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Abstract

Molecular weight distributions (MWD) have a substantial impact on a diverse set of 

polymer physical and rheological properties, from processability and stiffness to many aspects of 

block copolymer microphase behavior. The precise MWD compositions of these polymers can be 

modularly controlled through temporal initiation in anionic polymerizations by metered addition 

of a discrete initiating species. With the technique described in this work, we identify initiator 

addition profiles through theoretical modeling which can be used to prepare any desired arbitrary 

MWD. This kinetic model reproduces experimental MWDs with high fidelity. Our modeling 

strategy incorporates a detailed kinetic description of polymer initiation and propagation, including 

the association and dissociation equilibria of the living polymer chain ends. We simplify the kinetic 

model by incorporating the aggregation phenomena into an effective propagation rate constant kp, 

allowing it to vary with the polymer chain length (i). Importantly, this model also yields the ability 

to predict MWDs at any arbitrary value of monomer conversion during the polymerization. Lastly, 

we simulate MWDs for a variety of new, yet unmeasured, initiator addition profiles, demonstrating 

the predictability of this approach.
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Introduction

The molecular weight distribution (MWD) of polymers has a profound influence over their 

physical properties, from processability and bulk macroscale properties to nearly all aspects of 

block copolymer phase behavior.1–15 Research in this area has been largely restricted to studying 

only the effects of dispersity (Ð), a parameter which describes the relative span of chains lengths 

in a given sample. However, morphological and rheological properties of polymers have a 

significant dependence on the shape and symmetry of their component MWDs. The impact of the 

MWD shape on such a diverse set of polymer properties clearly demonstrates that modulation of 

the entire distribution of chain sizes is a promising avenue for fine-tuning the function of polymeric 

materials without the need to change their chemical structure.3–8,13 However, until recently this 

approach has remained largely unexplored due to the lack of general methods that enable the 

synthesis of polymers with systematically deviating MWDs. In this regard, a general predictive 

model for targeting any prespecified MWD shape would provide a platform from which scientists 

and engineers can exploit such phenomena.

Several methods have gained synthetic control of polymer Ð.11,16-24 Although most of these 

polymerization methods provide excellent control over the relative span of molar masses, they 

offer only limited control of the absolute shape of polymer MWDs. Our group has recently reported 

a method for deterministic control of polymer MWD shapes in anionic polymerizations, where the 

molar quantities of each chain size are dependent on the time at which each chain is initiated.6–8,25–

28 Using this strategy, enabled through the temporal addition of initiator,7 it has been demonstrated 

that precise control of the shape and composition of the distribution function profoundly affects 

polymer physical properties. In further studies of the anionic polymerization of styrene6 this simple 

and highly efficient strategy allows the synthesis of functional poly(styrene-block-isoprene) 

copolymers with controlled MWDs, showing that MWD symmetry has a profound influence over 

the stiffness of these materials.7 Moreover, in a subsequent study, the thin film domain spacing as 

well as the bulk morphologies of self-assembled block copolymers could be varied over a wide 

range simply through modulating the MWD shape of one block.25 Although this approach is 

universal and broadly applicable to an array of different monomers and polymerization classes, 

the resultant MWD derived from any initiator addition rate profile cannot be known a priori—a 

desired MWD must be achieved through a trial and error process. Consequently, in order to fully 

utilize the shape of polymer MWDs as a handle to control polymer properties, a predictive model 
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that facilitates access to any arbitrary distribution of chain lengths would offer significant 

advantages. 

 To be able to predict MWD composition from a specific initiator addition profile, we began 

by looking at kinetic models that have been previously developed for anionic polymerization. A 

simplified model of living and irreversible anionic polymerization kinetics,29 as well as models 

developed to simulate MWD in semi-batch living anionic polymerizations were available.19,30-32 

