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Orientational ordering is a necessary step in the crystallization of molecules and anisotropic col-
loids. Plastic crystals, which are possible mesophases between the fluid and fully ordered crystal,
are translationally ordered but exhibit no long range orientational order. Here, we study the two-
dimensional phase behavior of hard regular polygons with edge number n = 3 . . . 12. This family
of particles provides a model system to isolate the effect of shape and symmetry on the existence
of plastic crystal phases. We show that the symmetry group of the particle, G, and the symmetry
group of the local environment in the crystal, H, together determine plastic colloidal crystal phase
behavior in two dimensions. If G contains completely the symmetry elements of H, then a plastic
crystal phase is absent. If G and H share some but not all nontrivial symmetry elements, then a
plastic crystal phase exists with preferred particle orientations that recover the absent symmetry
elements of the crystal; we call this phase the discrete plastic crystal phase. If G and H share no
nontrivial symmetry elements, then a plastic crystal phase exists without preferred orientations,
which we call an indiscrete plastic crystal.

Entropy maximization in hard particle systems can lead
to ordered phases such as plastic crystals, liquid crystals,
and crystals [1–3]. Like liquid crystals, plastic crystals
are mesophases appearing in some systems between dis-
ordered fluids and ordered crystals [1]. Whereas liquid
crystals can exhibit long-range orientational order with-
out translational order, plastic crystals exhibit transla-
tional order without long-range orientational order. Plas-
tic crystals have been observed both in experiments [4–
8] and computer simulations [9–15]. Yet despite their
abundance, much less is known about plastic crystals
than about liquid crystals, and their practical potential
has yet to be fully realized. Understanding the condi-
tions under which plastic crystals are to be expected
would be useful in designing molecules or nanoparticles to
achieve targeted materials with desired features or behav-
ior [16, 17]. One such example is the organic ionic plastic
crystals (OIPCs) proposed for use in solid state electro-
chemical devices such as fuel cells and solar cells [18].
There, molecular rotation leads to the formation of lat-
tice defects, such as vacancies and dislocations [19–22].
The presence of these defects is critical in creating empty
sites to host moving ions and contributes to ion conduc-
tivity. Design rules for selecting organic molecules to
achieve specific patterns of rotational motion in OIPCs
could assist in maximizing ion conductivity.

The appearance of plastic crystal phases has been as-
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FIG. 1. (Color online) Pair configuration in two-dimensional
systems of anisotropic particles. Pair configurations can be
expressed in terms of three scalar quantities (r, θ1, θ2) that
are invariant under global translations and rotations.

cribed to the tendency of particles to orient themselves
to be compatible with their local environment [23–28].
Here we show that compatibility is achieved for plas-
tic crystal phases of hard shapes by matching symme-
tries to maximize entropy. In systems of hard poly-
hedra, entropy maximization is typically achieved via
facet alignment [1, 2, 29]; particles sacrifice rotational
entropy to gain translational entropy [29]. Likewise,
hard polygon systems can maximize entropy by align-
ing their edges [30–35]. We study hard regular poly-
gons as a model system to isolate shape as the sole
factor in producing a plastic crystal phase. We find
that 3-, 4-, 6-, and 12-sided polygons self-assemble an
orientationally-ordered crystal and no other translation-
ally ordered mesophase; 5-, 7-, and 11-sided polygons
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exhibit a plastic crystal phase intermediate between the
orientationally ordered crystal and the fluid; and 8-, 9-,
and 10-sided polygons exhibit a partially orientationally-
disordered plastic crystal mesophase. Taken together,
our findings indicate that the ability for such systems to
maximize edge alignment depends on both the particle
symmetry and the symmetry group of the local environ-
ment in the solid phase. By quantifying the strength
of directional entropic forces [17, 36, 37], we show that
if the particle symmetry group contains completely the
symmetry elements of the local environment, then a plas-
tic crystal phase is absent. If the particle and local en-
vironment share some but not all nontrivial symmetry
elements (symmetry elements besides the identity opera-
tion), then a “discrete” plastic crystal phase exists with
preferred particle orientations that recover the absent
symmetry elements of the solid. If they share no non-
trivial symmetry elements, then an “indiscrete” plastic
crystal phase exists without preferred orientations.

