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This work reports the first example of mono-nuclear Cu 
pincers with SNS ligation acting as electrocatalyst precursors 
for the electrochemical conversion of carbon dioxide to CO 
and H2 in protic organic media.

With the advent of societal interest towards renewable energy 
storage, the use of electricity in solar powered-chemical 
transformations has become a central research effort in modern 
chemical science.1-5 Catalysis for electrochemical conversions of 
abundant carbon sources such as CO2 to fuels and chemical 
precursors, has therefore been at the forefront of reaction 
development, with the specific target of efficient C-C-bond formation 

reactions and the synthesis of complex carbon compounds.6-7 While 
CO2 conversion8-9 remains a central effort in this arena, a synergistic 

research vein in the field of water splitting aims to efficiently produce 
hydrogen fuel from protic media such as water.10 As a consequence, 
electrocatalytic methods for cathodic production of hydrogen and 
anodic production of oxygen from water play key roles in the 
advancement of the field of solar fuel production.11-16 This report 
focuses on the characterization of new catalysts for the reduction of 
carbon dioxide and protons. 

In the field of heterogeneous electrocatalysis, copper is a privileged 
metal for CO2 reduction,17-18 showing excellent rates, but often poor 
product selectivity. Molecular catalysts therefore have the distinct 
advantage of structural tunability and can impart control of the 

chemical reaction at the molecular level. In the arena of molecular 
electrocatalysis, multi-nuclear Cu coordination compounds have 
been reported to mediate C-C coupling reactions of CO2 at 
cathodes,19-21 with related metal sulfide clusters of Co and Ir also 
being active.6 In recent work by Wang and co-workers, a Cu bis-
phenanthroline complex was used as a heterogenized molecular 
catalyst on graphene with good reaction rates.22 Given this 
precedent, we were therefore encouraged to consider the design of 
novel Cu mono-nuclear catalysts with S-containing coordination. 
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Figure 1. a Cyclic Voltammogram of 5 mM Compound 1 in MeCN with 0.1 M TBA PF6 as a supporting electrolyte at 100 mV/s at a glassy 
carbon working electrode, referenced externally vs Fc/Fc+ under an argon atmosphere. b Cyclic Voltammogram of 5 mM Compound 2 in 
MeCN with 0.1 M TBA PF6 as supporting electrolyte at 100 mV/s at a glassy carbon working electrode, referenced externally vs Fc/Fc+ under 
an argon atmosphere.
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Against the backdrop of recent advances in molecular catalysis 
mediated by first-row metal pincers,23 we identified Compounds 1 
and 2 (Figure 1) as potential candidates for electrocatalysis for the 
conversion of CO2.24 To the best of our knowledge, these compounds 
are the first instance of electrocatalysts for CO2 reduction based on 
mono-nuclear CuI pincer precursors.
Cyclic voltammetry in acetonitrile (MeCN) with 0.1 M 

tetrabutylammonium hexafluorophosphate (TBAPF6) was performed 
to assess the reductive responses of two electrocatalyst candidates: 
CuI pincer compounds 1 and 2. Figure 1 shows the reductive scans of 
the two pincers of interest in this work at 100 mV/s. Pincer 1, a 
triazole-based CuI complex exhibits two reductive features, one at -
2.8 V vs Fc/Fc+ and another one at -3 V with only one observable 
oxidation return at -0.7 V. This response suggests the reduction of 
the complex likely occurs with participation of the ligand, as has been 
observed in other pincer ligands with aromatic ligand fragments.13,19 
In comparison, the pyridine 2,6-bis-methyl(imidazole) CuI pincer 2 
exhibits reduction responses at -1.8 V and -2.75 V vs Fc/Fc+ but with 
a similar oxidation return at -0.77 V. Diffusional behaviour for both 1 
and 2 was additionally confirmed through scan rate dependence 
experiments at 100, 200, 300, 400, 500 and 600 mV/s respectively. 

Linearity in plots of the observed peak currents versus  𝑠𝑐𝑎𝑛 𝑟𝑎𝑡𝑒 
(Sevçik plots) confirms that both complexes are freely diffusing in 
solution during the reductive scans (Figures S3 and S7). In addition, 
surface elemental analyses by Energy Dispersive Spectroscopy (EDS) 
of the electrolysis electrodes do not reveal detectable amounts of 
elemental copper (Figure S9).

