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Abstract

Since the landmark development of the Scherrer Method a century ago, multiple

generations of width methods for X-ray diffraction originated to non-invasively and

rapidly characterize the property-controlling sizes of nanoparticles, nanowires, and

nanocrystalline materials. However, the predictive power of this approach suffers from

inconsistencies among numerous methods and from misinterpretations of the results.

Therefore, we systematically evaluated twenty-two width methods on a representa-

tive nanomaterial subjected to thermal and mechanical loads. To bypass experimental

complications and enable a 1:1 comparison between ground truths and the results of

width methods, we produced virtual X-ray diffractograms from atomistic simulations.

These simulations realistically captured the trends that we observed in experimental

synchrotron diffraction. To comprehensively survey the width methods and to guide fu-

ture investigations, we introduced a consistent, descriptive nomenclature. Alarmingly,

our results demonstrated that popular width methods, especially the Williamson-Hall

Methods, can produce dramatically incorrect trends. We also showed that the simple

Scherrer Methods and the rare Energy Methods can well characterize unloaded and

loaded states, respectively. Overall, this work improved the utility of X-ray diffraction

in experimentally evaluating a variety of nanomaterials by guiding the selection and

interpretation of width methods.
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Introduction

By correlating the broadening of peaks in X-ray diffraction (XRD) with material imper-

fections, width methods can non-invasively and rapidly track the characteristic, property-

controlling sizes and microstrains of a wide range of nanomaterials1,2 (e.g., nanoparticles,3,4

monocrystalline nanowires,5,6 and nanocrystalline materials7–9). However, the predictive

power of this approach suffers from inconsistencies among numerous methods and from mis-

interpretations of the results.

The many width methods employed today originated as modifications to the 1918 Scher-

rer Method, which attributed peak width (β) to a characteristic size (D).10–12 Since that

landmark publication, researchers have added new terms to represent the effects of other

broadening sources.13 In 1953, Williamson and Hall introduced a constant microstrain (ε)

term.14,15 This two-term method is the most popular approach today because it conveniently

captures the effects of both size and strain without material-specific factors. However, ε is

anisotropic by definition, so the Stress Methods, Energy Methods, and Dislocation Meth-

ods arose in the late 1990s and early 2000s. The Stress Methods and Energy Methods use

the material-specific Young’s moduli (E) to substitute ε for stress (σ) and deformation en-

ergy (u), respectively.16 The Dislocation Methods instead use material-specific dislocation-

contrast factors (C)17,18 to represent ε by dislocation density (ρ) and sometimes also by

dislocation correlation (Q).19 These methods sometimes adjust D for for planar defects (P )

as well.20

Further width methods arose by varying features other than the included broadening

sources. First, every width method can incorporate different representations of β (i.e., the

width type).21 For example, the original Scherrer Method assessed the full-width-half-max

widths (F ), which are the widths of the peaks at half of their amplitudes.10 Eight years

later, Laue introduced the most popular alternative: the integral-breadth widths (I), which

are the areas of the peaks divided by their amplitudes.22 Alongside width type, each multi-

term model can vary in the way that the terms are convolved (i.e., the functional forms).

Williamson and Hall originally proposed two combinations: linear (i.e., the convolution of

Lorentzian functional forms) and quadratic (i.e., the convolution of Gaussian functional

forms). In 1966, Halder and Wagner introduced an intermediate approach by mixing a

Lorentzian form with a Gaussian form.23 This asymmetric approach was recently adapted

into the Dislocation Methods13,24 and the problematic Size-Strain-Plot Method,25,26 which

fails dimensional analysis.

Over time, the number of width methods grew exponentially with the introduction of

new (1) broadening sources, (2) width types, and (3) functional forms. However, the nomen-
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clatures for these emerging width methods did not evolve systematically. For example, width

methods are commonly called “integral-breadth methods” even if F values are actually used.

Likewise, because of the ubiquity of the Willliamson-Hall Method, which itself has multiple

forms, newer methods (e.g., Stress, Energy, and Dislocation Methods) frequently adopted

the same name: “Modified Williamson-Hall Method.” These overlapping nomenclatures in-

vited researchers to incorrectly assume that all width methods produce the same trends in

properties. Further, the traditional nomenclatures did not consistently define the charac-

teristic size, which should represent the volume-averaged length of a column of coherently

diffracting material (L).7,21 Unfortunately, modern studies commonly failed to convert L

to an equivalent domain diameter (D), to identify the difference between domain size and

particle/nanowire/grain size, or to acknowledge the difference between the volume-averaged

size from X-ray width methods and the area-averaged size from electron microscopy.25,26

To improve the utility of XRD in characterizing nanomaterials, we systematically evalu-

ated the inconsistencies of twenty-two width methods. By using virtual XRD from atomistic

simulations of a representative, nanocrystalline nanowire subjected to thermal and mechani-

cal loads, we established a fully characterized ground truth for the microstructural evolution

and avoided confounding factors intrinsic to diffraction experiments. These simulations re-

alistically captured the trends that we observed in experimental synchrotron diffraction on

a similar system. To survey the combinatorial space of width methods in this study and to

facilitate future experimental studies, we presented a unified nomenclature, which explicitly

denotes (1) broadening sources, (2) width type, and (3) functional forms. Our results re-

vealed that all three elements can both quantitatively and qualitatively affect the resulting

properties. Alarmingly, we showed that some popular Williamson-Hall Methods can pro-

duce dramatically incorrect trends. We also demonstrated that the simple Scherrer Methods

and the rare Energy Methods can well characterize unloaded and loaded nanomaterials,

respectively.

