a
prescribed lifetime.

Bundles with polar arrangements are observed not to extend
due to motor activity. We envision these as existing as a bath of
springs at their unextended equilibrium length, which can be in-
corporated into the existing network. When a spring dies, another
is “born” and assigned a lifetime τ picked from a distribution,
P(τ), which captures the complex disassembly process observed
in experiments22. One end of this new spring gets attached to a
randomly picked node of the existing network. The number of ac-
tive springs is thus conserved. The dangling spring becomes com-
pletely integrated into the network through a node merging pro-
cess akin to the crosslinking in passive networks9. Nodes that are
within a pre-specified merging radius r∗, which is much smaller
than the average separation of nodes, are merged and become a
new node that inherits all the connections of its parent nodes. The
competition of the node merging and the death-birth of springs
allows the network to reach a steady state with a well-defined
distribution of node connectivity, as shown in the Supplementary
Information (SI). The evolution of the network to a steady state

a) b)

Fig. 1 Snapshots illustrating the transition from the initial network to the
flowing steady state. (a) Snapshot just after the first spring has broken.
The initial conditions of springs arranged in a triangular lattice with peri-
odic boundary conditions is still seen through the majority of the system.
Each spring is assigned a unique color to aid visualization. (b) A snap-
shot in the steady state, which shows no memory of the initial triangular
network. In the SI, we show the connectivity distribution of nodes in the
steady state

is illustrated in Fig. 1.
During its lifetime each spring exerts a force on the two nodes

to which it is connected, proportional to the difference between
its length ` (the distance between the two nodes it connects) and
its equilibrium length s(t). The nodes evolve with no inertia, i.e.
the net force on a node generates a proportionate velocity, not an
acceleration.

A simple, illuminating example of how activity can lead to the
development of self-stress and network rearrangements is pro-
vided by a 1D network with all active springs having the same
initial equilibrium lengths s0 but a distribution of lifetimes. Since
the activity α is constant across all springs, they will share the
same equilibrium length si(t) at time t. Each node will be in force
balance as the active stress increases: σ ∝ 2kαt. When the spring
with the shortest lifetime fails it is replaced by an unextended
spring at unit length at the same position due to the constraints
of the one dimensional system. The spring forces on the nodes
no longer balance, generating a flow of the nodes towards the
“youngest” spring until the next spring breaks. The internal activ-
ity can thus lead to “yielding” of the elastic solid in the absence
of external stresses. Yielded disordered networks are known to
exhibit large-scale spatio-temporal heterogeneities of the stress.
As we show below, the yielded active-spring network exhibits a
broad distribution of stresses in the steady state.

3 Simulation of 2D network
We evolve the system of active springs using the following rules,
which represent the physical processes described in the previous
section:

1 Initial state: Create a triangular network of N springs with
s = `= 1, and lifetimes chosen from P(τ).

2 Calculate the force on node i, Fi = ∑<i j> Fi j = k ∑<i j>(s j −
|` j|) ˆ̀j where the sum over < i j > counts all the springs j
attached to node i.

3 Move all nodes ri(t +∆t) = ri(t)+µFi∆t, where µ is the mo-
bility.
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4 If two nodes, say i and k, are closer than the threshold merg-
ing distance, |ri − rk| < r∗, then merge the nodes. Create
a new node at the average position of the two nodes that
inherits all the connected springs, then delete the two old
nodes.

5 If a spring reaches its lifetime then remove it from the net-
work and introduce a new, unextended spring with s = `= 1,
with one end point chosen randomly from all the nodes in
the network and at a random orientation. The other end of
the spring is left dangling until a node merger occurs. The
lifetime of this new spring is also chosen from P(τ).

6 Delete any node that has no springs attached to it.

The fifth rule erases any correlation between the lifetime of a
spring and its spatial location in the network giving the model a
mean-field flavor. The internal stresses in this model, which have
elastic and active contributions, are not spatially heterogeneous
but display large temporal fluctuations. If, however, the system is
confined, then boundary conditions can lead to stress alignment
and stress heterogeneities on length scales comparable to the av-
erage length that a spring grows to during its lifetime.