MODEL AND METHODS — We study hard regular
polygons with the number of edges ranging from 3 to
12. The polygons interact purely entropically due to vol-
ume exclusion (steric hindrance) [3, 38, 39] and exhibit a
rich phase behavior. In particular, they exhibit a sizable
portion of possible molecular and colloidal phase behav-
iors, despite being so simple. In this study, all polygons
have the same circumscribed circle of diameter σ. Di-
mensionless pressure P is defined as P ∗ = βPσ2, where
β is the inverse of temperature T . We use n-gon as a
shorthand for the polygon name, where n is the number
of edges.
NPT Monte Carlo (MC) simulations with N identical

polygons were performed with the HOOMD-blue soft-
ware package [40, 41] using the HPMC (Hard Particle
Monte Carlo) module [42]. The number of polygons and
the pressure are fixed, and the system was equilibrated
by proposing and accepting or rejecting trial moves where
particles are translated or rotated slightly, or the size
and shape of the simulation box is changed. The size
and shape of the box is allowed to fluctuate so any crys-
tal system can be commensurate with the simulation
boundaries. All simulations are run with periodic bound-
ary conditions, and the temperature is fixed such that
kBT = 1, but its value does not determine the phase be-
havior of these hard particle systems. We obtained dense
packings by numerically compressing unit cells [43, 44]
containing up to 8 polygons from P ∗ = 1 to P ∗ = 108

using an exponential protocol over 3 × 106 MC sweeps.
One sweep consists of a trial rotation or translation pro-
posed for each of the N particles and a resize or shear
trial move for the box. As expected, equilateral triangles
(3-gon) and squares (4-gon) form space-filling tilings in a
triangular lattice and a square lattice, respectively. For
polygons with more than four sides, the number of sides
determines the plane group of the dense packings [45].
Polygons with a number of sides that is neither a multiple
of 2 nor 3, i.e., pentagons (5-gon), heptagons (7-gon) and

hendecagons (11-gon), form packings with plane group
p2mg. Polygons with a number of sides that is a mul-
tiple of 2 but not 3, i.e., octagons (8-gon) and decagons
(10-gon), form packings with plane group c2mm. The
polygon with a number of sides that is a multiple of 3
but not 2, i.e., the nonagons (9-gon), forms a packing
with plane group p2. Polygons with a number of sides
that is both a multiple of 2 and 3, i.e., hexagons (6-gon)
and dodecagons (12-gon), form ordered dense packings
with plane group p6mm. The packing fraction, plane
group and unit cell parameters of the dense packings are
summarized in Table I.

Systems with N = 4000 polygons were initialized in
their dense packings and equilibrated by expanding the
system to lower pressures in the fluid range, to iden-
tify phase transitions by the presence of discontinuities,
kinks, or other anomalies in the equations of state. For
the polygons demonstrating a crystal to plastic crystal
transition in the expansion runs, we identified any hys-
teresis in the equations of state that would indicate the
first order nature of the phase transition by initializing
these systems in their plastic crystal phase and equili-
brating by compressing to higher pressures. We used
2 × 106 MC sweeps per particle to equilibrate the sys-
tems and took measurements in the subsequent 2 × 106

sweeps.
We quantify the tendency for edge alignment by calcu-

lating the directional entropic forces using the potential
of mean force and torque (PMFT) [37]. The PMFT gives
the per particle free energy of all other particles as a func-
tion of the relative positions and orientations of a single
particle pair and thus quantifies the effective pairwise
free energy of interaction arising from the multi-body
entropic effects in the system. We define a coordinate
system characterizing pair configurations as θ1, θ2, and
r (Fig. 1). The quantity r is defined to be the magni-
tude of the vector r12 pointing from the centroid of the
first particle to the centroid of the second particle. θ1
is defined as the angle between r12 and the orientation
of particle n̂1. θ2 is defined as the angle between −r12
and the orientation of particle n̂2. This pairwise coordi-
nate system is invariant under global rotation and trans-
lation (Fig. 1). We calculated the PMFT and integrated
r over the range of the first neighbor shell to quantify the
directional entropic forces. The resulting PMFT is the
effective entropic interaction of a pair of particles with
relative orientations θ1 and θ2, having integrated over all
other particles. Importantly, the PMFT by construction
is isotropic if particles rotate freely and independently,
and anisotropic if orientational correlations are present.