Results and Discussion

Synchrotron Diffraction

To evaluate the accuracies of the width methods without experimental complications (e.g.,

broadening from instrumentation, uncertainty in composition, and limited access to three-

dimensional crystallography), we employed atomistic simulations of nanocrystalline nickel

(Ni) thermally and mechanically loaded at 500 K. To illustrate that these simulations were

qualitatively realistic, we performed synchrotron diffraction of a nanocrystalline, nickel-iron

3
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Figure 1. (A) Microstructures and (B) the (111) XRD peak for a nanocrystalline Ni-Fe alloy annealed
at 470 K - 870 K. (C) The peak widths (β), which scale with width type (i.e., F vs. I), cleanly reflect
the grain growth apparent in the micrographs.

(Ni-Fe) alloy annealed at 470 K – 870 K.

Synchrotron diffraction comprehensively assesses the evolution of nanomaterials by pro-

viding high penetration depths, robust transmission data, and simultaneous measurement of

multiple Debye–Scherrer rings.27,28 The micrographs in Fig.1A illustrate that the tempera-

ture and time of anneal can drive the characteristic, nanoscale size to grow at various rates.

Most importantly, the evolution of this size is clearly reflected by the widths (β) of the XRD

peaks (i.e., Figs. 1B-D). Additionally, Fig.1D shows that the magnitude of β can depend on

width type. This observation suggests that the choice between F and I impacts the results

of width methods.

Atomistic Simulation

To evaluate the accuracies of width methods in experimentally realistic scenarios, we used

3.4-million-atom simulations of a nanocrystalline, Ni nanowire subjected to thermal and

mechanical loads in a prior study.29 Figures 2A-D present cross-sectional microstructures at

the initial state, after 40 ns of anneal alone, after 40 ns of anneal + creep, and after 40 ns of

anneal + fatigue. Face-centered-cubic (FCC) atoms are colored from blue to red according

to the sizes of the coherent domains (i.e., regions without line/planar defects). Single and

4
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Figure 2. Microstructures for the simulated nanowire at the (A) initial, (B) anneal, (C) creep, and
(D) fatigue states. FCC atoms are colored blue to red according to the sizes of the coherent domains.
Single and double planes of yellow, HCP atoms represent twins and stacking faults, respectively. Atoms
of other coordinations are hidden. Discrete characterizations include (E) number of atoms per crystal
structure (N), (F) volume-averaged domain size (D) as a function of the minimum number of atoms
per domain (ND,min), and (G) dislocation density (ρ).

double planes of yellow hexagonal-close-packed (HCP) atoms represent twins and stacking

faults, respectively. Other atoms, which comprise the grain boundaries, are hidden.

Both the thermal and mechanical loads induced grain growth. For example, the largest

grain grew significantly after 40 ns of anneal alone (i.e., Fig.2B), more after 40 ns of anneal +

creep (i.e., Fig.2C), and even more after 40 ns of anneal + fatigue (i.e., Fig.2D). The increas-

ing number (N) of FCC-coordinated atoms and the decreasing number of other-coordinated

atoms (i.e., Fig.2E) indirectly reflects these differences in grain growth. Consistent with

prior evidence,30–32 grain rotation and twinning drove grain growth in all three cases. As

illustrated by the numerous black arrows in Figs. 2B-D, all three loads forced domains to

rotate/shift to satisfy the twin angle and then merge into twinned grains. This proposed

grain-growth mechanism is consistent with the increasing N of HCP-coordinated atoms with

respect to time for each load in Fig.2E. By producing different amounts of grain growth and

likely activating different mechanisms, these three simulations well established ground truths

for validating the width methods.

Figure 2F presents the evolution of the volume-averaged domain size (D) of the nanowire.

Coherent domains better served as an evaluation metric for the width methods than poten-

5
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tially twinned grains because diffraction results from coherent interference. As detailed in

the Methods Section, D was computed through a clustering algorithm,33 which required

selection of a minimum number of atoms per domain (ND,min). Setting ND,min > 200 atoms

ensured an increasing D, which was reflected by Figs. 2A-E. Overall, this ground truth

required width methods to produce D values between roughly 5.5 nm (i.e., at the initial

state) and 6.8 nm (i.e., at 40 ns of fatigue) with an initial jump between 0 ns and 10 ns.

Figure 2G presents the evolution of the dislocation density (ρ) of the nanowire. Enhanced

dislocation-motion resistance common to nanocrystalline materials34 likely maintained the

constant number of perfect dislocations. The only major change in ρ was the initial jump in

Shockley dislocations, which accompany stacking faults. Some faulting must have occurred

but was arrested quickly in all three loading cases. This inference is consistent with the

rarity of double planes of HCP atoms in the micrographs in Figs. 2A-D. Overall, the second

ground truth required the ρ produced from width methods to have an order of magnitude

of 1013/m2 and be relatively constant after an initial jump between 0 ns and 10 ns of each

load.

