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Lignin Valorization Process Control under Feedstock
Uncertainty through a Dynamic Stochastic Program-
ming Approach

Hanxi Baoa, Zhiqiang Zhoub, Georgios Kotsalis†b, Guanghui Lan∗b, and Zhaohui Tong
∗a

The randomness introduced by reactants is an issue when
processing renewable bioresources. In this paper we apply
tools from dynamic stochastic programming theory to the
biochemical process. Instead of introducing extra prepro-
cessing units, we consider the inherent randomness of the
process and optimize in expectation the performance of the
system. In a general setting this is a multistage stochas-
tic optimization problem and we investigate its approximate
solution via two approaches, namely Stochastic Dual Dy-
namic Programming (SDDP) and the finite state, finite ac-
tion Markov Decision Process (MDP) framework. These two
methods are implemented to a case study of lignin valoriza-
tion that is crucial to a cost-effective biorefinery process us-
ing biomass as the feedstocks.

Green technologies play a vital role on a sustainable society by
providing renewable energy and renewable resources to reduce
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the dependence on fossilized carbon, and enabling benign pro-
cesses to replace the polluting ones1. However, in spite of rapid
technological advances to satisfy sustainability requirements2,3,
renewable energy and chemicals have only occupied a small frac-
tion of energy and chemical market due to several drawbacks in-
cluding generational discontinuity, complex and heterogeneous
molecular structures, and high amount of impurities4,5. These
unavoidable disadvantages are caused by the generating condi-
tions for renewable resources such as weather, production condi-
tions (e.g. soil, fertilizer, irrigation), storage conditions, as well
as pretreatment and extraction processes.

Biomass is defined as all the organic matters that are derived
from plants. Biomass energy currently contributes approximately
10− 14% of the world’s primary energy supply and has the po-
tential to contribute 30−40% in 20506. The non-edible biomass
such as lignocellulosic biomass is mainly composed of cellulose,
hemicellulose, and lignin. In comparison with other renewable
resources (e.g. solar and wind), biomass has a unique distinguish-
ing characteristic. Specifically, biomass can be converted to, in
addition to relatively low-value energy, a variety of value-added
platform chemicals and materials that help to mitigate environ-
mental problems resulting from synthetic materials, and satisfy
customers’ special needs for product functionalities7 8.

Lignin occupies 15%− 40% of lignocellulosic biomass and is
usually reclaimed as the low-cost waste from biomass-derived
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biorefinery processes9. The US paper industry alone produces
more than 50 million tons of lignin per year with only 2% cur-
rently used for commercial products. The consensus is that the
conversion of abundant waste lignin stream to high value byprod-
ucts is a feasible and necessary means for an economic-effective
biorefinery process. As shown in Fig 1, lignocellulosic biorefin-
ery process mainly focuses on the conversion of carbon sources
such as biomass, starch, and algae to liquid fuels, platform chem-
icals, and materials via thermal/chemical or biological methods.
In current biorefinery operations, lignin is either burned to pro-
duce low-cost heat for power generation or sold as the animal
feeds in wet and dry corn mill. To better utilize lignin as the
main waste stream of biorefinery process, more recent research
has been focused on converting lignin to value-added byproducts.
In particular, lignin, as the largest source of aromatic building
blocks in nature, has significant potential to serve as the starting
material for the production of platform chemicals that can re-
place petroleum-derived BTX (benzene, toluene, and xylene) for
the production of functional bioproducts10,11. If biomass-derived
biochemical techniques are commercialized as sustainable pro-
cesses on a large scale12, the biorefinery process will be able to
produce 0.225 billion tones of lignin to replace up to 30% of the
transportation fuel and chemical supply13.