We impose periodic boundary conditions in both directions.
Unless otherwise stated, results are quoted for a rectangular box
with linear dimensions h =

√
3

2 50, and L = 50, which accommo-
dates N = 7500 springs. Our network-rearranging dynamics con-
serves the number of springs but not the number of nodes. The
distribution of lifetimes is constructed from a Gaussian distribu-
tion of the maximum equilibrium length smax with mean 〈smax〉
and a standard deviation comparable to the mean, which we
choose to be 〈smax〉/4. Since the activity is the same for all springs,
the lifetime is τ = (smax−1)/α, therefore, P(τ) is also a Gaussian
with mean 〈τ〉 = 〈smax〉−1

α
and standard deviation (α〈τ〉+ 1)/4α.

Tuning the activity, α, thus changes the distribution of lifetimes
and the network rearrangement dynamics speeds up with increas-
ing activity, as observed in experiments22. For any network real-
ization we define the macroscopic stress tensor through the in-
ternal virial: ←→σ = 1

A ∑〈i j〉Fi j ⊗ (ri− r j). To examine the viscous
response of the system we apply a simple shear through the use
of Lees-Edwards boundary conditions28.

4 Numerical Results
We simulate the model over a range of activities: α = 0.001 to
α = 100, and study the properties of the steady-state that develops
after an initial transient. Unless otherwise stated, the numerical
results are presented for α = 1, µk = 1, smax = 10, and rm = 0.01.

This steady state is usually reached after 2-3 〈τ〉, for N springs
with an average lifetime of 〈τ〉, which means that on average,
every spring has failed at least once before the system reaches
steady state. We focus on the stress distribution in steady state.
As is well established through theories of active hydrodynamics,
these active stresses strongly influence flows. Our approach is
distinct from the studies based on hydrodynamics in that we (a)
start from the elastic limit, (b) allow the extensile dipoles to grow
in length, and (c) incorporate a population of extensile dipoles

within a fluctuating network. These features lead to additional
mechanisms of stress generation and instabilities.

We focus on the dynamical properties of the macroscopic stress
tensor, since our network reorganization rules wash out any spa-
tial heterogeneities. After the system is initialized, ←→σ builds up
from zero to a steady state value ←→σ ss about which it fluctuates.
This behavior is illustrated in Fig.2a. We can understand the ap-
proach to the steady state by considering how the initial triangu-
lar network responds to the activity. As the equilibrium lengths
of the springs and the stresses borne by them increase, the nodes
remain in force balance until the spring with the smallest lifetime
breaks (Fig. 1a). The network then rearranges with a sudden re-
lease of stress, as a new unstressed spring is introduced. At times
long compared to the average lifetime of springs 〈τ〉, the network
reaches a steady state characterized by a time independent dis-
tribution of the ages of the springs (Fig. 1b). The steady-state
fluctuations are characterized by an approximately linear rise in
the stress between death events, followed by nearly instantaneous
stress drops. The average time between these stress drops can be
deduced simply by taking the ratio of the average lifetime of a
spring, 〈τ〉, to the number of springs in the system.