Virtual Diffraction

We next employed the LAMMPS user-diffraction package35,36 to simulate conventional XRD

of the nanocrystalline nanowire at the initial state and after four, 10-ns increments of anneal,

creep, and fatigue. This package had already successfully detailed deformation mechanisms

Figure 3. (A) Virtual diffractograms and (B) peak widths (β) for the nanowire at the initial, anneal,
creep, and fatigue states. The magnitude of β changed with load, crystallographic plane (hkl), and
width type (i.e., F vs. I). For visual convenience, only the 0-ns and 40-ns states are plotted in (A). In
(B), all five time steps are plotted for each load.

6
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in nanocrystalline copper.37 Fig.3A shows pseudo-Voigt curve fits for the first four XRD

peaks after 40 ns of each load. Fig.3B shows the the peak widths (β) in terms of both F

and I for all 10-ns increments. Despite a difference of twelve orders of magnitude in time

scale, both the synchrotron diffraction and the virtual diffraction exemplified measurable

connections between peak broadening and the characteristic, nanoscale size (i.e., Figs. 1A

and 1C vs. Figs. 2F and 3B). As with our experiments, the magnitude of β depended not

only on the crystallographic plane (hkl) but also on the width type (i.e., Fig.1D and Fig.3B).

Width Methods

As mathematically detailed in the Methods Section, width methods can vary by (1) broad-

ening sources (e.g., D, ε, σ, u, ρ, and Q), (2) width type (e.g., F and I), and (3) functional

forms (e.g., Lorentzians and Gaussians). Therefore, to systematically survey the width meth-

ods, we first introduced a consistent nomenclature, which denotes the width type and then

the broadening source(s). For example, “F :D” represents the Scherrer Method applied to

full-width-half-max data. For multi-term models, the nomenclature also exponentiates the

broadening sources according to the functional forms used to convolve the terms (e.g., 1

for a Lorentzian form and 2 for a Gaussian form). For example, “I:D1ε1” represents the

Lorentzian form of the traditional Williamson-Hall Method applied to integral-breadth data.

Guided by this consistent nomenclature, we selected the twenty-two width methods listed at

the bottom of Fig.4 to mathematically bound the useful solutions.

To evaluate the accuracies of these width methods, Fig.4 presents three evaluation met-

rics: (1) coefficient of determination for fit to the width method (R2), (2) volume-averaged

domain size of the nanowire (D), and dislocation density of the nanowire (ρ). As common

in statistical analysis, we required that R2 ≥ 0.95 to ensure that the methods fit the β data

well. To match the ground truth of D from the atomistic simulations (i.e., Fig.2H), we

required D to increase from ≈ 5.5 nm at the initial state to ≈ 7 nm after 40 ns of anneal.

For convenience, Fig.4 highlights these target regions of R2 and D in grey. Because the

coefficient for ρ in the Dislocation Methods is poorly established,38,39 we only required that

the resulting trends and order of magnitude of ρ match those of the ground truth (i.e., an

initial jump and then a flatline at ≈ 1013/m2).

Despite their simplicity, the Scherrer Methods (i.e., F :D and I:D) produced the highest

values of R2 for the initial microstructure (i.e., Fig.4A). Further, both Scherrer Methods cor-

rectly produced an increase in D with respect to loading time (i.e., Figs. 4B). I:D even had

the correct magnitudes. These observations support the frequent use of the Scherrer Method

to assess unloaded nanomaterials.2,4,5,8,9 However, thermal and mechanical loads rapidly de-

7
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graded R2 (i.e., Fig.4A). As the values of D rose, the importance of ε broadening likely grew.

Overall, the Scherrer Methods seem most useful for assessing unloaded nanomaterials.

To assess loaded nanomaterials, one may have thought to prefer the traditional Williamson-

Hall Methods, which include an ε term. However, these methods surrendered R2 with respect

to loading time (i.e., Fig.4C) even faster than the Scherrer Methods (i.e., Fig.4A). Whereas

fitting to a Scherrer Method typically allows an arbitrary, variable intercept, fitting to the

Williamson-Hall Methods problematically forces that intercept to result in a single value of

ε. Alarmingly, the rapid loss in R2 even coincided with incorrect trends in D (i.e., Fig. 4D)

for the two most popular methods. F :D1ε1 incorrectly showed no difference in D between 0

ns and 10 ns of anneal, and I:D1ε1 non-physically produced a decreasing trend in D for both

anneal and creep. The fact that the two most popular width methods predicted incorrect

trends strongly demonstrates the importance of rationally selecting a width method.

In contrast to the traditional Williamson-Hall Methods, the Stress Methods and En-

ergy Methods introduced microstrain anisotropy by substituting ε for σ or u through linear

elasticity. Correspondingly, all Stress Methods and Energy Methods correctly produced an

upward trend in D (i.e., Figs. 4F,H). Interestingly, these methods and others cleanly illus-

trated that both the width type and the functional forms can systematically scale D in the

following order: F + Lorentzian forms, F + Gaussians forms, I + Lorentzian forms, and

I + Gaussian forms (e.g., black arrow in Fig.4H). The methods with Gaussian forms and

I best matched the ground-truth values of D. However, while the Stress Methods and the

Energy Methods produced similar trends and magnitudes of D, the latter had significantly

higher values of R2 (i.e., Figs. 4E,G). In fact, the Energy Methods outperformed all others

in terms of R2 for characterizing the loaded nanowire. This takeaway is interesting in light of

the rarity of the appearance of Energy Methods, which only require the commonly available

the Young’s Modulus (E) in terms of material properties.