Lignin constitutes of monomeric phenyl propylene units to
link together to form a crosslinking structure. During the re-
cent decade, much effort has been devoted to valorization (or
depolymerization) of lignin to high value aromatic monomers
via oxidation, reduction, thermal-chemical and biological meth-
ods14–18. While it is well-known that the complexity of lignin
structure and property has an important impact on its depoly-
merization chemistry, reaction parameters, and the yield and se-
lectivity of final products, the quantitative relationship among the
key lignin characteristics, reaction kinetics, and products output
(yield and selectivity) has not been well-understood. Recently
Ma et. al.19 applied a multi-variable linear estimation method
to establish the correlation between lignin structural properties
and their conversion reactivity toward the oxidative depolymer-
ization process. However, many factors have a non-linear rela-
tionship that is beyond this linear model analysis. Moreover, the
chemical and molecular properties of lignin obtained from biore-
finery processes vary significantly in different biomass species and
different biorefinery and extraction processes20–22. How to min-
imize the negative effects of lignin’s characteristic uncertainty on
its valorization process has become a new challenge to guarantee
stable yield and high quality of the depolymerized products.

From the mathematic point of view, numerous optimization

methods have been applied to the field of sustainable energy
and renewable resources. A variety of optimization techniques,
including mixed-integer linear-programming, Lagrangian relax-
ation, quadratic programming, Nelder-Mead Simplex search, ge-
netic algorithms, particle swarm optimization and pareto-based
multi-objective-optimization, have been used to solve a few dif-
ferent design, planning, and control problems arising from this
area23,24. Most of these studies focus on wind and solar energy
system with homogenous resources rather than biomass with het-
erogenous structures and variable properties. Furthermore, a few
studies on optimization methods for bioenergy have been directed
to the energy management policy25, the supply chain of biomass
resources26, and the distribution of the produced fuels and en-
ergy27. To the best of our knowledge, optimization methods to
deal with uncertainty existing in biochemical processes have sel-
dom been reported. In fact, the randomness in reactants has sel-
dom been discussed even for conventional chemical processes,
because these processes rarely handle impure reactants. Stochas-
tic optimization approach has been studied to resolve certain ran-
domness issues in process control when no reaction is involved28.
By contrast, biochemical process has to deal with large random-
ness and impurity in reactants (e.g. lignin). In the presence of
reactants the associated nonlinearity leads to continuous valued
optimization problems that are difficult to solve. Thus, it is nec-
essary to develop new and appropriate stochastic optimization
methods to deal with this issue so that we can control the feed-
stock randomness, the major hinderance for the scale up of bio-
chemical process.

This study formulates a stochastic process model to optimize
process robustness through addressing uncertainty on reactants
in a typical lignin valorization process. As illustrated in Fig. 2,
lignin rich residues following the upstream biorefinery processes
are randomly mixed from different sources, creating a stochastic
lignin content profile in the mixing tank. Pump 1 then controls
the inlet flow rate from the mixing tank to a reactor with fixed
volume. The reactor operates at constant temperature controlled
by the heating unit, with other reacting reagents (e.g., catalyst)
added from the top. Powered by Pump 2, effluent from the re-
actor then feeds to an air cooler and further into the extraction
column, where the final aromatic monomer products are gener-
ated by using organic solvent extraction.

Our previous research shows that biomimetic catalysts are at-
tractive for the depolymerization of lignin to aromatic chemicals
due to their low cost and relatively mild reaction conditions29–31.
In particular, among these catalysts, the use of sodium persulfate-
based biomimetic catalyst results in good yield and requires rel-
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Fig. 1 The general biorefinery process for lignin extraction and upgrading.

ative milder conditions. Fig. 3 describes a plausible mechanism
of this lignin valorization process using persulfate as the catalyst,
which demonstrates that the cleavage of β -O-4 bonds by sulfate
free radicals dominates this reaction. In this research, we fur-
ther investigate the reaction kinetics of this process for both lignin
model compounds and authentic lignin, which will be used to de-
rive the dynamic equations later in our stochastic optimization
model.

