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Grafting metal complexes onto amorphous supports: from 
elementary steps to catalyst site populations via kernel regression 

Salman A. Khan,a,‡ Craig A. Vandervelden,a,‡ Susannah Scott,a,b and Baron Petersc 

Ab initio computational studies have made tremendous progress in describing the behavior of molecular (homogeneous) 

catalysts and crystalline versions of heterogeneous catalysts, but not for amorphous heterogeneous catalysts. Even widely 

used industrial amorphous catalysts like atomically dispersed Cr on silica remain poorly understood and largely intractable 

to computational investigation. The central problems are that (i) the amorphous support presents an unknown quenched 

disordered structure, (ii) metal atoms attach to various surface grafting sites with different rates, and (iii) the resulting 

grafted sites have different activation and catalytic reaction kinetics. This study combines kernel regression and importance 

sampling techniques to efficiently model grafting of metal ions onto a non-uniform ensemble of support environments. Our 

analysis uses a simple model of the quenched disordered support environment, grafting chemistry, and catalytic activity of 

the resulting grafted sites. 

1. Introduction 

Most ab initio computational catalysis studies focus on 

homogeneous catalysts,1-3 enzymes,4-6 or heterogeneous 

catalysts with ordered structures such as metals,7-11 zeolites,12-

14 and crystalline metal oxides.15-17 All of these materials have in 

common the advantage that many features of the catalyst 

structure are known. Even for molecular catalysts and enzymes, 

where the active site resides within a fluctuating environment, 

there are systematic computational frameworks for averaging 

over the fluctuations.18-20 In contrast, amorphous catalysts 

cannot be modelled with small, periodically repeating solid 

structures, nor by sampling a well-defined ensemble for liquid 

phase disorder. Instead, the quenched disorder in an 

amorphous heterogeneous catalyst21, 22 is a permanent 

signature of its non-equilibrium preparation history. Examples 

within this family include the Phillips catalyst (Cr/SiO2) for 

ethylene polymerization,23 molybdenum (Mo/SiO2) and 

tungsten (W/SiO2) catalysts for olefin metathesis,24 and 

titanium catalysts (Ti/SiO2) for alkene epoxidation.25 

       Because of these difficulties, amorphous catalysts have 

mostly been avoided in ab initio computational studies.  Those 

exceptions in which calculations on amorphous catalysts were 

attempted were forced to rely on questionable assumptions.22, 

26-34 For example, are the model sites representative of the real 

material? Do the models accurately represent the most active 

sites?  Can reliable conclusions about the reaction kinetics be 

drawn from a single-site computational model? At present, 

none of these questions can be satisfactorily answered with ab 

initio calculations. 

These questions are addressed in two papers, this one and 

a companion. They provide a computational framework that 

combines machine learning, statistical importance sampling, 

and population balance modeling techniques. To illustrate the 

concepts and methods, we begin with a model for an 

atomically-dispersed catalyst on an amorphous support. The 

essential features of the model are a quenched disordered 

support scaffold (to represent an amorphous silica matrix), 

surface silanol sites where precursors can be attached (to 

represent surface hydroxyl groups), and a microkinetic model 

for grafting at each silanol site. These microkinetic models have 

rate parameters that depend on the individual grafting site 

characteristics. The rate parameters at each grafting site will be 

determined, much like in a real ab initio calculation, by 

structural optimization of the intermediates using a simple 

force field.  

This first paper deals with how the active sites are generated 

during catalyst preparation. In particular, we show how the 

populations of both grafted sites and the unreacted grafting 

sites evolve during an idealized grafting process. If the surface 

reactions are irreversible, the final metal site distribution will be 

determined by those surface grafting sites with the fastest 

grafting kinetics. However, if the surface reactions are 

reversible, the final grafted site distribution will favor grafted 

sites that lead to the most stable grafted species. To enable ab 

initio studies in the future, the algorithm must efficiently predict 

the characteristics of the most reactive grafting sites and their 

abundances, without performing exhaustive ab initio 

calculations for many thousands of grafting sites. We 
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demonstrate how kernel regression can learn to anticipate the 

outcomes of these optimizations. Then, by applying the kernel 

regression model to thousands of grafting sites, we can 

construct a population balance model for the grafting process.  