The stress evolution in the active spring model, summarized in
Fig. 2, resembles that observed in the yielding of elastic solids29.
By thinking of the activity as a source of internal strain we can
map time to accumulated strain in an elastic solid. In this map-
ping, the transient of the average stress resembles the elastic
branch of a solid and the steady state resembles the yielded state.
Instead of being driven to flow by an imposed strain, the elastic
network yields due to the internal strains generated by the ac-
tive springs. This internal driving has no macroscopic anisotropy.
Therefore, as shown in Fig. 2(b), we measure the steady-state
time average of the trace of the stress tensor, 〈Π〉 = Tr←→σ ss, and
find that it depends on activity α as 〈Π〉=Πp(1+αβ ) where Πp is
the pressure in the passive limit α→ 0. We find β ≈ 1/2: a behav-
ior similar to that observed in yield-stress fluids with α playing the
role of strain rate, and Πp, the yield stress29. The relevant time-
scale comparisons that determine whether this “effective strain
rate” is small or large is the ratio of the average lifetime of a
spring 〈τ〉 = 〈smax〉/α to the response time of the spring network
1/µk. For 〈τ〉<< 1/µk, the springs cannot relax between network
rearrangement events, which leads to a larger stored stress in the
network. Fig. 3 shows the distribution of Π obtained from the
time series in steady state. In the rest of the paper, we have
scaled 〈Π〉 by Πp, i.e., we refer to 〈Π〉/Πp simply as 〈Π〉.

The active springs do not have a yield stress in the traditional
sense since their failure is controlled by a preassigned lifetime;
however, the network rearrangements lead to stress reorganiza-
tion and a distribution of effective yield-stresses emerges from
the dynamics. We can define this effective yield stress, Πc,
as the trace of self-stress of a spring at the moment it fails:
(Πc)i j =

N
A Tr(Fij⊗ (ri−rj)). The distribution of Πc in steady state

is compared to the distribution of Π in Fig. 2(c). It is seen that
the distributions of both Π and Πc are (i) broad and (ii) asymmet-
ric. The asymmetry is a consequence of the linear-spring forces
exerted by the extensile objects in our model. A spring can apply
a contractile force if its local environment conspires to stretch is
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past its equilibrium length. These contractile forces result in nega-
tive stresses. The asymmetry of the stress distributions shows that
on average these springs fail while exerting an extensile force.
We could have constructed an alternative model where the fail-
ure criterion of a spring was determined by its extension, which
would be closer to the theories of passive transient networks9.
In the experiments, however, different mechanisms of failure of
the MT bundles are observed. We therefore decided to specify
the lifetime distribution. As constructed, the qualitative features
of the model are determined by the finite lifetimes of the springs
and not by specific failure mechanisms.

In the Supplementary Information, we show that an elasto-
plastic model that has been used to simulate plastic flow in soft
glassy solids29,30 qualitatively reproduces the stress distribution
and the scaling of stress with activity found in the active spring
model if we use as input the observed, emergent, yield stress dis-
tribution Πc (Fig. 2). The strong non-affine effects of the tran-
sient network are incorporated in this yield-stress distribution. In
the main body of this work we present an alternative stochastic,
effective medium model that predicts the stress distribution from
the dynamics of the springs without recourse to the yield-stress
distribution.

In steady state, springs with widely different lifetimes, τ, sam-
ple the same network environment, or conversely a spring with
a given lifetime samples widely different network environments.
This lack of correlation between spatial location and lifetime sug-
gests that the stress (yield-stress) distribution can be obtained by
convolving the stress distribution, conditioned on the age (lifetime)
of a spring, with the distribution of tb = t − t0, the time elapsed
since the birth of a spring. Since every spring in the system has
the same equilibrium-length growth rate α, the conditional stress
distribution can be obtained algebraically from the conditional
distribution of the lengths P(`, tb) of the springs.

We can accurately fit the numerically measured P(`, tb) (Fig.
3 (a)) by a Gaussian with mean µ = atb + 1 and variance D =

b1tb + b2t2
b (Fig. 3 (c)). Of note is that this mean grows slower

than one would expect from a single active spring. Through a
change of variables Π(`, tb) = (αtb + 1− `)` we then obtain the
conditional stress distribution, P(Π, tb). The calculation of the
distributions P(Π) and P(Πc) by convolving P(Π, tb) with the age
distribution of the springs, which is an input to our model, is pre-
sented in detail in the SI. Fig. 2(c) compares the numerically mea-
sured stress distribution with the forms predicted by the above
analysis, and demonstrates that our picture of the steady state
applies. The distribution P(`, tb) reflects the different network
environments that a spring samples during its lifetime, and is a
measure of the disorder in the network that results from the net-
work rearrangements triggered by activity. This is the non-trivial
“emergent” property that then controls the stress and yield-stress
distributions. This simplicity results from the mean-field charac-
ter of our model, and we will use it in the next section to provide
an effective medium theory of the stress fluctuations.