We elucidate the reaction kinetics, especially the relationship
between the conversion yield and different levels of reaction pa-
rameters, through a set of experiments. The Box-Behnken method
and response surface method, respectively, were used to design
the experiments and analyze the obtained results in order to
determine the effect of various reaction parameters on the con-
version yield of lignin and the optimal reaction parameters (see
the experimental section for more details). Our system oper-
ates under relatively mild condition (60− 100◦C, 1 atm) to con-

duct the lignin depolymerization process. Our results indicate
that persulfate-based catalyst could effectively convert up to 99%
lignin into aromatic monomers, and that a set of optimal reac-
tion conditions achieving the smallest cost for the lignin valoriza-
tion process are given by 2 h reaction time, 80◦C reaction tem-
perature, 2.0 mol equivalent persulfate loading and 5% Ferrous
catalyst loading (based on persulfate)31. Moreover, maintaining
other reaction conditions at the optimal level and varying the re-
action time from 15 min, 30 min, 45 min, 60 min, to 120 min,
we observed that the conversion yield of lignin increased from
37%±5.4%, 69%±3.0%, 87%±2.6%, 93%±2.0%, to 99%±0.5%,
respectively. These experimental results suggest that the lignin
valorization reaction follows the first order kinetic model defined
as

r =−dc
dt

= krc, (1)

where c denotes the reactant concentration, r denotes the re-
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Fig. 2 Lignin oxidative depolymerization process design.

Fig. 3 Lignin oxidative depolymerization by biomimetic oxidative catalyst.

action rate, and kr denotes the rate constant for this reaction.
We can directly calculate the reaction rate constant kr according
to (1) and the experimental data. The dependence of kr on other
reaction conditions, e.g., temperature, can also be derived using
the Arrhenius equation

kr = A exp(−Ea/RT ),

where A denotes pre-exponential factor, Ea denotes activation en-
ergy for the reaction, R is the universal gas constant and T is the
absolute temperature. Specifically, the activation energy Ez of β -
O-4 compound can be computed according to Jiang et. al.32.

As shown in Table 1, the reactor design follows a stage wise
operation which conforms the kinetics in (1). At stage i the initial
reactant concentration is ci−1 and reacts at volume V for the dura-

Table 1 Reactor design for stage i

1 Initial reactant concentration ci−1
2 React at volume V for the time of a stage ∆T
3 Feed the reactor with inlet flow rate fi in time t,

collect effluent stream with the same flow rate to
maintain the constant volume V

4 Forward to stage i+1

tion ∆T . Within this stage the reactor is fed with inlet flow rate fi
for a duration t and the effluent stream is collected with the same
flow rate to maintain the constant volume V . Then the next stage
i+1 ensues. It should be noted that if t = ∆T , then feeding, reac-
tion and draining will happen simultaneously. Otherwise, feeding
and draining will occur in the beginning of the reaction at stage
i although the reaction will continue for the whole stage. Our
model covers both situations mentioned above. The reaction con-
sumes reactant over time which brings the concentration of reac-
tant down to a lower level. Let us consider the reaction at stage i
lasting for time ∆T . By rearranging the terms in the equation (1)
and taking the integral on both sides, we obtain

−
∫ c′i

ci−1

1
c

dc =
∫

∆T

0
krdt.
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Solving the above equation via integration yields

c′i = ci−1exp(−kr∆T ), (2)

where ci−1 and c′i denote the initial concentration and the con-
centration after reaction at stage i, respectively. Now consider the
operation at the end of stage i. We calculate the mass balance of
lignin contents according to

Input +Generation = Out put +Accumulation+Consumption.