The simplicity of our model system allows us to test the 

accelerated predictions against an exhaustive parameterization 

from structure optimizations at thousands of grafting sites.   

The companion paper uses a grafted site population that 

reflects both the disordered support and the superimposed 

grafting kinetics to predict site-averaged kinetics. Because 

turnover frequencies at individual grafting sites depend 

exponentially on their activation energies, site-averaged 

kinetics are difficult to converge without rare events sampling 

methods. The second paper deals with averaging over the non-

uniform distribution of grafted sites to predict the overall 

kinetics.   

The remainder of this paper is as follows.  First, we introduce 

simple models for the amorphous support and grafting kinetics. 

Next, we use kernel regression tools to predict the grafting 

thermodynamics and kinetics based on a concise list of grafting 

site characteristics. Finally, we use the kernel regression results 

and kinetic models to parameterize the population balance 

model for grafting. 

2. Amorphous silica 

Amorphous silica is a commonly used catalyst support because 

of its thermal and mechanical stability, large surface area, and 

its chemical inertness. The surface of silica is terminated by 

silanol groups which may be categorized as isolated, geminal, 

vicinal etc. Real amorphous silicas are created via sol-gel 

synthesis, spray drying, pyrolysis, or precipitation methods. 

Silica can be calcined to increase its mechanical strength and to 

remove adsorbed water.35-40 The calcination temperature also 

determines the residual surface silanol density, which in turn 

influences the activity of the supported catalyst.23, 41, 42  

Many studies have used spectroscopic techniques like IR, 

NMR, and EPR to investigate the populations of different silanol 

types.43, 44 However, in contrast to crystalline materials, the 

absence of long-range order results in broad peaks that 

complicate the precise characterization of silica.  

Silicas of different types exhibit different ring size 

distributions,45-47 and silanols of the same type can have 

different bond angles and different dihedral angles.35, 44  These 

subtle structural differences between silanols and their 

environments are likely to influence their reactivity. Many 

investigators have grafted metal atoms to silica via reactions 

between silanols and molecular complexes like AlCl3,48 GaR3,49, 

50 TiCl4,51-53 and VOCl3.54, 55 These grafting reactions are useful 

both as probes of local structure and as routes to supported 

organometallic catalysts.    

In a typical grafting experiment, a fluid phase molecular 

precursor reacts with amorphous silica.49, 55, 56 A protonolysis 

reaction between the precursor and surface silanols results in a 

metal atom grafted to the silica surface with one, two, or three 

M-O-Si linkages, sometimes called monopodal, bipodal, or 

tripodal species, Figure 1.24, 57-60 

Computational studies of atomically-dispersed metals on 

silica often use cluster models terminated by hydroxyl groups or 

hydrogen atoms. These models generally range in sizes from a 

few to tens of silicon atoms.28, 30, 34, 61-67 The cluster models are 

often carved from crystalline materials like zeolites68 or 𝛽-

cristobalite.66, 69 In such clusters, the peripheral atoms are fixed 

at positions characteristic of the crystalline material. The de 

facto assumption is that larger cluster models are more 

representative of the real amorphous catalyst. Indeed large 

cluster models more accurately account for elasticity of the 

silica matrix and for dispersion interactions between adsorbates 

and the support.33, 70 However, each layer of silica requires 

additional and unjustified assumptions about the environment. 

In this sense, large cluster models are overly specific, while 

small cluster models are amenable to systematic investigation 

of the effects of local grafting site geometry.22 

In the past decade, some computational studies generated 

amorphous silica surfaces that attempt to reproduce 

experimental observables like surface silanol density and the IR 

spectrum.71-74 Typically, such surfaces are prepared by 

molecular dynamics simulations, in which crystalline models are 

heated to high temperatures followed by rapid quenching to 

generate disordered structures. Then the bulk amorphous 

structure is cleaved to create the surface. Unsaturated oxygens 

are capped with hydrogen atoms, and unsaturated silicons are 

capped with hydroxyl groups. Finally, pairs of proximal silanols 

are condensed to achieve the correct surface silanol density. 