We have also studied the response of the active springs to ex-
ternal deformations by applying a simple shear strain through the
use of Lee-Edwards boundary conditions28. As shown in Fig. 2
(d), 〈Π〉 decreases rapidly for γ̇〈τ〉 > 1 but is insensitive to the
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Fig. 2 (color online) (a) A typical time series of the pressure, Π, illus-
trating a linear stress build up and failure around the global ‘yield stress’
of the system. (b) Steady state stress 〈Π〉 as a function of the activity.
This behavior is well represented by the Herschel-Bulkley law (see text)
with activity taking the place of strain rate 29. (c) Distributions of Π (blue
solid) and Πc (purple dashed) obtained from the simulations compared
with those obtained from convolving the stress distributions with the age
distribution (see text) (red solid, and orange dashed, respectively). (d)
Effect of strain rate γ̇ on 〈Π〉 is seen to be represented well by the scaling
form 〈Π〉(α,γ̇)

〈Π〉(α,γ̇=0) = g(γ̇〈τ〉) with g(x)→ 1, x << 1 and g(x) decaying rapidly
for x > 1. In this plot, the colors correspond to different values of α: ( blue
=0.1, red =0.2 red, yellow = .6 yellow, purple = 1, green =2, and teal = 5)

strain rate for γ̇〈τ〉 << 1. Recollecting that Π measures the self-
stress of the springs, the scaling form demonstrated in Fig. 2 (d)
indicates that at shear-rates large compared to their lifetimes, the
springs can relax to their equilibrium lengths and, therefore, do
not build up stresses. In this limit, the distribution P(l, tb) resem-
bles that of isolated springs with 〈l〉(tb) ∼ s(tb). The stochastic
equations obtained from the effective medium theory presented
in the next section support this conclusion.

5 Effective Medium Theory
Each spring in our active network is born with a lifetime picked

from a quenched distribution. In addition, when a spring is born,
it is attached to a node that is randomly picked from the network.
Thus, there is no correlation between the lifetime and the posi-
tion of a spring. In steady state, therefore, a spring with a given
lifetime can be assumed to have sampled all possible network
environments. It is therefore natural to formulate an effective
medium theory for the distribution P(`, tb). We begin by writing
down the dynamics of the end points of a single spring that is not
interacting with the network. As there are no externally imposed
deformations, we can assume an isotropic system. The dynam-
ics of the length ` of a spring, obtained using the force law and
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overdamped dynamics is:

d`
dtb

= 2µk(αtb + s0− `) . (1)

Here, s0 is the equilibrium length that the spring is initial-
ized to at time tb = 0. Solving this equation with `(0) = s0 one
finds `(tb) = s0 +αtb +α(e−2µktb − 1)/2µk. There is a slow pe-
riod for tb << 1/2µk when `(tb) ' s0 +O(t2

b ), and the force ex-
erted on the nodes ≈ µk(αtb + O(t2

b )), which is << α/2. For
tb >> 1/2µk, `(tb)' s0+αtb−α/2µk, which lags behind the equi-
librium length. Therefore, the nodes attached to the spring feel a
force α/2 away from one another.