By including anisotropy through dislocation-contrast factors (C), the Dislocation Meth-

ods also outperformed the Scherrer Methods and the traditional Williamson-Hall Methods in

characterizing the loaded nanowire (i.e., Figs. 4I,L). All Dislocation Methods correctly pro-

duced an upward trend in D (i.e., Figs. 4J,M) and a 1013/m2 order of magnitude for ρ (i.e.,

Figs. 4K,N). Interestingly, including the high-order Q broadening marginally affected R2

and D but strongly affected the trends in ρ. In particular, only the width methods that rep-

resented broadening from D, ρ, and Q with Gaussian forms (i.e., F :D2ρ2Q2 and I:D2ρ2Q2)

correctly reproduced an initial jump and then flatline in ρ. Therefore, for quantifying dislo-

cation density, we caution against using the “Simplified Modified Williamson-Hall Methods,”

which include ρ broadening but not Q broadening.40 Considering both the predicted values

of D and the trends in ρ, we consider I:D2ρ2Q2 the best Dislocation Methods.

9
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In addition to accuracies, we should consider the conveniences of width methods. The

Scherrer Methods and the traditional Williamson-Hall Methods are the most popular meth-

ods today because they require no material-specific information. If the goal is to characterize

D in an unloaded nanomaterial, we recommend the Scherrer Methods (e.g., I:D). If the

goal is to characterize ε, and no material properties are available, it is important to recognize

the high potential for systematic error when applying the traditional Williamson-Hall Meth-

ods (e.g., Fig.4D), which non-physically force a single value of ε. Alternatively, if material

properties are available, the Energy Methods and the Dislocation Methods offer improved

characterizations for thermally/mechanically loaded nanomaterials. If the goal is to char-

acterize D, ε, σ, or u, we recommend the rare yet simple Energy Methods (e.g., I:D2u2),

which only require the readily available elastic constants in terms of material-specific prop-

erties. The Dislocation Methods can also predict D well for loaded nanomaterials. However,

the researcher must carefully consider the effects of not only the width type, broadening

sources, and functional forms (e.g., Figs. 4K,N) but also the dislocation-contrast factors

(C). These factors vary with the material, crystallographic plane, and the assumed ratio

of dislocation types. If the goal is to characterize ρ, the Dislocation Methods are the only

options within width methods. Alternatively, researchers may consider more complicated

approaches, such as Variance Methods,41 Modified Warren-Averbach Methods,19,42 Reitveld

Refinement,43 and Whole Powder Pattern Modeling.44

Conclusions

We evaluated the accuracies and conveniences of twenty-two width methods by assessing

X-ray diffractograms generated from atomistic simulations of a nanocrystalline, Ni nanowire

subjected to anneal, creep, and fatigue. These experimentally consistent simulations pro-

vided reliable ground truths for the direct evaluation of width methods. Major takeaways

include:

1. The results of width methods can vary both quantitatively and qualitatively when

altering the broadening sources (e.g., domain size, microstrain, deformation energy,

dislocation density, and dislocation correlation), width type (e.g., full-width-half-max

vs. integral breadth), or functional forms (e.g., Lorentzian vs. Gaussian). This finding

emphasizes the advantage of our consistent nomenclature over the traditional ones,

which can overlap and mislead.

2. The Scherrer Methods, which attribute peak broadening exclusively to domain size,

predictably characterized the initial microstructure well but rapidly lost accuracy when

10
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thermal or mechanical loads induced microstrain. Hence, we recommend the Scherrer

Methods for analyzing unloaded nanomaterials only.

3. Surprisingly, the Williamson-Hall Methods, which are the most prevalent methods

today, performed even worse than the Scherrer Methods by forcing a single value of

microstrain. In fact, some of these methods even resulted in trends that opposed those

of the ground truths of the atomistic simulations (e.g., a decrease in domain size with

annealing time). Overall, we recommend against using the Williamson-Hall Methods

despite their conveniences.

4. The rarely employed Energy Methods well characterized the thermally and mechani-

cally loaded states despite conveniently only requiring the elastic constants in terms

of material properties. Out of all tested width methods, we recommend I:D2u2 for

assessing the characteristic size, strain, stress, or deformation energy of loaded nano-

materials.

5. When including higher-order terms (e.g., I:D2ρ2Q2), the anisotropic Dislocation Meth-

ods well quantified the characteristic size and the dislocation density. However, these

methods require multiple material-specific factors and poorly established coefficients.

If dislocation information is desired, we recommend the Dislocation Methods if the

numerous variables are carefully considered.