These methods generate atomistic amorphous models of silica 

with a non-uniform structural distribution of surface silanols. 

However, such in silico preparation routes for amorphous silica 

do not correspond to experimental synthesis procedures. In 

particular, the high surface area of a real silica does not result 

from cleavage and subsequent functionalization. In addition, 

the system sizes modelled are typically quite small (100-200 

silanols). For comparison, a 10 mg sample of silica with area 350 

m2/g and 1.0 silanols/nm2 contains about 1018 silanols.  

 

 

 

Fig. 1 Scheme showing the grafting of a molecular ML2 

complex to a vicinal silanol pair. The metal forms two bonds 

to the silanolate oxygens while two HL molecules are 

eliminated. The metal may also coordinate to nearby 

siloxane oxygens. 
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2.1. A simple model for amorphous silica 

The mechanisms of grafting, activation, and catalytic reactions 

are still debated for many amorphous catalysts.26, 30, 50, 58, 69, 75-77  

To resolve the outstanding questions, we need methods that 

can predict the kinetics at each grafting site and estimate 

proper site-averaged kinetic properties. Then a given support 

model (if large enough) and proposed mechanism will yield 

well-defined, site-averaged predictions to be tested against 

experiments. To develop such methods, we selected a simple 

example system for which benchmark calculations can be 

performed exhaustively, for the full ensemble of non-uniform 

sites.  In this section, we propose a simple abstract model of the 

amorphous support.  

    We model the amorphous support as a 2D lattice with 

quenched disorder, Figure 2. Note the loose similarity to the 

qualitative model of Peri and Hensley.48 First, a uniform lattice 

is created in which nearest neighbours are separated by a unit 

(dimensionless) distance. Each site is randomly displaced (δ) 

from the uniform lattice by random displacements along the x 

and y directions to create a disordered lattice. Displacements 

are drawn from an isotropic 2-D Gaussian distribution 

(described in the ESI). The lattice is then “functionalized” with 

hydroxyl (-OH), siloxane (≡SiOSi≡), and empty sites with 

probabilities pOH, psiloxane, and pempty.   

 

2.2. Grafting molecular metal complexes: a simple model 

Grafting sites in our model are empty sites surrounded by a pair 

of vicinal hydroxyls on one axis and a pair of siloxanes on the 

other axis. Figure 3 shows a grafting site located between vicinal 

silanols (≡SiOH)2 and two siloxanes (≡SiOSi≡). The precursor 

ML2, a molecular complex, in our model has two displaceable 

ligands. A real catalyst precursor may have additional ligands 

like chloride, oxo, or methyl groups that remain bonded to the 

metal M after grafting. The metal is grafted as a bipodal species 

(≡SiOMOSi≡) upon reaction of ML2 with the vicinal hydroxyls to 

eliminate two HL molecules. The metal may also interact with 

neighbouring siloxanes to form M…O(Si≡)2 bonds.  The strengths 

of the ≡SiO-M and M…O(Si≡)2 bonds depend on the local 

geometry near the grafting site.    

 

 

 

 

2.3. Computing grafting rates on the amorphous silica model 

To model grafting kinetics of vicinal silanol sites on the 

amorphous 2D lattice, we consider the grafting mechanism 

outlined in Sec. 2.2. The grafting process at each vicinal silanol 

site is assumed to be irreversible with the following rate law: 

 

                                     
2( )   ( )[ ].k=x x MLr                   (1) 

 

Here [ML2] is the gas phase concentration of ML2, x represents 

the local environment of the vicinal silanol site, and k(x) is a site-

dependent rate constant.78 We use concentration to construct 

rate laws in this work. One can instead use the precursor partial 

pressure, but note that one must beware of the resulting 

complications in extracting activation energies. For example, 

when precursor pressure is set by its T-dependent vapor 

pressure, as in CrO2Cl2 grafting,58 the pressure and temperature 

 

Fig. 2 Steps to form a functionalized, quenched disorder lattice. 

 

 

 

Fig. 3 Grafting sites on the amorphous 2-D lattice model. 