However, we found these systems did not accurately predict the final MWDs in our 

polymerizations with controlled initiator additions. We hypothesized that the discrepancies in the 

theoretical and experimental MWDs were because these models did not take into account chain 

end aggregation, which we believed to be a key kinetic parameter in our system. Theoretical and 

experimental studies for anionic polymerizations have shown that the rate of polymerization is 

highly dependent on the degree of polymerization.33,34 The general consensus for the anionic 

polymerization of styrene in hydrocarbon solvents is that the growing species exist primarily as 

dormant associated dimers with a small amount of active dissociated monomeric polystyryllithium 

species.35-37 It was proposed that this change in rate was a result of the chain ends existing in 

equilibrium as inactive associated dimers or active monomers and that this equilibrium would 

change based on the chain length of the polymer (Scheme 1).38 Interestingly, others have noted 

that in radical polymerizations, the termination rate constant is dynamic and dependent on the 

polymer chain lengths.39-41 In this study, we develop a model that takes the dynamic aggregation 

equilibrium into account for the anionic polymerization of styrene and enables the accurate 

prediction of MWD composition for a wide array of initiator addition profiles.  Importantly, we 

believe this strategy will be applicable to a variety of anionic polymerization methods where chain 

end aggregation can influence propagation rates.
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Scheme 1. Initiation, propagation, and aggregation equilibrium in the anionic polymerization of 

styrene used in this model.

Theoretical Modeling

In this study, we develop a kinetic model of anionic polymerization of styrene which 

enables the prediction of any arbitrary MWD prepared by adding initiating species, sec-

butyllithium (sBuLi), at predetermined rates and times throughout the polymerization reaction. In 

order to theoretically model MWDs of arbitrary shape based on the temporal initiation of polymer 

chains, the kinetics of initiation and propagation need to be understood. Below, we give a 

description of our approach to this kinetic behavior, describing first the simple kinetic model which 

neglects the complex phenomena of alkyllithium aggregation and subsequently a more detailed 

picture that includes aggregation which was required to accurately reproduce the experimental 

MWDs in this study. Processing of the raw SEC retention time data is described in detail in the 

Supporting Information (Figure S1 and S2, Equations S1–S4)

In a polymerization mixture of styrene, , in a hydrocarbon solvent, the typical structure 𝑀

of sBuLi is that of a tetrameric aggregate,38,42,44 , which dissociates into the active initiating 𝐼

species , .𝐼

(1)𝐼
𝑘𝑑

⇄
𝑘𝑎

4𝐼

Subsequently, active dissociated initiator is rapidly consumed by styrene present in the reaction 

mixture in the polymer chain initiation step,

(2)𝐼 + 𝑀
𝑘0

𝑁1

where  is the chain initiation rate constant. The dissociation of aggregated initiator is expected 𝑘0

to be slower than that the first monomer addition and initiator association, thus the rate constant 

, is neglected. Moreover, chain initiation is expected to be much shorter than chain 𝑘𝑎

propagation.34
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(3)𝑁𝑖 +𝑀
𝑘𝑝

𝑁𝑖 + 1

Equations (2) and (3) constitute a simplified understanding of anionic polymerization 

which is not sufficient to accurately model our data. This simplified description was studied by 

Sanchez and coworkers where  and  are taken constant, and provided a limited ability to 𝑘0 𝑘𝑝

determine the shape of MWDs when the entire quantity of initiator was added at once.29 Our 

preliminary study, not detailed here, revealed that no single pair of these two parameters were able 

to fit at least a subset of our experimental data (several different initiator addition profiles). 

Therefore, alkyllithium aggregation of living polymer chain ends during chain growth (Scheme 1) 

has to be accounted for. 

The straightforward modeling approach is to assume the rate constant of chain propagation, 

, that enters Equation (3) uniform for all chain lengths (the innate reactivity of the anionic chain 𝑘𝑝

end is constant), while the chains can temporarily form inactive dimers with the rate parameter 𝑘𝑎

,(𝑖,𝑗)

(4)𝑁𝑖 + 𝑁𝑗
𝑘𝑎(𝑖,𝑗)