To detect plastic crystal to crystal phase transitions,
we calculate equations of state for each n-gon and iden-
tify phase transitions by the presence of discontinuities,
kinks, and other anomalies in the data. We quantify the
development of orientational order as pressure increases
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using the particle orientational order parameter

Φm =
1

N

∣∣∣∣∣∣
N∑
j=1

eimθj

∣∣∣∣∣∣ . (1)

Here θj is the orientation of the j-th particle and m is the
least common multiple of the number of polygon edges
and the coordination number of its solid. The definition
of m removes orientational degeneracies. We quantify the
orientational ordering of the plastic crystal phases by cal-
culating the probability distribution of polygon orienta-
tions P (θ). P (θ) is obtained by constructing a histogram
of the orientations of polygons with the redundancy due
to polygon symmetry removed.

The correlation of particle orientations as a function of
distance is calculated using the correlation function

Cφ(r) =

∑N
l=1

∑N
j=1 e

ik(θj−θl)δ(r − |rl − rj |)∑N
l=1

∑N
j=1 δ(r − |rl − rj |)

. (2)

Here the multiplying factor k is used to account for parti-
cle orientational symmetry. For polygons with even num-
ber of edges, k equals the number of edges. For polygons
with odd numbers of edges, k is twice the number of edges
since two polygons with odd number of edges in a face-
to-face alignment will be anti-parallel to each other. In
any plastic crystal, the correlation function Cφ(r) should
decay exponentially at sufficiently large distances.

RESULTS — Based on the equations of state, PMFTs,
particle orientation distribution functions and orienta-
tional order parameter plots we find three distinct over-
all phase behaviors: 3-, 4-, 6-, and 12-gons have no plas-
tic crystal phase, 5-, 7-, and 11-gons have an indiscrete
plastic crystal phase with no preferred orientations, and
8-, 9-, and 10-gons have a discrete plastic crystal phase
with preferred orientations. All observed plastic crystal
phases have p6mm symmetry and transition to a non-
plastic crystal phase with lower symmetry. Details of the
three types of phase behaviors follow.

1. No plastic crystal phase. The results for 3-, 4-
, 6-, and 12-gons are presented in Fig. 2. Panels (a–d)
show representative snapshots of the systems with par-
ticles colored by einθ, where θ is the orientation with
respect to the x-axis. The homogeneity of the color in
the images shows long-range ordering in the particle ori-
entations. Panels (e–h) show probability distributions of
particle orientation; here we reduce the orientation range
to the region [0, 2π/n) for each n-gon to remove degen-
eracy due to polygon symmetry. A single peak exists in
each case (for triangles, θ = 0 and θ = π are the same
due to their honeycomb lattice unit cell with anti-aligned
particles), showing that there is only one preferred ori-
entation (with thermal fluctuations) for each of these
shapes, as would be expected for a crystal. Panels (i–
l) show that the particle orientations are correlated over

long ranges (using Eq. 2), also as would be expected for
a crystal. The PMFTs for 3-, 4-, 6-, and 12-gons have
one isolated region of high entropy (free energy mini-
mum) (Figs. 2m–p), indicating there is one entropically
preferred local alignment of the particles (disregarding
indistinguishable symmetric rotations).

These four polygons have only one anomaly in their
equations of state and all appear at low pressure P ∗ < 30
(Fig. 2q). For these and all other n-gons except the 5-gon,
the fluid prior to the fluid-solid transition is a hexatic
fluid [46]. The hexatic is an anisotropic fluid phase with
no translational order, and it appears between the fluid
and the solid (plastic crystal or crystal) if it exists. Here,
we focus not on that transition, but on the features of the
solid phase. 3-, 4-, 6-, and 12-gons develop orientational
order (using Eq. 1) already at low pressure immediately
following the fluid–solid transition (Fig. 2r). All of these
measured quantities show that 3-, 4-, 6-, and 12-gons
have only a crystal phase, which is consistent with prior
simulation studies that showed 3- and 4-gons do not have
a plastic crystal phase [30, 34, 35].

2. Indiscrete plastic crystal phase. The results for
5-, 7-, and 11-gons are presented in Fig. 3. Panels (a–
c) show representative snapshots of the systems. The
local randomization of color with no extended patches
of color indicate that the polygons are orientationally
disordered, despite being translationally ordered. The
probability distributions of particle orientation shown in
panels (d–f) are uniform in each case, consistent with the
snapshot images, and panels (g–i) show that the particle
orientations are uncorrelated beyond the first neighbor
shell at most. All of this is consistent with an indiscrete
plastic crystal phase. The PMFTs for 5-, 7- and 11-
gons have extended regions of high entropy, with entropy
maxima connected by high entropy pathways (Figs. 3j–
l). High entropy pathways indicate neighboring particles
can change their relative orientations easily, with no pre-
ferred orientation, as supported by the other measured
quantities.