One set of opposite nearest neighbour sites are hydroxyl 

groups, while the other set is siloxanes. ML2 reacts with two 

hydroxyls and interacts with the siloxanes to create a 

grafted M atom as shown.   
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cannot be separately controlled. We use transition state theory 

(TST) to model the temperature and site-geometry dependence 

of the grafting rate constant.  TST rate constants are widely used 

to predict and interpret activation barriers and kinetics across a 

wide range of catalysis applications.79-83 TST rate constants are 

now readily computed from electronic structure calculations.84  

The TST rate constant is: 

 

  ‡

0( ) xp ( ) .ˆ  e
 

Bk T
k G

h
= −   x xV               (2) 

Here 𝛥Gǂ(x) is the grafting barrier as computed with [ML2] at the 

reference volume (
0V̂ ) per particle.  

Next, we use a Linear Free Energy Relationship (LFER) to 

model the grafting free energy barrier. Specifically, we assume 

that the free energy of grafting is linearly related to the 

activation barrier for grafting:78  

 

                     ‡ ‡( )   ( ).refG G G  =  + x x  (3) 

Here 𝛼 (0< 𝛼<1) is the Brønsted coefficient and 𝛥Gǂ
ref is the 

grafting barrier for a reference grafting site with a 

thermoneutral grafting free energy (𝛥Go
 = 0). The value of 𝛼 

indicates the position of the transition state between the 

reactant and product states. Small values of α (near 0) indicate 

an early transition state that resembles the reactants. Large 

values of α (near 1) indicate a transition state that resembles 

the products. In practice, intermediate values of α are common, 

so we have chosen α = 1/2.85 The value of 𝛥Gǂ
ref determines the 

time scale for grafting, but it will have no bearing on results 

after non-dimensionalization. Thus, to complete the kinetic 

model, including the effects of non-uniform grafting sites, we 

only need a model for 𝛥Go(x). The energy to graft the precursor 

at an empty site is 

 

    
* * .Δ ( ) 2 ( ) 2E VV = + − −H LL M Mx x                       (4) 

Here VM*(x) is the energy of the grafted metal site, V
*
 is the 

energy of the unreacted silica site, 𝜀ML is the energy of the M-L 

bond, and 𝜀HL is the energy of the H-L bond. V
*
 is twice the O-H 

bond energy, 

 

                                * . 2 OHV =                  (5) 

Here 𝜀
OH

 is the O-H bond energy. To compute VM*(x), the M-

OSi≡ bond energy and M…O(Si≡)2 bond energy are modelled as 
Morse potentials: 
 

                     ( )( )
2

,1 exp .( )i i i i eq iD a r rr D  = − − − −
 

            (6) 

Here i is the interaction type (M-OSi≡ or M…O(Si≡)2), Di is the 

equilibrium energy of the interaction, 𝑎i is related to the width 

of the potential well, ri,eq is the equilibrium distance, and r is the 

metal-oxygen bond length. All constants defined in this section 

are shown in Table 1. VM*(x) is computed by optimizing the 

position of the metal with surrounding hydroxyl and siloxane 

positions fixed:  

 

   
1 2

' '
1 2

-

*

' '

( ) ( )
.m(

(

r r
) in

r ) r )(

O O O O

O OO O

V
 

 

+ 
=  

 + + M

M M- M- M-

M

M MM M
x

x         (7)

  

Here, rM-O
i
 is a metal-oxygen bond distance, and rM…O’

i
 is a 

metal-siloxane coordination distance, as shown in Figure 4a. 
The bond lengths are functions of the (variable) metal atom 
position xM and the (quenched/fixed) peripheral siloxane and 
silanol locations in x. The optimization indicated in Eq. (7) 
therefore involves optimization of the metal atom position 
within the fixed peripheral environment. 
 Finally, the free energy of grafting is computed using  
   

                .) )( Δ ( Δ   ΔG E PV T S = + −x x                          (8) 

Here 𝛥S° is the entropy of the grafting reaction and 𝛥E(x) 

+𝛥PV is the enthalpy. The entropy changes are predominantly 
from site-independent contributions like translational and 
rotational degrees of freedom of the ML2 and HL species. As 
noted for the parameter 𝛥Gǂ

ref, the site-independent terms in 
Eq. (8) have no bearing on the results after non-
dimensionalization.   
 