The reaction is irreversible at fixed volume and the generation of
lignin equals to 0. For the reaction in this stage, the consumption
of lignin can be written as (ci−1− c′i)V . Since the reactor is fed
with inlet flow rate fi for a duration t while effluent stream is
kept at the same flow rate, it is easy to see that α fit represents
input and c′i fit represents output where α denotes the abundance
of reactant in the feed. Feeding operation is to replenish lignin for
the next stage reaction, thus the difference (ci−ci−1)V represents
accumulation where V denotes the volume of the reactor. We can
write the mass balance equation for stage i as

α fit = c′i fit +(ci− ci−1)V +(ci−1− c′i)V. (3)

Rearranging the above equation and substituting c′i with equation
(2), we obtain an equation on the final concentration of reactant
at the end of stage:

ci = ci−1 exp(−kr∆T ) (1− fi
t
V
) + α fi

t
V
, i = 1, . . . ,NT . (4)

We observe that the reactant abundance α in (4) is random,
because lignin contents distribute unevenly in different biomass
species as the feedstocks of the valorization process. To model
the randomness of α, we considered twenty different species, in-
cluding Wheat Straw, Rice Straw, Rye Straw, Hemp, Tall Fescue
Stems, Tall Fescue Internodes, Flax, Jute, Sisal, Curaua Leaf Fiber,
Banana Plant Leaf, Piassava Fiber, Abaca, Loblolly Pine, Spruce,
Eucalyptus globus, Eucalyptus Grandis, Birch Pendula, Beech and
Acacia. The percentage of guaiacyl (G), p-hydroxyl phenol (H)
and syringyl (S) lignin in all sources of biomass was obtained
from Ragauskas et. al.33. The β -O-4 bonds are the most abun-
dant bonds in all types of lignin with smaller amounts of β -5, β -β ,
and other minor linkages. According to previous study, the β -O-4
bond percentage in softwood species was 50% and in hardwood
ones was 65%34. Eventually a series of concentration profiles
were generated to indicate the abundance of the active chemical
bond (β -O-4) in each lignin feedstock, whose cleavage dominates
the lignin valorization reaction in view of our reaction mecha-

nism. In addition, the entire process was assumed to operate at a
weight loading of 10 g lignin per liter of solvent. A random mix
of different kinds of lignin was assumed to simulate randomness
in real operation. Several statistical distribution models were fit-
ted into the set of concentration profiles to give descriptions of
the variety of authetic lignin, including Weibull, Birnbaum Saun-
ders, Exponential, Gamma, Rayleigh, Inverse Gaussian, Log lo-
gistic, Nakagami and Rician distribution. In terms of Maximum
Likelihood Estimation the Weibull distribution with parameters
αµ = 11.162 and ασ = 1.82309 gave the best fit. This continuous
distribution served as a random sample generator when simulat-
ing the lignin valorization process.

Fig. 4 Diagram for lignin β -O-4 content distribution.

Our control variables are the inlet flow rates fi at stages i =
1, ...,NT measured in (L/s), and the initial abundance of linkage
in the reactor, c0 (mol/L). Stochasticity is induced by the vari-
able α abundance of linkage in the feed (mol/L). We would like
to use these control variables to minimize the total expected de-
viation from predetermined target levels denoted by ĉ0, . . . , ĉNT .
This is a discrete time stochastic optimization problem with con-
tinuous valued state variable ci ∈ C = [cmin,cmax], i ∈ {1, . . . ,NT }
and continuous valued control variables fi ∈ F = [ fmin, fmax],
i ∈ {1, . . . ,NT } and c0 ∈ C . The minimization problem is

min
c0∈C , f1∈F ,...,..., fNT ∈F

E
[
|c0− ĉ0|+ |c1− ĉ1|+ . . . |cNT − ĉNT |

]
(5)

subject to the constraints imposed by the nonlinear stochastic dy-
namics (4) and ci ∈ C , i ∈ {1, . . . ,NT }. The expectation is cal-
culated with respect to the joint distribution of the independent
identically distributed random variables α1, . . . ,αT . The difficulty
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of this problem is induced by the nonlinear stochastic dynamics,
the presence of constraints on the state and control variables and
the fact that the policies are functions with continuously valued
domains and ranges.