These polygons exhibit two discontinuities in their
equations of state, one at low pressure and another one
at high pressure (Fig. 3m). The low-pressure transition
connects the hexatic fluid phase (except the 5-gon, for
which the fluid is isotropic) to the hexagonal plastic crys-
tal phase, and the high-pressure transition connects the
plastic crystal phase to the crystal phase. Calculations
of the orientational correlation function show vanishing
correlations at long range, consistent with the defini-
tion of a plastic crystal phase. We find that the tran-
sitions from indiscrete plastic crystal to crystal are first
order due to the presence of hysteresis in the equation of
state curves obtained through compression and expan-
sion runs (Fig. 3m inset) [31]. Due to the presence of
defects and grain boundaries caused by compression, the
packing fraction obtained via compression runs tends to
be lower than the packing fraction obtained via expan-
sion runs in the dense packing structure region. 5-, 7-,
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r.q.
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n.m.

l.k.j.

h.g.f.

d.

e.

c.b.a.

FIG. 2. Characteristics of the phases of 3-, 4-, 6-, and 12-gons. Panels (a–d) are representative snapshots of the systems with
particles colored by einθ, where θ is the orientation with respect to the x-axis, showing long-range orientational ordering. Panels
(e–f) are probability distributions of particle orientation. Panels (i–l) plot the particle orientation correlation function (Eq. 2).
Panels (m–p) are the PMFTs where θ1 and θ2 are defined in Fig. 1. The dark green regions indicate low free energy (high
entropy). 3-, 4-, 6-, and 12-gons have only one completely isolated low free energy pair configuration (dark green). Panel (q)
shows the equations of state (logarithmic scale), demonstrating the absence of plastic crystal–crystal transition regions. Error
bars indicate one standard deviation from the mean density taken from NPT simulations. Panel (r) shows the orientational
order parameter (logarithmic scale) for each shape. 3-, 4-, 6-, and 12-gons develop orientational order already at low pressure
directly after the fluid–solid transition. Dashed lines signify phase transition pressures; here each transition is from a fluid
phase to the crystal phase, observed from the points of inflection in the equation of state and corroborated in [46].
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n.m.

l.k.j.

i.h.g.

f.d. e.

c.b.a.

FIG. 3. Characteristics of the phases of 5-, 7-, and 11-gons, laid out as in Fig. 2. System snapshots in panels (a–c) show
no detectable preference in the particles’ orientations. Orientation distributions in panels (d–f) are uniform. Orientation
correlation functions in panels (g–i) demonstrate particles are not correlated over any distance greater than the next nearest
neighbor shell. PMFTs in panels (j–l) show that low free energy (high entropy) pair configurations are connected by low
free energy pathways, so orientations fluctuate freely. Panel (m) shows the equations of state which show the fluid–plastic
crystal transition at lower pressures and the plastic crystal–crystal transition at higher pressures. Inset: Enlarged image of
the plastic crystal to crystal transition to highlight the slight hysteresis obtained from compression and expansion simulations.
The orientation order parameter in panel (n) shows that 5-, 7-, and 11-gons have no orientational order in the plastic crystal
prior to the transition to the dense packing structure. The left-most dashed lines indicate the fluid–plastic crystal transition
and the right-most dashed lines indicate the plastic crystal–crystal transition.
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and 11-gons have no orientational order in the plastic
crystal phase prior to the transition to the crystal phase;
the values of Φm in (Fig. 3n) are consistent with the am-
plitude of thermal noise expected in systems of this size
with no orientational order. Taken together, this evi-
dence shows that 5-, 7-, and 11-gons have an intermediate
indiscrete plastic crystal phase with no preferred orienta-
tions, which agrees with a previous simulation study on
5- and 7-gons by Schilling [31].