⇄
𝑘𝑑

𝑁𝑖,𝑗

where  and  are the degrees of polymerization of the two reacting polymer chains. The associated 𝑖 𝑗

dimers are dormant and must dissociate before chain propagation can occur, in a process with the 

dissociation rate constant .The dependence of  on  and  is non-trivial and unknown, however, 𝑘𝑑 𝑘𝑎 𝑖 𝑗

shorter chains presumably have a higher probability of creating dormant dimers due to their higher 

mobility and more accessible active anionic chain ends from the lack of steric bulk; similar to the 

decreased chain mobility leading to the Trommsdorff-Norrish effect.45 The short chains can also 

form dimers with longer chains, and each combination of chain lengths has its own distinct 

equilibrium constant. Consequently, long chains are expected to dimerize at a much lower rate 

than shorter chains and thus remain active for longer periods of time than short polymers. Strictly 

speaking, the observed propagation rate constant appears to be dynamic, but this is likely due to 

the complex aggregation behavior being dependent on the entire statistical distribution of chain 

lengths, , which also varies with time and renders the system dynamics challenging to {𝑁𝑗 ≥ 1(𝑡)}
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solve. By absorbing the process of association and dissociation of the polystyryllithium dimers 

into an average effective rate constant of chain propagation, a function of the chain length, i,

(5)𝑘𝑝 = 𝜅 ∙ 𝑘𝑝(𝑖)

we avoid solving a complex matrix of equations related to , mentioned above, setting 𝑁𝑖,𝑗 𝑘𝑎(𝑖,𝑗)

. In addition, we reserve a monomer-concentration-dependent parameter, , to account for a = 0 𝜅

potential dependence on the concentration. Incorporation of such an average rate constant into the 

reactions in Equations (1)-(3) makes modeling feasible and is approximated by the standard 

differential rate equations:

(6)

𝑑𝐼
𝑑𝑡 = ― 𝑘𝑑𝐼

𝑑𝐼
𝑑𝑡 = 4𝑘𝑑𝐼 ― 𝑘0𝐼𝑀

𝑑𝑀
𝑑𝑡 = ― 𝑘0𝐼𝑀 ―

∞

∑
𝑖 = 1

𝑘𝑝(𝑖)𝑁𝑖𝑀

𝑑𝑁𝑖 ≥ 1

𝑑𝑡 = 𝛿1𝑖𝑘0𝐼𝑀 + (1 ― 𝛿1𝑖)𝑘𝑝(𝑖 ― 1)𝑁𝑖 ― 1𝑀 ― 𝑘𝑝(𝑖)𝑁𝑖𝑀

where 1i is the Kronecker delta symbol, 0 when  and 1 when 𝛿 𝑖 ≠ 1 𝑖 = 1.

It is important to note that the system description that includes Equation (4), i.e. constant 

propagation rate and complex dimers aggregation behavior, is not equivalent to an effective rate 

approach summarized in Equation (6). This question requires a search for functions  and  𝑘𝑎 𝑘𝑑

which themselves may depend on multiple parameters. Nonetheless, the following sections show 

that the effective rate approach is suitable for describing our system for a variety of experimental 

conditions.

Initiator Addition Rates

In order to test the accuracy of the above kinetic model in predicting MWD shapes, we 

explore a variety of initiator addition profiles shown below. The alkyllithium initiating species was 

added at various rates and times to the reaction mixture to start the polymerization process. The 

Page 6 of 27Polymer Chemistry



total amount of the initiator and monomer in each experiment was kept the same,  and , 𝐼0 𝑀0

respectively, such that the final Mn values of the polymers remained constant. We carried out our 

studies by employing initiator addition profiles from earlier work,6,7 and also designing two types 

of complementary profiles. Figure 1 contains initiator addition rates as a function of time. Data 

from the experiments corresponding to Figure 1B–F are used for demonstration of the predictive 

power of the model (see Results and Discussion).
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Figure 1. Initiator addition rates following four shapes: (A) constant rate, (B) bell-shaped rate, (C) 

exponentially increasing rate, and (D) linearly increasing rate, (E) partly constant and then 

exponentially increasing rate (Tables S1 – S3), and (F) linearly decreasing rate (Tables S4 – S5).