In the active-spring network, the length of a spring depends
on its connectivity to the network, and the forces exerted by the
other springs on the nodes that the spring is attached to. Since
a spring with a prescribed tb is born and samples the network
completely randomly, given the rules of the model, we argue that
the effect of the other springs can be replaced by a “noisy” elas-
tic medium. The extensile nature of the springs comprising this
elastic medium can be incorporated by demanding that the elas-
tic medium pushes out on its surroundings, on average. This
medium is thus characterized by an average force that resists
compression, and fluctuations of the elastic constant. We model
the dynamics of a single spring embedded in such a medium by:

∂`

∂ tb
= 2µk(αtb + s0− `)− `η . (2)

Here η is a Gaussian white noise with 〈η〉 = ωη , and a variance
〈η(t)η(t ′)〉= 2ωcδ (t−t ′) that characterizes the fluctuations of this
elastic medium. The effect of the multiplicative noise is to intro-
duce a random force that acts like a spring with a noisy spring

constant and an equilibrium length of zero.
As seen clearly from Eq. 2, the average compressive force ex-

erted by the noisy medium competes with the intrinsic, extensile
force due to the activity α. We can develop some intuition about
the effect of this multiplicative noise by analyzing the extensional
dynamics of a floppy spring (µk = 0):

∂`

∂ tb
=−`η . (3)

Making the substitution `(tb) = ez(tb) it can be seen that z has the
same distribution as a Brownian particle with a drift. As shown in
the Supplemental Information (SI), the solution for z(tb) can be
used to calculate the average length: 〈`〉= `(0)exp

(
−ωη tb +ωctb

)
.

On average, the effective medium compresses the floppy spring
with a characteristic time scale ωη . The noise in the effective
medium, however, allows the two ends of the floppy spring to
extend with a timescale ωc, mimicking the extensile activity of
individual springs. Thus in order to have a medium that resists
being compressed on average by the extensile springs, we require
ωη > ωc. It should be noted that since the “noise” is intended
to capture the effects of the effective medium, both ωη and ωc

should ideally be computed from a self-consistent set of equa-
tions that relate them back to 〈l〉, and 〈l2〉. We have not been able
to solve these self-consistency equations, and therefore, have re-
sorted to numerically measuring these noise parameters, which
depend on the activity, α, the lifetime distribution, and µk.

Details of the solution to Eq. 2 is provided in the
SI. Here, we present the results and compare them
to our numerical simulations. The mean length of a
spring in this noisy elastic medium is found to be

〈`〉= 1
(2µk+ωη −ωc)2

[
e−(2µk+ωη−ωc)tb

[
(ωη −ωc)(ωη −ωc +2µk)s0 +2µkα

]
+2µk(2µk+ωη −ωc)(s0 + tbα)

]
(4)

For times tb(2µk+ωη −ωc)>> 1 the length is:

〈`〉= 2µkα

2µk+ωη −ωc
tb , (5)

where the mean and variance of the noise now affect the speed at
which these springs expand. Since ωη ≥ ωc, the average length
is smaller than that of an isolated, extensile object (`≈ αtb).

It is convenient to describe the system in terms of two charac-
teristic inverse timescales, or rates: (i) the pure spring elasticity
scale, ωel = 2µk, and ωe f f = (ωel +ωη−ωc), the scale characteriz-
ing the effective medium, which is a rearranging elastic network.
Eq. 5 in this representation gives:

〈`〉= ωel

ωe f f
αtb (6)

The variance of P(`, tb) can similarly be calculated, but the full
form is less useful than the limits. We find that in the small tb limit

the variance increases linearly with tb and in the large tb limit as
t2
b :

lim
tb→0

〈
`2
〉
−〈`〉2 ≈ s2

02ωctb (7)

lim
tb→∞

〈
`2
〉
−〈`〉2 ≈

ω2
elωc

(ωe f f −ωc)ω2
e f f

α
2t2

b (8)