Two stochastic optimization methods are implemented to find
the approximate optimal solution of the problem. The first
method is a Markov decision process (MDP) formulation with fi-
nite state and control spaces obtained via discretization and the
second one is the stochastic dual dynamic programming (SDDP)
algorithm35. These optimization methods create a dynamic pre-
dictive model that helps us to control the process parameters (e.g.
flow rate, time, reactant concentration) to achieve a good and
uniform yield of the final bioproducts. Each of these methods has
its own merits which are discussed later when we compare by
means of simulations. These methods can be further extended to
multiple input and output case and other sustainable processes
beyond lignin depolymerization process.

First we discuss the (MDP) model, obtained via discretization.
In the MDP formulation c0 is treated as a parameter while the
control values f1, . . . , fNT are determined via policies µi : C →F

in the sense that

fi = µi(ci), i = 1, . . . ,NT .

The state space C is the concentration of the material in the tank,
we discretize the concentration’s range into N states, i.e., S :=
[s1, . . . ,sN ], where s1 = cmin and sN = cmax. The values of the inflow
rate U are also discretized into L actions, i.e., U := [u1, . . . ,uL],
where u1 = fmin and uL = fmax. We also introduce the constant

b = exp(−∆TAexp(−Ea/RT ))

to save on notation. The value function is given by

VNT−1[cNT−1] = min
fNT ∈U

EαNT
[ |cNT − ĉNT |]

and for t = 1, . . . ,NT −1,

Vt−1[ct−1] = min
ft∈U

Eαt [|ct − ĉt |+Vt [ct ]]

s.t. ct = bct−1(1− ft t/V )+αt
ft t
V . The value function itself is com-

puted via the value iteration algorithm, which is a backward al-
gorithm and delivers as a byproduct the optimal policy as well.
At this point it is worth mentioning that the Markov chain mod-
eling method in the uncontrolled case was widely used to ana-
lyze complex models in chemical engineering, environmental en-
gineering36 and biological engineering. Applications of discrete
Markov chain models in chemical reactions, chemical reactors

Algorithm 1 Value iteration

1. Start from stage NT -1, compute the value function
VNT−1[cNT−1], ∀cNT−1 ∈ S.
for cNT−1 = s1, . . . ,sN

for fNT = u1, . . . ,uL
Compute

EαNT
[|cNT − ĉNT |], where cNT = bcNT−1(1− fNT t/V )+αNT

fNT t
V .

(6)
end for

Choose the fNT that minimizes (6) as the optimal action at the
corresponding state cNT−1, thus obtaining the optimal policy
µNT and the corresponding value (6) is VNT−1[cNT−1].
end for
2. Go back to stage NT − 2, we compute the value function
VNT−2[cNT−2], ∀cNT−2 ∈ S and the corresponding optimal policy
µNT−1. Use the same procedure as in step 1, and keep going
backwards until stage 0.

and complex chemical processes are described in Tamir37. Our
contribution is the use of the Markov chain modeling technique
in conjunction with the presence of control inputs leading to the
aforementioned MDP formulation and the associated algorithm
for computing optimal control values as functions of the state.
We now proceed to discuss the SDDP algorithm. First we need
the following lemma about McCormick relaxation38 to linearize
the bilinear term cNt−1 fNt in the relation (4).

Lemma 1 Consider the set B = {(w,x,y) | xL ≤ x ≤ xU ,yL ≤ y ≤
yU ,w = xy} and the polyhedral set C described by the following in-
equalities

w≥ xU y+ xyL− xLyL

w≥ xU y+ xyU − xU yU

w≤ xU y+ xyL− xU yL

w≤ xyU + xLy− xLyU ,

then B⊂C.