Results and Discussion

Data Fitting and Theoretical Model Parameter Investigation

In the preceding section, we outlined a modeling approach that can be applied to the grand 

challenge of predicting MWDs for any arbitrary initiator addition profile. Here we show how to 

utilize it and fit the experimental data. The overall process starts with the development of the 

theoretical model on a training data set, in this case, the constant rates of initiator addition (Figure 

1A). Then, all of the rate parameters in Equation (6) were calculated and optimized. This model 

was then used to fit the MWDs of all other initiator addition profiles not within the training set, 

i.e. Figure 1B–F. Initially, as we mentioned previously, the process of the initiator association is 

neglected, , due to fast initiation of the dissociated species. The rate for the initiation process 𝑘𝑎 = 0

cannot be precisely determined from the considered experimental data due to large differences in 

the timescales of chain initiation and propagation. Setting the rate  to be an order of magnitude 𝑘𝑑

larger than the propagation rate for the chains after one monomer addition is sufficient to describe 

the data. In this work, we set  and , determined by 𝑘𝑑 =  7 min ―1 𝑘0 = 8.06 M ―1min ―1

optimization during the fitting procedure. The parameter  is dependent on the initial monomer 𝜅

concentration, , and set to unity except for the dilution experiments in Figure 9. To solve 𝑀0

Equation (6), we utilize a standard Runge-Kutta-Fehlberg method (RKF45),46,47 an algorithm for 

the numerical solution of differential equations. The resulting MWDs are compared to the 

preprocessed, experimental data. The nonlinear least squares method is used to find the unknown 

parameters (rate constants).

The last rate parameter we determined was . We hypothesized that larger polymer chains, 𝑘𝑝

having decreased mobility and increased steric bulk, would result in a lower affinity for 

aggregation to the dormant species and thus have a higher rate of propagation. Therefore, for each 

experiment with the constant initiator addition rate, the training set described above, we simulated 

the polymerization process with an unknown dependence of  on , Equation (5), which was 𝑘𝑝(𝑖) 𝑖

initially chosen as a first order polynomial, , where  and  are unknown 𝑘𝑝(𝑖) = 𝑎 ∙ 𝑖 + 𝑏 𝑎 𝑏

parameters. A simple linear dependence was found insufficient to fit parameters  and  𝑎 𝑏
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simultaneously for the entire training set. For this reason, we chose to further explore the 

relationship between  and . The function found to best fit these data is shown in Figure 2, 𝑘𝑝(𝑖) 𝑖

which illustrates a nonlinear dependence of  on i (Equation S5). Importantly, this rate of 𝑘𝑝(𝑖)

propagation is in good qualitative agreement with previous studies, which found that the apparent 

propagation rate constant increases with increasing chain length.34 This complex scaling behavior 

may be a result of the complex and dynamic aggregation phenomena when a large number of 

different molar masses are present.

Figure 2. Numerically determined effective rate constant as a function of chain length, 

Equation (S5), that fits the experimental MWDs for the constant rates of initiator addition, Figure 

1A.
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Figure 3. Experimental data (solid lines) and calculated curves (dashed lines) for the constant rate, 

Figure 1A, used as a training set to determine the average effective propagation rate, shown in 

Figure 2.

Model Validation

Without any modification, the effective propagation rate (Figure 2) was found to accurately 

describe the MWDs derived from the other rate profiles not within the training data set used to 

develop the theoretical model (Figure 1B, 1C, and 1D), with the bell-shaped, exponentially 

increasing, and linearly increasing initiator addition rates. The modeling curves along the 

experimental data are shown in Figure 4. This model provides a good fit of the experimental 

MWDs, closely following the shape of each type of initiation profile. Moreover, it is important to 

note that as the initiation time increases, so does the deviation between experimentally determined 

MWDs (Figure 4, solid lines) and those that were determined through theoretical modeling (Figure 

4, dotted lines). Interestingly, the fits are about equally accurate for each type of initiator addition 

profile, from constant and linearly increasing rates of addition to more complex profiles such as 

exponentially increasing and bell-shaped rates. This observation exemplifies the robustness and 

modularity of this theoretical approach. 
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Figure 4. Experimental data (solid lines) and calculated curves (dashed lines) for the average 

effective rate, kept the same for all curves in this plot: (A) bell-shaped rate, (B) exponentially 

increasing rate, and (C) linearly increasing rate.