 

3. Kernel regression model for grafting barriers 

 

Because ab initio calculations are costly, computational studies 

of catalyst grafting have been based on single sites, or at most 

a few sites. Ultimately, one hopes to make predictions about 

grafting across the entire distribution of non-uniform sites.  In 

this section, we propose a machine learning method (kernel 

regression) to learn structure-property relations from a modest 

Table 1: Constants used in computing grafting barriers and 

defining the quenched disorder lattice (see ESI for further 

explanations) 

Parameter Value 

T 298.15 K 

rM-O,eq 1.0 

rM…O,eq 1.16 

𝜎2
lattice 0.00022 

pOH 0.3 
pSiloxane 0.3 
pempty 0.4 

DM-O 524.4 kJ/mol 

𝑎M-O 1.9 

DM…O 120 kJ/mol 

𝑎M…O 2.3 
2𝜀HL – (V* +2𝜀ML) + 𝛥PV +  𝛥S° 1229.56 kJ/mol 

M 0.026 
𝛼 0.5 

𝛥Go
unperturbed -30 kJ/mol 
𝛥Gǂ

ref 131.3 kJ/mol 
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number of training calculations.86-88 Kernel regression was 

chosen because it is a non-parametric method; hence it does 

not need a predefined form for the fitting function. Specifically, 

we will use calculations at a small collection of grafting sites to 

predict barriers and kinetics for all grafting sites.  

 

The training data includes a collection of computed barriers, 

𝛥Gǂ(x1), 𝛥Gǂ(x2), 𝛥Gǂ(x3), etc. The estimated barrier for a new 

peripheral environment x is a kernel-weighted average of the 

training data: 

 

                         
‡ ‡

1

ˆ ( ) ( ) ( ).,
train

i

N

i

iG w Gx x x x                         (9) 

Here, 𝛥Ĝǂ(x) is the prediction for a grafting site with local 

geometry x, 𝛥Gǂ(xi) values represent the barriers of grafting 

sites in the training set, Ntrain is the number of training 

examples, and 𝑤(x,xi) are the weights. The weights are 

represented using a Gaussian kernel: 89 

 

                     

2

2

1

exp[ ( , ]
( ,   .

exp[ ( , ]

)
)

)
trainN

i
i

ii

d
w

d
=

−
=

−

x x
x x

x x
                   (10) 

Here d2(x,x’) is a squared non-Euclidean Mahalanobis distance 

between structures x and x’ 

 

                   
2( , ') ( ') ( ').Td = − −Sx x x x x x   (11) 

S is a square, symmetric, and positive definite matrix. To ensure 

that S remains positive definite while being optimized/learned, 

we write S as   

 

                     .T=S AA  (12) 

Here A is a lower triangular matrix.90 Matrix A should be 

optimized so that Eq. (9) accurately predicts 𝛥Gǂ(x) at new 

grafting sites.  

     The training data from optimization of a small collection of 

grafting sites is used in a leave-one-out objective function 

 

           ( )
2

‡ ‡

1

ˆ( ) ( )
trainN

i

i iL G G
=

−=  x x       (13) 

to determine A. In L, 𝛥Ĝǂ(xi) is a weighted average of all data 

points in the training set excluding itself: 

 

                     
‡ ‡

1

ˆ ( ) ( ) ( ).,
trainN

i j i j
j

j i

wG G
=



 = x x x x             (14) 

The Gaussian kernel in Eq. (10) generates a continuous and 

differentiable model of 𝛥Gǂ(x), so the leave-one-out error 

function is easily minimized with conjugate gradient methods or 

other superlinear minimization schemes.91 We use kernel 

regression as implemented in the metric-learn Python library.92 

The library minimizes L using the conjugate gradient method 

with analytical derivatives of L.  

4. Local coordinates 

 

The Gaussian kernel function in Eq. (9) can be constructed from 

the complete set of internal coordinates for the local 

environment.  However, a subset of the internal coordinates will 

usually be sufficient to predict the activation barriers.  We do 

not know a priori which coordinates are most important, but 

these can be identified as illustrated below. 