Overall, our work improved the utility of XRD in experimentally characterizing a variety

of nanomaterials. We assessed nanocrystalline Ni, which is frequently considered a repre-

sentative metallic system because of the ease of manufacturing and the prevalence of FCC

metals in structural applications. While other metallic systems likely follow trends similar to

those shown in the current work, a systematic sensitivity analysis is beyond the scope of the

present work. Although the precise details may change from system to system, we generally

expect that all materials will be subjected to biases, such as those revealed by the present

study. Further, our finding that all three elements of the consistent nomenclature can influ-

ence the resulting properties applies to an even broader range of nanomaterials (e.g., both

metals and ceramics). To select an appropriate width method, a researcher would simply em-

ploy our consistent nomenclature to systematically survey the numerous width methods for

the nanomaterial of interest. This process would be increasingly important when introducing

complexity in the material composition, microstructure, and/or loading.

11
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Methods

Synchrotron Diffraction

Experimentation followed previously reported procedures for both processing and characteri-

zation.45 An electrodeposition via the direct-LIGA process (i.e., Lithography, Electroplating,

and Molding) produced nanocrystalline alloys with 78 wt% Ni and 22 wt% Fe. Annealing

the samples at 470 K (i.e., for 10, 100, and 1000 minutes), 670 K (i.e., for 1, 10, and 100

minutes), and 870 K (i.e., at 1, 10, and 100 minutes) evolved the grain sizes. We charac-

terize the alloys by using scanning electron microscopy and transmission X-ray diffraction

(i.e., E = 12.7 keV and λ = 0.976 Å, Stanford Synchrotron Radiation Lightsource (SSRL)

beamline 11-3).

Atomistic Simulation

The atomistic model of the nanocrystalline, Ni nanowire was previously constructed29 by (1)

filling a cylindrical volume with solid spheres, (2) evolving those spheres into a microstruc-

ture through a recently developed phase-field method,46 (3) populating each grain within

this synthetic microstructure with randomly oriented atomic lattices, and (4) annealing the

microstructure. This nanowire had a 35-nm diameter, a 41-nm length, 3.4 million atoms,

and approximately 500 domains with an average equivalent spherical diameter around 6 nm.

Unlike the traditional Voronoi method, this phase-field method for constructing a nanocrys-

talline microstructure produced curved grain boundaries and realistic triple junctions.

The nanowire was evolved through simulations of anneal, creep and fatigue through the

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS).29,47 To accurately

model the twinning-dominated, grain-size evolution, an embedded-atom-method potential

(EAM) for Ni was chosen for emphasis on reproducing experimental stacking-fault energy.48

All three loads were simulated at a temperature of 500 K for 40 million 1-fs time steps, which

translated to a total of 40 ns of simulation time. Periodic boundary conditions along the

length of the nanowire approximated an infinitely long nanowire. To echo a stress-relaxation

experiment, creep was simulated by applying a uniform displacement of 1% along the length

of the nanowire for 0.1 ns and then holding that strain for the remainder of the 40 ns. Fatigue

was simulated by applying 200, 0.2-ns cycles (i.e., loading frequency of 5 GHz and strain

rate of 108/s) of pulsating tension (i.e., R = 0) with a maximum strain of 1%.

For discrete quantification of the atomistic simulations, we used a custom version of Ovito

2.6.133 for “Grain Segmentation” and a developer version of Ovito 3.0.049 for “Common

Neighbor Analysis,” “Dislocation Analysis,” and “Construct Surface Mesh.” The Grain-
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Segmentation module, which was created to identify twinning,33 actually identified coherent

domains. To compute the domain size (D), the Grain-Segmentation algorithm first grouped

the atoms into coherent domains and assigned grain-boundary atoms to nearby domains by

forcing a minimum number of atoms per domain (ND,min). Then, the average number of

atoms per domain was converted into an equivalent, spherical diameter (i.e., D) by using

the atomic density of a Ni unit cell. Dislocation densities were computed by dividing dislo-

cation lengths, which were computed by “Dislocation Analysis,” by solid volume, which was

computed from “Construct Surface Mesh.”

Virtual Diffraction

We simulated conventional XRD of the nanocrystalline nanowire at the initial state and

after four, 10-ns increments of the anneal, creep, and fatigue through the LAMMPS user-

diffraction module.35,36 This module kinematically computed XRD intensity for a range of

diffraction angles (θ):

Intensity =

(
1 + cos2 (2θ)

cos(θ) sin2(θ)

)(
F (K)F ∗(K)

N

)
, (1)

where the first factor covers Lorentz polarization; N is the number of atoms; and F is the

structure factor (with conjugate F ∗), which is given by:

F =
N∑
j=1

fj exp (2πiK · rj), (2)

where f is the atomic-scattering factor; r is the atomic position; and K is the diffraction

vector, which is the difference between the diffraction vector (KD) and the incident vector

(KI). Bragg’s law governs the magnitude of K:

|KD −KI| = |K| = K =
1

d
=

2 sin(θc)

λ
, (3)

where d is the characteristic diffraction length (e.g., planar spacing for crystals); θc is the

diffraction angle satisfying Bragg’s law; and λ is the X-ray wavelength. In the current study,

we used conventional Cu Kα radiation (i.e., λ = 1.54 Å, E ≈ 8.04 keV).

Width Methods

The diffractogram of a perfect, infinite crystal would comprise Dirac delta functions at

the peak locations that exactly satisfy Bragg’s law (i.e., at 2θc). However, defects (e.g.,
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sample surfaces, grain boundaries, twin boundaries, and dislocations) broaden the peaks.