One case, where all the initiator was added at once at the beginning of the polymerization 

reaction, was suboptimal if simulated with the effective rate profile in Figure 2, (Figure 5). 

However, in this experiment, the initiator is added instantaneously, resulting in a much larger 

concentration of initiator at the beginning of the reaction and therefore giving different kinetics. 

This is in contrast to the experiments in which the initiator was added continuously into the system 
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on the order of an hour or longer. As noted by Sanchez, the concentration of initiator has been 

shown to dramatically influence the polymerization kinetics as the MWDs are highly dependent 

on initial conditions.29,39,40 The small amount of error shown in Figure 5 likely arises from these 

differences, and a more detailed analysis may require incorporation of the aggregation behavior of 

the alkyllithium initiator from Equation (1) into the model. However, the fit from the current model 

is quite reasonable and a more complex discussion of the dynamics in such systems is beyond the 

scope of the present work.

Figure 5. 0-min initiator addition time experimental data (solid line) and a calculated curve 

(dashed line) for the average effective rate shown in Figure 2.

Additional Modeling Considerations

In addition to varying the initiator addition rates and holding the initial monomer 

concentration constant, , we examined our experimental system with a set of four 𝑀0

polymerization experiments with “60 min” constant rate, Figure 1A, using different amounts of 

solvent resulting in a series of monomer dilutions, :𝛼

, (7)𝛼 = 𝑀0 𝑀 ∗
0
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where  is the new initial concentration of the monomer in the system. For each of the dilution 𝑀 ∗
0

datasets we performed least-square fit of the parameter , from Equation (5), while maintaining 𝜅

the propagation rate the same as in Figure 4 (kp(i) from Figure 2). The fitting of  is illustrated in 𝜅

Figure 6, where the experimentally measured data curves are shown as solid lines and model fit as 

dashed lines. The inset of this figure suggests a strong correlation ( ) between the fitted R2 = 0.98

values of . The linear fit reveals that:𝜅

. (8)𝜅(𝛼) = ―0.27log2 𝛼 +0.91

Figure 6. Experimental data (solid lines) and calculated curves, optimizing , (dashed lines) 𝜅(𝛼)

for the constant rate “60 min”, Figure 1A (green line), used as a training set to determine 

dependence of the average effective propagation rate, shown in Figure 2, on the system dilution, 

. The inset shows individual curves fits (solid dots) for 0.5, 1, 2 and 4-fold dilutions (left to right) 𝛼

color-coded to the distributions in this figure. The line in the inset is the linear fit of these four 

points.

These concentration experiments show clearly that dilution has a substantial influence on the 

polymerization reaction kinetics. Additionally, these results elucidate that the parameter 𝜅 
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decreases nonlinearly with increasing dilution, likely due to the complex dynamics of mixed 

alkyllithium aggregation.

We have also tested the sensitivity of our model predictions to the input parameters. As 

expected, the main controlling parameter, , provides good linear control over the MWD shape. 𝑘𝑝

The small changes in MWD observed as  and  are altered shows that these parameters are in 𝑘0 𝑘𝑑

the regime not limiting the system’s dynamics. The calculations are shown in Figure 7, exemplified 

on the 60 min constant initiator addition rate, with . The dotted line is experimental data, the 𝜅 = 1

black solid line is calculated with ,  and . The blue lines show how the 1.0 ∗ 𝑘𝑝 1.0 ∗ 𝑘0 1.0 ∗ 𝑘𝑑

model’s response is altered by varying the propagation rate from  –  (blue shaded 0.9 ∗ 𝑘𝑝 1.1 ∗ 𝑘𝑝

area). The red and green shaded regions  are for the parameters  and , respectively. These two 𝑘0 𝑘𝑑

parameters are already large enough not to limit the polymerization dynamics. Even significant 

decreases in these parameters (here taken as 20-fold) show little change in the overall fit.