   The local environment of silanol and siloxane groups in our 

model is specified by five coordinates (2 dimensions x 4 “atoms” 

-  1 rotation - 2 centre-of-mass translations). We use three of 

the five coordinates to construct the kernel regression model: 

(1) distance between OH groups (d1), (2) distance between 

siloxane groups (d2), and (3) angle between the OH-siloxane 

groups (𝜃), Figure 4. 
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5. Sites with non-uniform grafting barriers: a 
population balance perspective 

As described in Sec. 2, an amorphous support will have a 

distribution of grafting sites with different grafting rates. As 

time progresses, the most reactive grafting sites will be 

consumed, while grafting sites with higher reaction barriers 

remain unreacted and reduce the rate of further grafting. This 

situation can be modelled using the following population 

balance scheme:  

 

    

‡
‡ ‡(

( (
, )

, ) , ).
d t

m t
G

G G
dt





= −  r      (15)     

Here 𝜌(𝛥Gǂ,t) is the population of unreacted vicinal silanol sites 
at time t with a barrier of 𝛥Gǂ, r(𝛥Gǂ,m) is the rate at which the 

sites react (Eq. (1)), and m=[ML2]/ 1

0
ˆ −V  is the ratio of the 

concentration of the precursor ML2 in the gas phase to the 

reference concentration ( 1

0
ˆ −V ) at which 𝛥Gǂ is computed. The 

rate of change of m is 

 

 

             
‡ ‡ ‡, ) ( , ) .( G

dm
d G G G

dt
t k m m=   +−      (16) 

 

Here, the first term on the right-hand side is rate of 

consumption of ML2 due to the grafting reaction, and mG is the 

rate at which ML2 is fed to the reactor. In some grafting 

experiments, the molecular complex is constantly replenished 

by evaporation from a reservoir, so that its gas phase 

concentration is always in equilibrium with its liquid reservoir.50, 

58 In such cases, the ML2 concentration remains constant at its 

vapor pressure as grafting proceeds. Assuming constant m, Eq. 

(15) can be integrated to yield 

 

    

‡‡ ‡

0( exp e ., ) ( ) GBk T
G G mtt

h

  −  
 =  − 

 
  (17) 

Here 𝜌o(𝛥Gǂ) is the initial population of vicinal silanol sites. 

Defining non-dimensional time as:  

 

             
‡

e refGBk T
t

h




− 
=        (18) 

leads to the population of unreacted vicinal silanol sites as a 

function of τ and grafting free energy barrier: 

 

          ‡ ‡

0( ( exp e ., ) ) GG G m   
−   =  −

 
 (19) 

 

6. Results and discussion 

6.1. Evolution of grafting site population 

A 1500×1500 lattice was randomly perturbed using the 

procedure outlined in Sec. 2.1. A total of 19368 grafting sites 

were identified. A metal atom was placed in each grafting site, 

and its position was optimized. The grafting free energy barrier 

was computed for each grafting site.  A histogram of the results 

was constructed to approximate the initial distribution 𝜌o(𝛥Gǂ).  

Note that the horizontal axis depends on the choice of 𝛥Gǂ
ref 

 

 

Fig. 4 (a) Bond lengths in the force field and in the 

optimization of the M-atom position. (b) Coordinates 

for describing the local environment around the 

grafting site. We have used three of the five (2 x 4 - 

1(rotation) - 2(translations)) peripheral environment 

coordinates in the initial kernel regression model. 
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and 𝛥S°/kB, i.e., different values of these parameters will shift 

the distribution left and right along the 𝛥Gǂ axis. In a real 

system, ab initio calculations yield 𝛥Gǂ and 𝛥S° values for all 

grafting sites with no adjustable parameters, so there would be 

no arbitrary shift.  Following this, Eq. (19) was used to compute 

the evolution of the unreacted grafting site population, Figure 

5a. 

 

The initial range of grafting barriers spans 23 kJ/mol. 

Grafting sites with the lowest barriers react first, so the 

distribution shifts to the right as grafting proceeds. The 23 

kJ/mol width of the distribution causes the grafting sites to 

react at markedly different rates. The fastest grafting sites react 

in about 10-4 τ. Grafting is complete in about 10 τ.  