Differentiating Eq. 3 with respect to θc yields total broadening (∂K) as a function of peak

width (i.e., β = ∂2θc):

∂K =
2 cos(θc)∂θc

λ
=
β cos(θc)

λ
. (4)

Eq. 4 is at the heart of all width methods, which essentially translate β-θc data into vari-

ous representations of ∂K to yield crystallographic information. Therefore, to apply width

methods, we first fit the virtual diffractograms with pseudo-Voigt curves, which approximate

the convolution of Lorentzian curves with Gaussian curves.50 From these fits, we computed

the values of θc and the two most common forms of β: full-width-half-max width (F ) (i.e.,

peak width at half amplitude) and integral-breadth width (I) (i.e., peak area divided by

peak amplitude). As for interpreting ∂K, the remaining subsections cover the constituent

broadening sources and the common methods for combining them.

Domain-Size Broadening

Especially for nanomaterials, broadening due to the domain boundaries (i.e., ∂KD) domi-

nates all other broadening sources:

∂KD =
AD
L

=
4AD
3D

, (5)

where L and AD represent a characteristic length and shape, respectively.10,22

Although Scherrer originally correlated β with crystallite size (D),10 the characteristic

length produced by width methods is actually the length of the coherently diffracting column

of material (L).7 For polycrystalline materials, this column cuts through multiple grains,

which comprise crystallites, which comprise domains. Assuming no two domains in the

irradiated column interfere coherently, L equals the diameter of a coherently diffracting,

spherical domain when the column exactly bisects the domain. Hence, the volume-averaged

diameter of a spherical domain (D) approximately equals 4L/3. Unfortunately, modern

studies25,26 often neglected to convert L to D, so the volume-averaged sizes predicted from

width methods arbitrarily seemed closer to the area-averaged sizes from electron microscopy.

This manuscript uses “AD” for the shape factor rather than the typical “K” to avoid

confusion with the magnitude of the diffraction vector (i.e., K in Eq. 3). This coefficient

accounts for the effect of domain shapes on ∂KD.21 For a uniform distribution of spherical

domains, AD ≈ 0.829 for F data and 1.704 for I data. For a uniform distribution of non-

spherical domains, AD also changes with crystallographic plane. For a uniform distribution of

octahedral domains, AD ≈ 0.874 for F data and 1.077 for I data when assessing the first four

14

Page 14 of 25Nanoscale



XRD peaks of an FCC material. Non-uniform distributions, such as the log-normal function

typically used to model grain-size distribution, reduce AD. Because of these complexities,

most studies assume a value of 0.9, 0.94, or 1.0.2,51,52 We used AD = 0.9, the most common

value. Researchers may adjust AD to scale the resulting values of D but not to remedy

incorrect trends.

Microstrain Broadening

Microstrain broadening (∂Kε), which increases with D, can be represented as a function

of K (i.e., Eq. 3) and a root-mean-square (RMS) ε.14,15 Alternatively, linear elasticity can

substitute ε for stress (σ) or deformation energy (u):16

(∂Kε, ∂Kσ, ∂Ku) =

(
2Kε, 2K

σ

E
, 2K

√
2u

E

)
, (6)

where Young’s modulus (E) varies with crystallographic plane (hkl) and the elastic constants

(Cij). For a cubic crystal53,

E−1 = S11 − 2 (S11 + 2S12 − S44)

(
h2k2 + h2l2 + k2l2

(h2 + k2 + l2)2

)
,

S11 = (C11 + C12)(C11 − C12)
−1(C11 + 2C12)

−1,

S12 = (−C12)(C11 − C12)
−1(C11 + 2C12)

−1,

S44 = (C44)
−1.

(7)

For Ni, (C11, C12, C44) = (243.6, 149.4, 119.6) GPa,18 so (E111, E200, E220, E311) = (294,

130, 224, 176) GPa. For evaluating the accuracies of the width methods, we avoided ε as a

ground truth because much debate surrounds the form and origin of ε.54–56 Most argue that

ε represents an RMS value instead of a maximum value, but no clear consensus exists on the

extent of the influence of the boundaries on ε.

Dislocation Broadening

Anisotropic microstrain can also be modeled through dislocation density (ρ) and dislocation

correlation (Q):19,20

∂Kρ = Aρ

√
ρ

(
πK2b2C

2

)1

=

(√
2πAρb

λ

√
ρ

)
√
C sin(θ), (8)
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∂KQ = AQ

√
Q

(
πK2b2C

2

)2

=

(
2πAQb

2

λ2

√
Q

)
C sin2(θ), (9)

where b, Aρ, AQ, and C are the Burger’s-vector magnitude, dislocation coefficient, dislocation-

correlation coefficient, and the dislocation-contrast factor. Aρ depends on the effective outer

cutoff radius of dislocations but is not well established. We employed Aρ = 10, which was

mathematically supported for a wide range of dislocation densities17 and employed in the

original study on Fe.38 However, a recent experimental study on the X-ray/neutron diffrac-

tion of aluminum suggested Aρ ≈ 0.6.39 Because AQ is even less established than Aρ, values

of Q are not typically interpreted. As in other works,39 we used the b corresponding to

perfect dislocations (i.e., a/
√

2 ≈ 0.249 nm for Ni). Most importantly, the dislocation con-

trast factor (C) captures anisotropy by relating the line vector (l), Burgers vector (b), and

diffraction vector (K).18 Untextured samples or randomly oriented Burgers vectors enable

the use of average contrast factors (C). For a cubic crystal,

C ≈ C = Ch00

(
1− q

(
h2k2 + h2l2 + k2l2

(h2 + k2 + l2)2

))
, (10)

where Ch00 and q can be expressed as exponential functions of Cij through tables in a prior

publication.18 We assumed a 50-50 distribution of edge and screw dislocations in Ni to obtain

