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Abstract

We present a simple approach for predicting the relative energies of bimetallic nanoparticles 

spanning a wide-ranging combinatorial space, using only the identity and nearest-neighbor 

coordination number of individual metal atoms as independent parameters. By performing 

straightforward metal atom adsorption calculations on surface slab models, we parameterize 

expressions for the energy of metal atoms as a function of their coordination number in 21 

bimetallic pairings of fcc metals. We rigorously establish the transferability of our model by 

predicting relative energies of a series of nanoparticles across a large number of morphologies, 

sizes, atomic compositions, and arrangements. The model is particularly accurate in predicting 

atomic rearrangements at or near the metal surfaces, which is essential for its potential 

applications when studying segregation phenomena or dynamic processes in heterogeneous 

catalysis. By rapidly forecasting site stabilities with atomic specificity across generic structural 

and compositional features, our model is able to reverse engineer thermodynamically feasible 

motifs of active sites in bimetallic nanoparticles through robust property  structure relations.⟺
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Introduction

Alloy nanoparticles are widely used in heterogeneous catalytic applications, and are synthesized 

to take advantage of desirable additive or synergistic properties of the component metals.1–3 

Relative to their monometallic counterparts, alloy nanoparticle systems are characterized by a 

large number of atomic arrangements in configurational space which presents a formidable 

computational challenge in efficiently screening across materials space. Experimental 

measurements of surface segregation are feasible on a system-by-system basis,4,5 but lack the 

complete site-by-site, atomic-scale resolution that can be realized from first-principles 

calculations. It is therefore highly desirable to develop an efficient computational framework for 

predicting the energies of bimetallic systems based on their surface structure, size, and 

composition. Such an understanding will ultimately enable identification of realistic nanoparticle 

structures and their morphological evolution under catalytic conditions. Furthermore, the 

integration of such a framework with traditional volcano-based reactivity maps would enable 

targeted screening of thermodynamically feasible active site ensembles as a function of their 

morphology and local chemical environment.

A number of efforts have been made to understand the ordering properties of bimetallic 

systems.6,7 Early computational studies predicted surface segregation phenomena in various 

dilute slab-based models using quantum chemical calculations.8,9 More recent electronic 

structure calculations have looked at phenomena involving surface growth10,11 or using more 

complex nanoparticle models.12–14 A variety of methods have attempted to generalize these 

ordering principles, including the use of neural networks15–17, Bayesian linear regression18,19, 

cluster expansions20,  and genetic algorithms21–24, among others.25–28 We also note that the 

surface ordering of alloys is highly dependent on catalytic reaction conditions, and that the 
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presence of intermediates in a catalytic reaction can strongly influence both the catalyst shape 

and the segregation of metal components to the surface.29–32 Although promising, these methods 

have been applied to a specific alloy composition, e.g. Rh/Au18,19 or Ni/Fe20, and need to be 

refitted using several hundred additional calculations for each new system. Notwithstanding the 

predictive power of model parameters like weight factors (Bayesian regressions) or effective 

cluster interactions (cluster expansion), a physical interpretation of obtained parameter values 

still remains elusive. Despite these recent developments, an alloy stability model that can be 

generalized across the immense materials space spanning bimetallic nanoalloys but using only a 

limited number of physically meaningful parameters is currently lacking. We postulate an 

alternative framework for predicting the relative ordering of generic alloy structures based on 

parameterizing the energy of constituent atoms as a function of their coordination number. Our 

model is motivated by screening effects of itinerant transition metal d-electrons that largely 

confine perturbations in coordination or composition to a region of one lattice constant33. We 

show that this phenomenon greatly decreases the number of parameters required to efficiently 

describe generic morphologies and compositions of bimetallic nanoparticles.    

We previously presented a method for determining the energies of individual metal atoms 

in monometallic systems based solely on the metal identity and their individual coordination to 

other metal atoms using a small set of simple density functional theory (DFT) calculations.34 By 

tracking changes in atomic coordination corresponding to metal atom adsorption events on 

surface slab models, the adsorption energies of metal atoms could be predicted in a more general 

configurational space (e.g. nanoparticles). This model was particularly successful in determining 

the relative ordering of nanoparticles with varying atomic arrangements, which is critically 

important when identifying minimum energy structures and for applications in dynamic 
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simulations (e.g., kinetic Monte Carlo simulations of sintering).35 We also subsequently 

identified simple mappings between energies of metal configurations and the adsorption energies 

of catalytic intermediates on monometallic systems, which suggests extension of these dynamic 

simulations to systems under catalytic operating conditions.36 Although such an extension to 

adsorbate-induced segregation is outside the scope of the present work, this recent work provides 

a framework by which such effects could be addressed through relations between molecular 

adsorption energies and the stability of the metal site to which they bind.