During a grafting experiment, the total number of grafted 

sites at any time can be measured, e.g., by monitoring the 

amount of HL released. The fraction of unreacted vicinal silanol 

sites (relative to the total number of vicinal silanol sites) is: 

 

 
‡ ‡

‡ ‡

( )
.

,

( ),0

G G

G

d

Gd




=

 

 




Θ   (20) 

Figure 5b shows the evolution of the fraction of unreacted 
vicinal silanols (note the log scale). Grafting progress slows 
dramatically as the most reactive grafting sites vanish from the 
distribution. In an experiment, the reaction might seem 
complete when all the vicinal silanols with low barriers have 
reacted.  The inset of Figure 5b shows how the data would 
appear if the fraction of unreacted silanols were monitored only 
for time 0 < τ < 0.3. The inset also shows a fit to the common 
pseudo-first-order kinetic model 

(1 )exp[ ]obsk  = + − −Θ Θ Θ . Here Θ  is a “final” 

fraction of unreacted vicinal silanol sites and kobs is an 
“apparent” grafting rate constant.  Over the range 0 < τ < 0.3, 
the data appears to be approximately an exponential decay, 
thus one might infer that all silanols react with the same rate 

constant (kobs), and that 19 % (from obsΘ = 0.19) of the vicinal 

silanol sites are unreactive. However, all of the silanols (in this 
model) do react at exponentially longer time intervals.  The final 
silanol sites react last because they are different.  Therefore, 
they change the distribution of grafted sites, and may also 
change the catalytic activity. Hence, it is important to analyse 
grafting kinetics on a logarithmic time scale. 

Predictions about catalytic activity require information 

about the abundance of grafted sites and their characteristics.  

Both the grafting kinetics and the catalytic turnover frequency 

at a particular grafted site depend on the local grafted site 

environment. However, the most readily grafted sites may not 

correspond to the most catalytically active sites. Therefore, 

predictions of the overall catalyst activity require predictions 

about grafting propensity and characteristics of the grafted 

sites.  The companion paper develops tools for computing site-

averaged kinetics starting from the grafted distribution.93  

 

 

 

6.2. Applying kernel regression to predict grafting barriers 

The kernel regression model was trained on grafting barriers for 

100 vicinal silanol sites randomly sampled from the set of all 

19368 grafting sites using local coordinates described in Sec. 4. 

Justification for choosing a training set size of 100 is provided in 

section S2 of the ESI. A parity plot of the true 𝛥Gǂ values and 

kernel regression 𝛥Gǂ predictions is shown in Figure 6. 

The model trained with 100 𝛥Gǂ calculations was used to 

predict grafting barriers for all 19368 grafting sites. After 

training, the only input information for each grafting site are its 

values of d1, d2, and 𝜃. The residuals of the predictions are 

plotted as a distribution in Figure 7. Nearly all residuals are 

within ±1 kJ/mol, and the standard deviation of the residual 

distribution is 0.48 kJ/mol.  

 

Fig. 5 (a) Evolution of the unreacted vicinal silanol site 

population as a function of non-dimensional grafting time. 

(b) Fraction of unreacted vicinal silanol sites as a function 

of logarithmic time. The inset shows the evolution as a 

function of real time in the range 0< τ <0.3. It also includes 

an exponential decay model fit to this data. 
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6.3. Identifying important local coordinates 

The results in Sec. 6.2 used three of five coordinates to 

construct the kernel regression model. Three is already a 

relatively compact structural parameter set, but for this model 

it can be reduced further. To evaluate the importance of 

different combinations of local coordinates, the model was 

retrained by systematically excluding some coordinates. Table 2 

shows R2
 values for fits with different coordinates. Figure 8 

shows parity plots like the one in Figure 6, but for a model based 

only on d1, and for a model based on d1 and d2 (i.e., without θ).  