With these diagnostics in hand, we proceeded to analyse the cyclic 
voltammograms of the two pincers in the presence of CO2 and added 
proton source: 2,2,2-trifluoroethanol (TFE). (Figure 2) Incremental 
addition of protons to compound 1 in the absence of CO2 indicates a 

catalytic response for hydrogen production with the appearance of 
one single CV wave. (Figure S4) The voltammetry of Pincer 1 shows a 
distinct interaction with CO2 and the current increases at -2 V in the 
presence of protons (Figure 2a) with a corresponding return 
oxidation at -0.6 V. The appearance of the catalytic wave suggests 
two redox events are involved in turnover. Compound 2 under argon 
does not respond to protons at low concentrations by cyclic 

voltammetry. (Figure S8) We believe this is the case due to relative 
timescale of the rates of catalytic responses in relation to the 
electrochemical reduction steps.  The voltammetry of pincer 2 also 
shows an interaction with CO2 at -2 V vs Fc/Fc+ and a catalytic 
response upon the addition of protons (Figure 2b). Both compounds 
show similar catalytic onset potentials, with compound 1 showing a 
distinct prewave prior to turnover. While redox electrocatalysis has 
been often associated with a redox wave in the starting metal 
complex, this is not always the case, with responses being associated 
with the redox-response of an electrochemically-generated 
intermediate or an alternate physical process.13 (Figure 2b)

Given the positive the CV diagnostics of pincers 1 and 2 from Figure 
2, we proceeded to identify product distributions and Faradaic 
efficiencies for the observed currents using bulk electrolysis. Bulk 
electrolysis experiments were run in a two-chamber H-cell separated 
by a glass frit with carbon cloth working electrodes and a Ag single-
junction reference, referenced externally vs Fc/Fc+. Electrolyses at -
2.6 V vs Fc/Fc+ passed 183 C and 178 C for pincers 1 and 2, 
respectively. Headspace analyses of the reactions were performed 
using gas chromatography with a thermal conductivity detector (GC-
TCD). (Detailed experimental procedures and analyses are provided 
in the ESI)

While the charge passed through the cell is similar for the two 
compounds under study, the observed product distributions indicate 

Figure 2. Left a Cyclic Voltammogram of 5 mM Compound 1 in MeCN with 0.1 M TBA PF6 as a supporting electrolyte at 100 mV/s at a glassy 
carbon working electrode, referenced externally vs Fc/Fc+ under argon atmosphere (black), CO2 atmosphere (blue), and CO2 atmosphere 
with 100 µL 2,2,2-Trifluoroethanol (TFE) as a proton source (purple) Right b. Cyclic Voltammogram of 5 mM Compound 2 in MeCN with 0.1 
M TBA PF6 as a supporting electrolyte at 100 mV/s at a glassy carbon working electrode, referenced externally vs Fc/Fc+ under argon 
atmosphere (black), CO2 atmosphere (blue), and CO2 atmosphere with 100 µL TFE as a proton source (red).a
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that triazole pincer 1 is more active for the conversion of CO2 over 
protons than pincer 2 with observed ratios of H2:CO of 6:1 for 1 and 
12.6:1 for 2, respectively. Faradaic efficiencies for H2 formation 

during the electrolysis experiments are similar, with ~66% of the 

current being committed to the reduction of protons in both cases 
(additional details available in Table S5). In contrast, Faradaic 
efficiencies for the formation of CO vary between the two pincers: 
pincer 1 exhibits a faradaic efficiency of 11.02 ± 0.40%, while pincer 
2 has an efficiency of 5.23 ± 0.65%. These efficiencies correlate with 
the production of CO with 4 observed turnovers per hour for 
compound 1, while compound 2 turns over only 0.6 times over the 
same duration for CO production.  

Conclusions

In conclusion, we now report the first instance of mononuclear 
catalyst precursors for the electrochemical conversion of CO2 to 
CO and H2 based on CuI. While the observed activities remain 
modest, this work sets the stage for further development of 
pincer electrocatalysis based on first row, inexpensive Cu 
coordination complexes. Additional mechanistic studies will 
focus on elucidating speciation and identification of 
electrocatalytically-active species.
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