Figure 7. Sensitivity to the model parameters demonstrated by varying the propagation rate, 

initiation rate and dissociation rates from their optimized values, ,  and , respectively.𝑘𝑝 𝑘0 𝑘𝑑
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Theoretical modeling of the type presented in this work is beneficial for providing insight 

into the dynamics of the polymerization processes. To exemplify this we calculate the MWDs at 

the times when the monomer conversion is incomplete, see Figure 8, where we model the 

polymerization process with exponentially increasing rate of initiator addition within 80 min. The 

five traces shown in Figure 8A demonstrate the polymerization dynamics with the distributions 

shifting to the higher molecular weights as the chains grow. Figure 8B and 8C show how much 

monomer remains in the system and the number of polymer chains that have been initiated, 

respectively. The solid dots on panels (B) and (C) of Figure 8 are color-coded to the times of 

snapshots in panel (A). This type of analysis at different time points provides insight into the 

evolution of MWDs over time as more initiator is added to the polymerization reaction.
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Figure 8. Detailed picture of the modeled polymerization process with exponentially increasing 

rate of initiator addition within 80 min. The chain propagation rate used for this Figure is that from 

Figure 2. (A) Snapshots of the distribution shown at different midway times indicated on the plot. 

(B) Fraction of the total amount of monomer left in the system as a function of time. (C) Fraction 

of the total number of polymer chains in the system as a function of time. The circles in panels (B) 

and (C) are color-coded to and indicate the times at which distributions in panel (A) were 

generated.

Another benefit of this model is the ability to simulate the MWDs for various new, yet 

unmeasured, initiator addition profiles. Figure S3 contains examples of the initiator addition rates, 

shown in the insets, which result in monomodal distributions. Figure S4, similarly to Figure S3, 

contains examples of the bimodal MWDs and their corresponding initiator addition profiles. 

Furthermore, we improved the fits for the data sets Figure 3 and (A),(B) in Figure 4 where 

the model-experiment discrepancy was the largest for longer initiator addition times. Due to the 

fact that aggregation is a dynamic process which is dependent on the concentration of each chain 

size in solution, we determined customized  relationships for each type of addition profile 𝑘𝑝(𝑖)

and used them to better model the resultant MWDs. The improved distribution fits and the 

corresponding experimental data are shown in Figure 9. The modified chain propagation rates are 

available as insets. Notably, the fits for longer addition times are significantly improved using the 

optimized  vs  profile. The source of the deviations of the optimized rates from the effective 𝑘𝑝(𝑖) 𝑖

rate in Figure 5 likely originates from the specific contribution of each chain length present in 

solution for different initiator addition profiles since different molar quantities of each chain length 

will result in distinct association equilibria. In this regard, it is interesting to point out that Figure 

6 demonstrates that the customized effective kp(i) follow the same trend as the relationship found 

in the training data set. Also notable, increasing addition times, in general, induced a slight drop 

in kp(i), presumably due to a larger fraction of small polymer chains being present, which would 

shift the aggregation equilibrium marginally toward dormant species.
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Figure 9. Experimental data (solid lines) and calculated curves (dashed lines) for the improved 

chain propagation rates, different for each curve in this Figure, see text for detail: (A) constant 

rate, (B) bell-shaped rate, and (C) exponentially increasing rate. Insets contain the chain 

propagation rates color-coded to the distributions generated from these rates. The solid grey lines 

in all insets are identical to Figure 2.
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We then calculated dispersity (Ð), an important molecular weight distribution parameter, 

for various initiator addition times and compared these results to the values obtained directly from 

the size-exclusion chromatography data (Figure 10). The panels (A)-(D) of this Figure correspond 

to the initiator addition rates of the type shown in Figure 1(A)-(D). Solid blue lines with selected 

dots magnified in blue are obtained from the model, in a similar way to Figure 4, whereas the black 

dots correspond to the experimental data, and red dots are the improved fits from Figure 5 and 9. 