 

 
 

 

The model trained using d1 and d2 (R2 = 0.99) is comparable 

in accuracy to the model trained using all coordinates (R2 = 0.99) 

Clearly, d1 and d2 are both important for describing barriers, but 

θ is inconsequential as its omission does not diminish the 

accuracy of the kernel regression model. We can also see that 

the model cannot be further simplified from d1 and d2 

dependence. The models trained on only d1 (R2=0.60) and d2 

(R2=0.52) have severely diminished accuracy. 

 

Now, using just two coordinates, we can project the grafting 

free energy barriers onto a 2D plot, Figure 9. The barrier 

decreases monotonically with increasing d1 or d2. Therefore, 

grafting sites with large values of d1 and d2 react first, while 

grafting sites with small values of d1 and d2 react more slowly. 

We emphasize that, even with this simple model, it was not 

obvious a priori how structural characteristics would influence 

the grafting kinetics. The procedures in this paper should help 

to identify features of the most reactive silanol sites. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Parity plot showing predictions of grafting 

activation barriers by the kernel regression model 

trained on 100 grafting sites.  

 

Fig. 7 Distribution of residuals for a model trained on 

100 grafting sites. 

Table 2: R2
 values of kernel regression 

models with different combinations of 

local coordinates  

Coordinates R2 

θ -0.02 
d2 0.52 
d1 0.60 

d2, θ 0.52 
d1, θ 0.60 
d1, d2 0.99 

d1, d2, θ 0.99 
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6.4. Predicting the time evolving population of grafting sites     

In this section, we recompute results from section 6.1, now 

using the kernel regression model. We use the model based 

only on d1 and d2 and trained on just 100 randomly sampled 

grafting sites to predict the evolving population of unreacted 

silanols. The results are shown in Figure 10a. 

      The training set of 100 grafting sites does not include 

examples of grafting sites at the extreme fast and slow grafting 

limits. Accordingly, the trained model does not accurately 

predict grafting kinetics at the extreme fast and slow limits. 

Fortunately, the extreme tails account for only a small portion 

of the total grafting sites, so important properties like the 

overall grafting progress are still accurately predicted by the 

model, Figure 10b. 

 

 

 

 

 

 

 

 

Fig. 9 Model-predicted barriers as function of d1 and 

d2. Blue dots show training set grafting sites. The 

figure also shows the structures of active and inactive 

grafting sites. Grafting sites with smaller values of d1 

and d2 have larger barriers, while grafting sites with 

larger values of d1 and d2 have smaller barriers. 

 

 

Fig. 8 (a) Parity plot of the model trained with d1 

and d2. (b) Parity plot of the model trained with 

d1 only. 
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7. Conclusions 

    Several factors make ab initio rate calculations prohibitively 

difficult for single-atom catalysts grafted to amorphous 

supports such as silica. First, the quenched disorder of the 

support presents an unknown distribution of local 

environments. Second, grafted site abundances depend on 

differences in grafting kinetics at different grafting sites.  Third, 

differences between the grafted sites can cause differences in 

their catalytic activity. Several investigators are working to 

overcome the first challenge.71-74 This paper addresses the 

second challenge by combining transition state theory, kernel 

regression, and population balance models. A companion paper 

to this one addresses the third challenge.93 

 

    To illustrate and test the new methodology, we introduce a 

simple 2D disordered lattice model of amorphous silica. The 

model allows us to compute the grafting rate at nearly 20 

thousand grafting sites to obtain essentially exact solutions for 

the evolving grafting/grafted site population during grafting. 

Then, we trained a kernel regression model to predict grafting 

rates from a training set of rate calculations at just 100 grafting 

sites. The regression model predicted barriers with ca. ±0.5 

kJ/mol accuracy on the test set of about 20 thousand grafting 

sites. We also showed how the kernel regression results can 

identify those grafting site characteristics that most strongly 

influence the grafting kinetics. Finally, the trained kernel 

regression model was used to predict the evolving population 

of unreacted silanols.  

     In future work, we will use this framework with ab initio 

calculations and more realistic silica models to predict grafting 

rates and active site abundances during the preparation of real 

single-site catalysts on amorphous silica.  Given a model of 

amorphous silica, the new algorithm should enable quantitative 

predictions about the grafting process and the grafted site 

distribution without assuming the characteristics of the most 

active or most abundant sites.   
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