3. Discrete plastic crystal phase . The results for 8-,
9-, and 10-gons are presented in Fig. 4. Panels (a–c) show
representative snapshots of the systems. Local patches of
color are larger than for the previous group of polygons,
but are still disordered, indicating that these polygons
are also orientationally disordered, despite being transla-
tionally ordered. Additionally, the orientational correla-
tion function in panels (g–i) vanish at large r as observed
for the 5-, 7-, and 11-gons. However, here the probability
distributions of particle orientation (panels (d–f)) show
multiple peaks, demonstrating three preferred orienta-
tions for 8- and 10-gons, and two preferred orientations
for 9-gons. All of this is consistent with a plastic crys-
tal phase that is only partially ordered, which we term
a discrete plastic crystal phase. This conclusion is sup-
ported by calculations of the PMFTs in (Figs. 4j–l)). The
PMFTs for the 8- and 10-gon have three entropy max-
ima (shown as free energy minima) connected by low en-
tropy (high free energy) pathways, and the PMFT for
the 9-gon has two entropy maxima connected by low en-
tropy pathways. These plots indicate that there are clear
entropic preferences in terms of local orientation rela-
tive to the lattice, and that these entropic preferences
align with the particle orientation probability distribu-
tion. The existence of pathways between preferred ori-
entations, even if low entropy (high free energy), means
the particles can rotate among the preferred orientations.
Figs. 5 and 6 show the most and least preferred particle
orientations for 8-gons and 9-gons respectively. We note
that multi-peaked orientational distributions have also
been reported in simulations of hard dumbbells [9, 12]
and hard truncated cubes [14].

These three shapes have two discontinuities in their
equations of state, one at low pressure and another one
at high pressure (Fig. 4m). The presence of hysteresis in
all three equations of state indicates the plastic crystal
to crystal transitions are all first order (Fig. 4m inset).
Fig. 4n shows that 8-, 9-, and 10-gons develop orienta-
tional order steadily in the plastic crystal phase up to
the transition to the crystal phase, where Φm jumps to a
high value.

Table I summarizes the main results together with
characteristics of the lattices. All of the observed behav-
ior can be rationalized by comparing the polygon sym-
metry to the symmetry of the local environment in the
solid phase. For 3-, 4-, 6-, and 12-gons, their shape sym-
metry group contains the symmetry group of their local

environment. Consequently, these polygons can easily
maximize entropy by aligning neighboring edges; they
do not need to rotate to be compatible with the crys-
tal structure, which leads to the absence of any plastic
crystal phase. For 5-, 7-, 8-, 9-, 10-, and 11-gons, the
particle symmetry group does not contain the C6 sym-
metry of the hexagonal plastic crystal phases observed
for these polygons. Thus edge alignment in these sys-
tems is not simple, and entropy maximization cannot
be achieved through edge alignment alone. Consider 8-
and 10-gons. Because they share a C2 symmetry ele-
ment with the plastic crystal, they preferentially align
in three equally spaced orientations to add the missing
C3 symmetry. The result is a trimodal distribution of
particle orientations, effectively recovering the C6 sym-
metry of the plastic crystal phase. Similarly, 9-gons share
C3 symmetry elements with the plastic crystal phase but
lack a C2 symmetry, resulting in a bimodal distribution
of particle orientations. In contrast, 5-, 7-, and 11-gons
share no common nontrivial symmetry elements with the
plastic crystal, and so have a plastic crystal phase with
no preferred orientations. These polygons are maximally
frustrated, and so maximize their entropy by maximizing
their rotational degrees of freedom.

DISCUSSION — We have shown that the appearance
of plastic crystal phases can indeed be ascribed to the
tendency of particles to orient themselves to be compat-
ible with their local environment, as previously hypothe-
sized [23–28]. We have shown that this compatibility is
achieved by matching symmetries to maximize entropy.
Our results reveal a general pattern relating the number
of edges of regular polygons to all aspects of their plastic
crystal phase behavior. Based on this pattern, we iden-
tify the relationship between the symmetry group G of
a particle and the symmetry group H of the local en-
vironment of the solid phase as the dominating factor
producing the plastic crystal phase. Our findings may be
summarized in the following three rules:

Rule 1. If H is a subgroup of G, then a plastic crystal is
absent.

Rule 2. If G shares some but not all nontrivial symmetry
elements with H, then a discrete plastic crystal phase is
present which has preferred orientations that recover the
missing symmetry elements.

Rule 3. If G and H share no nontrivial symmetry ele-
ments, then an indiscrete plastic crystal phase is present
without preferred particle orientations.

These rules cover all regular n-gons, although the plastic
crystal to crystal transitions will appear at increasingly
higher pressures and with diminishing signatures. We
believe these symmetry considerations will enable the de-
sign of new shapes exhibiting plastic crystal phases with
targeted particle orientation distributions.