Ch00 ≈ 0.266 and q ≈ 2.35. Alternatively, the values of Choo and q can be deduced from

experimental fits.57

Planar-Defect Broadening

Especially for nanocrystalline materials, planar defects (P ) may divide grains into multiple,

coherently diffracting domains. To adjust the predicted size closer to the grain size, some

Dislocation Methods included a P term as well:20

∂KP = pω =

(
1.5ρf + ρτ

a

)∑
B

(
|h+ k + l|

(U +B)
√
h2 + k2 + l2

)
, (11)

where ρf is the density of stacking faults; ρτ is the density of twins; a is the lattice parameter;

U is the number of unbroadened peaks; and B is the number of broadened peaks.
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Combined Broadening

Because nanomaterials have many boundaries, studies often employ the Scherrer Method,10,22

which attributes all broadening to D. Equating Eqs. 4 and 5 yields:

β cos(θ) =
4ADλ

3D
. (12)

Typically, researchers allow a non-zero intercept when fitting to Eq. 12. Equivalently, we fit

to the Modified Scherrer Method,12 which applies a logarithmic transform to Eq. 12:

ln β =

(
ln

4ADλ

3D

)
+ ln

1

cos(θ)
. (13)

Because the Scherrer Method has one independent variable (i.e., D), only one XRD peak

is needed. Assessing multiple peaks improves the accuracy and can indicate the presence of

anisotropic ε. Alternatively, ε can be modeled directly by convolving a term relating to size

with term(s) relating to strain:52

1 =
∑
i

(
∂Ki

∂K

)ai
, (14)

where i denotes the broadening sources, which may include domain boundaries (D), planar

defects (P ), microstrain (ε), stress (σ), deformation energy (u), dislocation density (ρ), and

dislocation correlation (Q). To avoid redundancy, only one broadening source related to

strain (i.e., ε, σ, u, or ρ) can be selected. Choosing ρ enables the additional option of the

higher-order term related to Q. Because each of these broadening sources introduces one

independent variable, the total number of broadening terms must not exceed the number of

XRD peaks analyzed. As in the consistent nomenclature, the superscripts (ai) dictate the

functional forms (e.g., ai = 1 for Lorentzian, and ai = 2 or Gaussian).

The most popular Williamson-Hall Method14 incorporates a Lorentzian D term and a

Lorentzian ε term. Substituting Eqs. 4, 5 and 6 into Eq. 14 with aD = aε = 1 yields:

β cos θ =

(
4ADλ

3D

)
+ (4ε) sin(θ), (15)

where D and ε can be determined from the intercept and slope, respectively. From this single

value of ε, RMS values of σ and u can be computed through linear elasticity. Because only

a single value of ε is calculated, Eq. 15 is misleadingly called the “Williamson-Hall Uniform

Deformation Model.” Because a uniform deformation would shift not broaden the peaks,52

we prefer the consistent nomenclature (i.e., D1ε1).
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To introduce microstrain anisotropy, the Williamson-Hall Uniform-Stress-Deformation

Model16 uses E to exchange ∂Kε for ∂Kσ (i.e., Eq. 6). For Lorentzian functional forms

(i.e., D1σ1),

β cos θ =

(
4ADλ

3D

)
+ (4σ)

sin(θ)

E
. (16)

Likewise, the Williamson-Hall Uniform-Deformation-Energy-Density Model16 uses E to ex-

change ∂Kε for ∂Ku. For Lorentzian functional forms (i.e., D1u1),

β cos θ =

(
4ADλ

3D

)
+
(√

32
√
u
) sin(θ)√

E
. (17)

Alternatively, the Dislocation Methods introduce anisotropy by using C. These methods

incorporate ∂Kρ and potentially also ∂KQ and/or ∂KP .19,20 To represent the most general

Dislocation Method with Lorentzian forms (i.e., D1ρ1Q1P 1), we substituted Eqs. 5, 8, 9,

and 11 into Eq. 14 with ai = 1:

β cos(θ) =

(
4ADλ

3D

)
+ (pλ)ω +

(√
2πAρb

√
ρ
)√

C sin(θ) +

(
2πAQb

2

λ

√
Q

)
C sin2(θ), (18)

The first two broadening terms relate to size effects, and the last two terms relate to strain

effects. Because each additional broadening source requires additional coefficients and an

extra XRD peak, common width methods omit terms from Eq. 18. For example, we evalu-

ated the importance of the second-order Q term by testing models with and without it (e.g.,

I:D1ρ1 vs. I:D1ρ1Q1). To ensure a 1:1 comparison between the discrete D and the sizes

predicted by width methods, we did not examine methods with ∂KP .