Interestingly, at shorter addition times the general model predicts dispersity values with high 

precision. However, the comparison between experimental and theoretical dispersity values shows 

a decreased accuracy of the general effective rate constant determined from the training set without 

any further modification (Figure 2). Modelling addition times of 80 min or higher results in larger 

deviations from experimental values. However, this can be substantially improved by using 

customized effective rate profiles. It is important to briefly note that the experimentally determined 

dispersity values may be slightly overestimated compared to the true dispersity values, though this 

effect is minimal.48
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Figure 10. Dispersity (Ð), calculated for all the experiments discussed above: (A) constant rate, 

(B) bell-shaped rate, (C) exponentially increasing rate, and (D) linearly increasing rate. Solid blue 

lines (with selected cases magnified as blue circles) correspond to the effective rate constant, , 𝑘𝑝(𝑖)

given in Figure 2. Black circles represent dispersity calculated from the experimental data, whereas 

red circles are for the improved model fits as in Figure 9.

We then proceeded to examine the predictive behavior of our strategy by modeling MWDs 

prepared by more complex initiator addition profiles (shown in Figure 1E and F) which have not 

been previously reported, and in which the experimental MWDs were obtained after simulation. 

Similarly to the bell-shaped, exponentially increasing and linearly increasing initiator addition 

rates, without any modification, the effective propagation rate was found to satisfactory describe 

the more complex constant-then-exponentially-increasing rates of initiator addition demonstrated 
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in Figure 11A. The predicted (calculated) curves using the standard  vs i profile in Figure 2 𝑘𝑝(𝑖)

retain the same shape as those achieved experimentally. The modeling of constant-then-

exponentially-increasing rates accurately depicts the distribution shape but is less accurate in terms 

of overall fit. However, analogously to Figure 9, customized rates (Figure 11B) show improved 

fits and illustrate that even complex initiator addition rates can be predictably modeled with this 

theoretical strategy. Moreover, the calculated and experiment dispersity values (Figure 11C) were 

also improved with customized propagation rate constants. For the linearly decreasing initiator 

addition rates from Figure 1F the experimental MWDs were in good agreement with the 

precalculated MWDs, thus any improvement of the chain propagation rate for these two data sets 

was unnecessary. These sets of experiments demonstrate that MWDs can be predicted from a 

variety of previously unexplored initiator addition profiles and that the experimentally determined 

MWDs of the same rate profile match the predicted distribution functions with high fidelity.
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Figure 11. (A) Experimental data (solid lines) and model curves (dashed lines) calculated with the 

generic  from Figure 2 for the initiator addition rate in Figure 1E. (B) The same but for the 𝑘𝑝

improved rates illustrated in the inset. (C) Dispersity corresponding to the data in (A) and (B). 

Blue circles are for the model curves with generic , red circles are for the model improved 𝑘𝑝

curves, and black circles were obtained from the experiment data. (D) Experimental data (solid 

lines) and model curves (dashed lines) calculated with the generic  from Figure 2 for the initiator 𝑘𝑝

addition rate in Figure 1F. (E) The same as (C) but for the data in (D).
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Conclusions

Control of polymer MWD shape through temporal control of polymer chain initiation is 

rapidly becoming a robust handle for tuning material nanostructure and physical properties. This 

work has been driven by a desire to predict an arbitrary MWD and formulate an initiator addition 

profile that would produce it. In order to fully employ the shape of polymer MWDs as a versatile 

strategy to control polymer function, a predictive model is essential. We have outlined two 

modeling approaches that can be applied to this endeavor, and show how to utilize the second 

approach, with an effective chain propagation rate parameter, as well as how to fit the experimental 

data. We clearly demonstrate that this model reproduces experimental MWDs with high fidelity 

and provides novel physical insight into the dynamics of the polymerization process, such as 

simulating the MWDs for various new, yet unexplored, initiator addition profiles and calculating 

MWDs at times when monomer conversion is not complete. Interestingly, this model also 

describes the origin of increased rates of anionic polymerization for large polymer chains. We 

attribute this kinetic behavior to the complex relationship between propagation rate and the 

dynamics of heterogeneous mixtures of chain lengths, where longer chains have a lower affinity 

for association and thus propagate much faster. With the findings from this work, we anticipate 

that the use of polymer MWD shape to tailor material properties will proliferate, as initiation 

profiles for any arbitrary MWD can now be targeted through the use of this modeling approach.
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