We acknowledge helpful discussions with Julia Dshe-
muchadse, Eric Harper, and Matthew Spellings. We
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n.

l.k.j.

i.h.g.

f.d.

c.a. b.

e.

m.

FIG. 4. Characteristics of the phases of 8-, 9-, and 10-gons, laid out as in Fig. 2. System snapshots in panels (a–c) show patches
of short-ranged order in the particles’ orientations. Orientation distributions in panels (d–f) have multiple peaks, demonstrating
preferred particle orientations. Orientation correlation functions in panels (g–i) demonstrate particles are correlated over longer
distances than for 5-, 7-, and 11-gons (Figs. 3g–h), but are exponentially decreasing, indicating no long-ranged order. PMFTs
in panels (j–l) show that low free energy (high entropy) pair configurations are isolated by high free energy configurations. 8-
and 10-gons have three isolated low free energy configurations ((j) and (l)) whereas the 9-gons have two. Panel (m) shows the
equations of state, which show the fluid–plastic crystal transition at lower pressures and the plastic crystal–crystal transition
at higher pressures. Inset: Blow-up of the plastic crystal–crystal transition to highlight the slight hysteresis obtained from
compression and expansion simulations, also observed for 5-, 7- and 11-gons (Fig. 3m). The orientation order parameter in
panel (n) shows that 8-, 9-, and 10-gons have steadily increasing orientational order in the plastic crystal prior to the transition
to the dense packing structure, where it jumps to a larger value. The left-most dashed lines indicate the fluid–plastic crystal
transition and the right-most dashed lines indicate the plastic crystal–crystal transition.
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Polygon
Dense packing structure Plastic crystal properties

Packing fraction η Plane group a1 a2 γ Existence Hysteresis P (θ)
5 0.92131 p2mg 0.9045 1.4266 90◦ Y Y Uniform
6 1 p6mm 0.8660 1.5000 90◦ N – –
7 0.89269 p2mg 0.9505 1.6125 90◦ Y Y Uniform
8 0.90616 c2mm 0.9239 1.6892 90◦ Y Y Trimodal
9 0.90103 p2 0.9776 1.6419 89.52◦ Y Y Bimodal
10 0.91372 c2mm 0.9511 1.6910 90◦ Y Y Trimodal
11 0.90766 p2mg 0.9797 1.6719 90◦ Y Y Uniform
12 0.92820 p6mm 0.9659 1.673 90◦ N – –

TABLE I. Putative dense packing structures and plastic crystal properties. Packings are characterized by packing fraction η
and plane group. a1 and a2 are lattice constants. γ is the unit cell angle. If they exist, plastic crystals are characterized by
hysteresis at the plastic crystal–crystal transition and the probability distribution of polygon orientations P (θ).
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FIG. 5. (Color online) Local environments of 8-gons in their
discrete plastic crystal phase. Nearest neighbor particles are
represented schematically with disks. Panels b–f are gener-
ated from panel a by successive rotations of the central 8-gon
counterclockwise by π/24. Panels a, c, and e display the least
preferred orientations, and panels b, d, and f display the most
preferred orientations in correspondence with Fig. 4d. Pan-
els a, c, and e are unfavorable configurations because of the
vertex-centered bonds formed between the central particles
and the neighbor particles colored pink. Under successive
counterclockwise rotations of π/3 which leave the surround-
ing particles invariant, panel a transforms into panel c, then
into panel e, and then back to a, and panel b transforms into
panel d into panel f back into panel b. This schematic also
represents 10-gons because 10-gons have the same form of
particle orientation distribution as 8-gons.

FIG. 6. (Color online) Local environments of 9-gons in their
discrete plastic crystal phase. Nearest neighbor particles are
represented schematically with disks. Panels b–d are gener-
ated from panel a by successive rotations of the central 9-gon
counterclockwise by π/18. Panels a and c display the least
preferred orientations, and panels b and d display the most
preferred orientations in correspondence with Fig. 4e. Panels
a and c are unfavorable configurations because of the vertex-
centered bonds formed between the central particles and the
neighbor particles colored pink. Under successive counter-
clockwise rotations of π/3 which leave the surrounding par-
ticles invariant, panel a transforms into panel c back into a,
and panel b transforms into panel d back into panel b.
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phases. Support provided by U.S. Army Research Of-
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Symmetry arguments explain the appearance of new and old plastic crystal mesophases in hard 
regular polygons.
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