With the above relaxation the multi-stage stochastic optimization

6 | 1–10Journal Name, [year], [vol.],

Page 6 of 11Reaction Chemistry & Engineering



problem can be decomposed by time stages as follows

min
x0

F0(x0)+ E
[

min
x1

F1(x1)+ . . . +min
xNT

FNT (xNT )

]
s.t. x0 ∈ X s.t. A1x1 = b1 +B1x0 s.t. ANT xNT = bNT +BNT xNT−1

x2 ∈ X xNT ∈ X ,
(7)

where xi = (ci, fi,ui,s1
i ,s

2
i ,s

3
i ,s

4
i ),∀i = 1, . . . ,NT , Fi(xi) = |ci− ĉi|,

Ai =


1 (b−α)t/V −bt/V 0 0 0 0
0 cmax −1 1 0 0 0
0 cmax −1 0 1 0 0
0 cmax −1 0 0 −1 0
0 cmin −1 0 0 0 −1



Bi =


0 0 0 0 0 0 0
− fmin 0 0 0 0 0 0
− fmax 0 0 0 0 0 0
− fmin 0 0 0 0 0 0
− fmax 0 0 0 0 0 0

 ,bi =


0

cmin fmin

cmax fmax

cmax fmin

cmin fmax

 .

This problem can be formulated equivalently in the form of dy-
namic programming:

Qt(xt−1,ξt) = inf{cT
t xt +Qt+1(xt) : Atxt = bt +Btxt−1}, (8)

where Qt+1(xt) := E{Qt+1(xt ,ξt+1)} and ξt := (ct ,At ,Bt ,bt) are
random variables.
In the following we provide the SDDP algorithm to solve the
above linearized stochastic programming problem.

Algorithm 2 SDDP Algorithm

1. Initial: starting point (x̄1, x̄2, . . . , x̄T ), approximation of value
function Qt for t = 1, . . . ,T .

2. Forward step
for t = 0 to T

for j = 1 to M
Compute x̄t j as an optimal solution of the subproblem

min Ft j(xt)+Qt+1(xt)

s.t. At jxt = bt j +Bt j x̄t−1.

end
end
and compute V j := ∑

T
t=1 Ft j(x̄t j),∀ j = 1, . . . ,M.

3. Compute the confidence interval[
V̄ − zα/2σ̂v/

√
M, V̄ + zα/2σ̂v/

√
M
]
, where

V̄ := 1
M ∑

M
j=1 V j and σ̂2

v := 1
M−1 ∑

M
j=1(V j− V̄ )2.

4. Compute V := infx{F0(x) +Q2(x)}. Terminate if V > V̄ −
zα/2σ̂v/

√
M.

5. Backward step
for t = T to 1

for j = 1 to Nt
Compute x̂t j as an optimal solution of the subproblem

min Ft j(xt)+Qt+1(xt)

s.t. At jxt = bt j +Bt j x̄t−1

and π̂t j as an optimal solution of its dual problem. Define
the cut lt(xt−1) := Q̃t(x̄t−1)+ g̃T

t (xt−1− x̄t−1), where

Q̃t(x̄t−1)=
1
Nt

∑
Nt
j=1 Ft j(x̂t j)+Qt+1(x̂t j) and g̃t =

1
Nt

∑
Nt
j=1 BT

t jπ̂t j.

Update Qt(·) = max{Qt(·), lt(·)}.
end

end

6. Go to step 2.

Note that in the above algorithm we obtain an “open-loop” pol-
icy, i.e. a sequence of optimal parameters c0, f1, . . . , fNT .

To test our models and algorithms, we assume that a continu-
ous lignin depolymerization reacting process ran in an operation
of 2 days. Length of each stage was set as 30 minutes. There-
fore, the operation consists of 96 stages. Both SDDP and MDP
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algorithm were tested using same reaction parameters. Three
different operating scenarios were assumed to simulate different
operating conditions. The test was compared to a control test
result. The control set assumed no randomness was involved in
the reactant, and therefore the mean value of inlet concentration
was used to directly calculate the operation for each stage. The
first operating scenario assumed the target reactant concentra-
tion was kept at a constant level over the entire operation. The
scenario simulates an ideal operation to produce single grade of
product,shown in Fig. 5. The second scenario assumed four reac-
tant concentration levels were required at different time for each
day, which required adjustment on the target every 12 stages as
Fig. 6 shows. This scenario simulates an operation to produce
multiple grades of product using the same reactor. The last sce-
nario in Fig. 7 assumes the target level changes at every stage,
and is used exclusively to test the ability of controlling for each
algorithm.
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Fig. 5 Constant target concentration for all stages
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Fig. 6 Target concentration changes stage-wise
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Fig. 7 Target concentration changes at each stage