As we can see from equations 7 - 8 and Fig 3 (c), the effective
medium theory predicts a distribution whose long and short time
limit of the mean and variance match the behavior of the mea-
sured conditional distributions from the simulation. The distri-
bution of Π, computed from the Langevin equations using values
of ωη and ωc obtained from fitting 〈`〉 to simulations, compares
well with the simulated distribution as shown in Fig. 3 (b). The
differences in the negative stress regime indicate that our model
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Fig. 3 (a) Spring-length distributions for various tb with Gaussian fits.
Blue corresponds to small tb and red to large tb. the x’s above the distri-
bution denote the mean and the +’s represent the length of an isolated
spring of the same age. Compare to the distribution obtained from the
effective medium theory in Fig. ?? (b) Distributions of Π obtained from
simulations (blue-dashed) compared to the predictions of the effective
medium theory (red-solid). (c) (blue) - The mean of the distribution of
spring lengths given that a spring has lived for exactly a time tb. (red)-
The variance of the distribution of spring lengths given that a spring has
lived for exactly a time tb. At small tb the variance grows linearly and
crosses over to quadratic growth at large tb (d) Effect of strain rate γ̇

on 〈Π〉 obtained from solving the stochastic differential equations ( Eq. 9
and 10). Results follow the scaling form 〈Π〉(α,γ̇)

〈Π〉(α,γ̇=0) = g(γ̇〈τ〉) with g(x)→ 1,
x << 1 and g(x) decaying rapidly for x > 1. In this plot, the colors corre-
spond to different values of α: (blue =0.1, red =0.2 red, yellow = .6 yellow,
purple = 1, green =2, and teal = 5).

of the effective medium as a purely extensile body, which exerts
only compressive forces, does not accurately capture the tensile
stresses in the springs.

In the SI, we present the numerically measured values of the
noise parameters characterizing the effective medium that repre-
sents the steady state of the active springs.

To calculate the response to an externally imposed strain, we
modify the Langevin equations to incorporate a simple shear in a
two-dimensional representation.

dx
dt

=cos(θ)[2µk(αtb + s0− `)− `η ]+ γ̇y (9)

dy
dt

=sin(θ)[2µk(αtb + s0− `)− `η ] (10)

where `=
√

x2 + y2 and θ = arctan(y/x). These equations are not
analytically tractable and must be solved numerically. We use
the values of ωη and ωc obtained from simulations of the active

spring model at γ̇ = 0. Using these parameters, we find that
the steady-state average 〈Π〉 follows the same scaling relations
observed in the numerical simulations. From the above equations
we can deduce that, for γ〈τ〉>> 1, the “noise” becomes irrelevant
in determining the dynamics, the springs behave as isolated, non-
interacting units with their lengths relaxing to their equilibrium
length with a timescale 1

γ̇
.

To summarize, replacing the network of active springs by an ef-
fective medium with “noisy elasticity” yields results for the spring
dynamics that agree remarkably well with the full active spring
simulations. This stochastic differential equation reproduces the
trends in the steady-state averages of the stress in the system and
the full stress distribution, qualitatively as shown in Figs. 3(b) &
(d). Furthermore the effective medium theory allows us to un-
derstand the nature of the stress fluctuations in the system as a
result of the interaction of a spring with a noisy elastic medium
that exerts compressive forces.

6 Conclusions
Inspired by biological active networks we have created a model to
explore the behavior of a network of dynamically extending force
dipoles. We have shown that this model shares several charac-
teristics of a yielded plastic solid under periodic boundary con-
ditions. We then show that an effective medium approach us-
ing a stochastic differential equation can reproduce key features
of the behavior of the system including the effects of external
shearing. Since we do not include any hydrodynamic effects, the
shear-rate only affects the self-stress of the springs by changing
the length distribution of springs that have lived for a prescribed
time, P(l, tb). An effect of the shear-rate that we have not in-
cluded is restructuring of the bundles themselves. Within our
model, this latter effect can be included through a change in the
distribution of survival times, Ps(tb). The mapping of the exten-
sile transient networks to a noisy elastic medium offers an avenue
for extending continuum theories of active solids19,20 to include
strong nonaffine effects. These nonaffine effects can be further
incorporated into elastoplastic models through yield-stress distri-
butions characteristic of the transient active networks.
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