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the Hydrolysis Behaviors of Sequenced Degradable Polyesters

Jamie A. Nowalk,a Jordan H. Swisher, a and Tara Y. Meyer a,b* 

Despite the known sensitivity to sequence mutations of biological 

polymers, little is known about the effects of errors in sequenced 

synthetic copolymers. The degradation behaviors of copolyesters, 

for example, are known to depend on monomer-by-monomer 

order, yet the contribution of isolated monomer substitutions on 

hydrolysis behaviors has not been studied. We have developed a 

synthetic method in which precise quantities of a critical sequence 

error are doped into a sequenced polyester and studied how 

hydrolysis behaviors are affected by this distinct and potent 

sequence-error. The degradation rate proved tolerant to 

substitutions up to 1% of the monomers but accelerated 

significantly when the error population was larger.

Although single monomer substitution errors in natural 

biomacromolecules are known to affect function, the 

challenges inherent in the synthesis of sequence-controlled 

polymers (SCPs) have inhibited the development of a parallel  

understanding of how small populations of monomer sequence 

errors affect the properties and performance in non-biological 

polymers.1.2 In addition to characterizing the negative 

consequences of error introduction, such studies could also 

broaden the range of function for polymers prepared from a 

given library of monomers through deliberate error doping with 

a property-dominating monomer or segment.

Although uncommon, there have been some relevant 

reports of small populations of a sequence alteration affecting 

properties. The most prevalent studies typically involve 

solution-phase properties, particularly polymer folding,3-6 

aggregation,7-14 and molecular recognition.15-18 In the bulk 

phase, this phenomenon is even less well studied but there are 

some notable examples including the work of Winey and co-

workers who determined that small alterations in sidechain 

spacing can affect morphological order in ionomers,19-22 

Jannasch and co-workers who described the sensitivity of 

proton conductivity to small deviations in monomer spacing,23 

and Segalman and co-workers who described the dependence 

of surface structure and hydration of polypeptoids on the 

positioning of discrete sequences within a chain.24
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Figure 1. Sequence tolerance pathways as a function of errors in a sequence-

controlled polymer.
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molecular weight decreases gradually as short segments near 

chain ends are cleaved and eliminated. We previously observed 

that the alternating LG sequence is resistant to significant 

amounts of intrachain scission.26 Consistently, we found that G-

G linkages increased the prevalence of intrachain scission 

events that lead to an accelerated molecular weight loss.40-42 In 

the current samples we must, therefore, hypothesize that each 

G-G linkage error increases the chance of MW-decreasing 

intrachain scission.  

In conclusion, we have embedded varying quantities of a 

glycolic acid monomer sequence error to disrupt a primarily 

alternating base sequence within degradable polyesters and 

subjected the polymers to hydrolysis. Hydrolysis rates and 

surface features were monitored over time. Molecular weight 

loss was largely unaffected up to the incorporation of 10 mol% 

cyclic macromonomer error, which translates to an average of 

6.3 monomer sequence errors per chain of ~530 monomers or 

approximately 1%. Above 10 mol%, the degradation 

accelerates, indicating that the errors are becoming more 

dominant in controlling hydrolysis patterns.

We anticipate that the knowledge gained from the current 

study can aid in the engineering of PLGA-type polymers with 

specific properties.   One approach would be to exploit potent 

error dopants to tune one property with a minimal impact on 

another.   We could, for example, tune degradation times by 

adding a small number of G-G linkage errors without 

dramatically affecting other properties like swelling or loading 

capacities.  We are continuing our investigations into semi-

sequencing techniques to manipulate behaviors. 
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