Table 2 Performance summary

Operating Objective value CPU times
Scenarios MDP SDDP Control MDP SDDP
1 57.43 124.24 134.36 228.53 1646.1
2 51.33 125.17 116.19 228.97 1607.2
3 39.71 117.47 99.18 234.89 1619.1

Performances of both algorithms are listed in Table. 2. Com-
pared to the control set, the results obtained from stochastic
optimization show that both algorithms reduced total error over
the entire operation. The SDDP algorithm takes relatively long
time to calculate the optimal result, due to frequently calling
solver to solve the convex subproblem for each stage. MDP
algorithm discretized the operation, which simplified the process.
Compare to the SDDP algorithm, the greatest advantage is the
MDP approach can deal with nonconvex problem and only
need to run one backward step, while the SDDP can only deal
with convex problem and needs to iteratively run forward and
backward steps. The numerical results also show the processing
time of MDP is much smaller than the one of SDDP approach.

Conclusions
The results show that the MDP algorithm is appropriate for
this specific sustainable chemical processing problem. This is
proved by better objective value and relatively fast processing
time of MDP. However, the SDDP algorithm assumes stage wise
independence which enables a global approximation of the value
functions using cutting plane models without requiring any
direct discretization. This makes SDDP a viable choice when
modeling complicated process. This could benefit when the
model considers more parameters that have direct effects on
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the reaction. In practice, the biobased feedstocks (e.g. lignin)
usually include more uncertainty except an inter-unit β -aryl
ether β -O-4 linkage39 such as chemical compositions, structures
and molecular weights. This work will serve as the pioneer work
to use stochastic optimization methodology to optimize and
control the randomness of feedstock in sustainable processes. In
the future, we will focus on the seeking the appropriate dynamic
stochastic programming method for the sustainable processes
with more parameters of uncertainty.

Experimental
Oxidative degradation of β -O-4 lignin model compounds (1,3-
Propanediol, 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)-,
(1R,2S)-rel-, CAS number 7572-98-7) with sodium persulfate was
conducted under mild conditions. In a typical reaction, 10 mL
water solution of 2.0 equivalent (EQ) mol of sodium persulfate
were added into the glass vial at first, lignin model compound
with ferrous aqueous solution (5% based on the molar ratio to
persulfate) were then added into the reaction vial. The vial was
sealed and placed in an oil bath maintained at 80◦C under 500
rpm stirring. After the reaction is terminated, the product was
extracted by ethyl acetate for Gas Chromatography–Mass Spec-
trometry (GC-MS) analysis. Two types of lignin including alkali
lignin (Sigma-Aldrich) and organosolv lignin (extracted in our
lab) were used as the feedstocks for the depolymerization reac-
tion as well. In a typical run, 200 mg lignin sample was dissolved
in a 10 mL ethanol (50 wt.%) and then loaded into a seal tube.
2.0 equivalent (EQ) of persulfate (weight based) and 5% molar
fraction of Ferrous catalyst was then added in the tube and the
reaction temperature was increased to 80◦C to initiate the reac-
tion. The reaction was maintained for 24 hours. Samples were
taken out from the seal tube after 3 h and 6 h reaction for gel
permeation chromatography (GPC) analysis. The product after
the reaction was extracted by ethyl acetate for three times and
washed with water and brine. The organic liquid was evaporated
in a rotary evaporator to remove the solvent and obtain the oil
product.
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Herein we address the feedstock uncertainty for a robust lignin valorization
process through a dynamic stochastic programming approach.
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