Eq. 14 and our consistent nomenclature accommodate many types and combinations of

functional forms. For survey purposes, we tested models that exclusively employ Lorentzian

forms (i.e., all ai = 1) or Gaussian forms (i.e., all ai = 2). Because all broadening sources

comprise only one term, pure-Gaussian models derived as termwise squares of the pure-

Lorentzian models detailed above. Mixed-form methods, such as the Halder-Wagner Meth-

ods23,58 (e.g., F :D1ε2) and the asymmetric variants of the Modified Williamson-Hall Methods

(e.g., I:D1ρ2Q2),24 would produce results between those of the tested extremes.

Acknowledgments

The authors thank D. Medlin from Sandia National Laboratories (SNL) for technical com-

mentary, A. Stukowski from the Darmstadt University of Technology for a developer version

of OVITO, and J. Weeks from Word Tree Consulting for editing. This work was supported

18

Page 18 of 25Nanoscale



by the United States (US) Department of Energy (DOE) Office of Basic Energy Sciences

(BES), Department of Materials Science and Engineering. Experimental X-ray diffraction

was performed at the Stanford Synchrotron Radiation Lightsource (SSRL), an Office of Sci-

ence user facility operated for the US DOE. Virtual-diffraction capabilities were provided

by the Center for Integrated Nanotechnologies (CINT), an Office of Science user facility

operated for the US DOE by SNL, a multi-mission laboratory managed and operated by

National Technology and Engineering Solutions of Sandia (NTESS), LLC, a wholly owned

subsidiary of Honeywell International, Inc., for the US DOE’s National Nuclear Security

Administration (NNSA) under contract DE-NA0003525. The views expressed in this article

do not necessarily represent the views of the US DOE or the US Government.

References

(1) Weidenthaler, C. Pitfalls in the characterization of nanoporous and nanosized materials.

Nanoscale 2011, 3, 792–810.

(2) Holder, C.; Schaak, R. Tutorial on Powder X-ray Diffraction for Characterizing

Nanoscale Materials. ACS Nano 2019, 13, 7359–7365.

(3) Li, T.; Senesi, A.; Lee, B. Small angle X-ray scattering for nanoparticle research. Chem-

ical Reviews 2016, 116, 11128–11180.

(4) Yu, T.; Shen, Z.; Toh, W.; Xue, J.; Wang, J. Size effect on the ferroelectric phase

transition in SrBi2Ta2O9 nanoparticles. Journal of Applied Physics 2003, 94, 618–620.

(5) Niekiel, F.; Bitzek, E.; Spiecker, E. Combining atomistic simulation and X-ray diffrac-

tion for the characterization of nanostructures: A case study on fivefold twinned

nanowires. ACS Nano 2014, 8, 1629–1638.

(6) Al-Ghamdi, A.; Al-Hazmi, F.; Alnowaiser, F.; Al-Tuwirqi, R.; Al-Ghamdi, A.; Al-

hartomy, O.; El-Tantawy, F.; Yakuphanoglu, F. A new facile synthesis of ultra fine

magnesium oxide nanowires and optical properties. Journal of Electroceramics 2012,

29, 198–203.

(7) Kril, C.; Birringer, R. Estimating grain-size distributions in nanocrystalline materials

from X-ray diffraction profile analysis. Philosophical Magazine A 1998, 77, 621–640.

(8) Lefebvre, L.; Chevalier, J.; Gremillard, L.; Zenati, R.; Thollet, G.; Bernache-

Assolant, D.; Govin, A. Structural transformations of bioactive glass 45S5 with thermal

treatments. Acta Materialia 2007, 55, 3305–3313.

19

Page 19 of 25 Nanoscale



(9) Lian, J.; Jang, D.; Valdevit, L.; Schaedler, T.; Jacobsen, A.; Carter, W.; Greer, J.

Catastrophic vs gradual collapse of thin-walled nanocrystalline Ni hollow cylinders as

building blocks of microlattice structures. Nano Letters 2011, 11, 4118–4125.

(10) Scherrer, P. Determination of the size and internal structure of colloidal particles using

X-rays. Mathematical Physics 1918, 2, 98–100.

(11) Holzwarth, U.; Gibson, N. The Scherrer equation versus the ‘Debye-Scherrer equation’.

Nature Nanotechnology 2011, 6, 534.

(12) Monshi, A.; Foroughi, M.; Monshi, M. Modified Scherrer equation to estimate more

accurately nano-crystallite size using XRD. World Journal of Nano Science and Engi-

neering 2012, 2, 154–160.

(13) Scardi, P.; Leoni, M.; Delhez, R. Line broadening analysis using integral breadth meth-

ods: A critical review. Journal of Applied Crystallography 2004, 37, 381–390.

(14) Williamson, G.; Hall, W. X-ray line broadening from filed aluminium and wolfram.

Acta Metallurgica 1953, 1, 22–31.

(15) Stokes, A.; Wilson, A. The diffraction of X rays by distorted crystal aggregates-I.

Proceedings of the Physical Society 1944, 56, 174.

(16) Mote, V.; Purushotham, Y.; Dole, B. Williamson-Hall analysis in estimation of lattice

strain in nanometer-sized ZnO particles. Journal of Theoretical and Applied Physics

2012, 6, 6.

(17) Wilkens, M. The determination of density and distribution of dislocations in deformed

single crystals from broadened X-ray diffraction profiles. Physica Status Solidi (A)

1970, 2, 359–370.
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