In this study, we show that a coordination-based model that considers compositional 

variations through a mean field approach can predict relative energies of atomic arrangements 

for both periodic surfaces and nanoparticle models across 21 binary pairings of Ag, Au, Cu, Ir, 

Pd, Pt, and Rh with high accuracy. In contrast with previous approaches, this framework is 

transferable to a number of nanoalloys having different sizes, morphologies, and overall 

compositions, and is highly efficient since it only requires a relatively small number of DFT 

calculations to fit a limited number of parameters. This approach will enable accurate and 

efficient future simulations of the evolution of metal nanoparticles as a function of shape, 

composition, and (ultimately) the reaction environment, i.e., the chemical potential of reactive 

species. Moreover, by rapidly screening site stabilities, our framework is capable of reverse 

engineering the morphology of realistic active site ensembles, ultimately enabling the inverse 

design of bimetallic alloy catalysts.   

Computational methods

Density functional theory (DFT) calculations were performed using the same framework as in 

our previous work.34 The Quantum ESPRESSO37 software package was used with the RPBE 

functional38 and ultra-soft Vanderbilt pseudopotentials39 within the atomic simulation 
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environment (ASE).40 Kinetic energy cutoffs of 500 eV for plane waves, and 5000 eV for charge 

densities were used. We performed calculations on seven fcc transition metals, however, because 

of the generality of these coordination-based concepts we note that the approach should be 

transferable to transition metals with other crystal structures. Ni was omitted from our present 

analysis so as to avoid complications and additional computational costs associated with spin 

polarization; Ni was shown in our previous work34 to follow the same principles as the other 

monometallic fcc systems, so we anticipate these concepts also should be extendable to Ni 

bimetallic systems. The lattice constants of metals in this study were optimized to the following 

values (experimental values41 in parentheses, all values in Å): Ag 4.22 (4.09), Au 4.20 (4.08), Cu 

3.68 (3.61), Ir 3.88 (3.84), Pd 3.98 (3.89), Pt 3.99 (3.92), Rh 3.85 (3.80).

Calculations on fcc(111) and fcc(100) surface geometries were performed with a base 

slab of six layers of metal atoms; the bottom four layers were fixed at their bulk-optimized 

coordinates and all other atoms were fully relaxed. Calculations on fcc(211) slab models were 

performed with a base slab of 12 layers, and the bottom six layers were fixed. At least 12 Å of 

vacuum separated successive slabs in the periodic z-direction. Partial occupancies were 

determined using a Fermi – Dirac smearing of 0.10 eV facilitating faster convergence of the 

Kohn – Sham equations. The dipole correction to the total energy was applied perpendicular to 

the slab for all surface calculations.42 All calculations are spin-paired as the metals considered do 

not display magnetic ordering. Monkhorst-Pack k-point grids43 were used for all calculations: 2 x 

2 surface unit cells were sampled with 8 x 8 x 1 grids, and 3 x 3 surface unit cells were sampled 

with 6 x 6 x 1 grids. Calculations in 3 x 3 x 3 unit cells of bulk metals (i.e., no vacuum) were 

performed with 6 x 6 x 6 k-point grids and all atoms relaxed. Considered nanoparticle 

morphologies include cuboctahedral (CUB), octahedral (OCT), decahedral (DEC), and 
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icosahedral (ICO) structures. Atomic coordinates of initial structures were obtained using ASE.40 

To understand the impact of finite size effects, we utilize 147 atom and truncated 309 atom (half-

309) CUB nanoparticles. All atoms in the nanoparticle calculations were relaxed (unless 

otherwise noted) with at least 10 Å of vacuum spacing in all directions, using only the gamma 

point. For the half-309 nanoparticles, atoms in the bottom-most layer were fixed to their bulk 

positions. Gas phase energies were computed using spin polarized calculations in 21 Å x 22 Å x 

23 Å unit cells, at planewave and density cutoffs of 500 eV and 5000 eV respectively. All 

geometry optimizations were performed with a force convergence criterion of 0.02 eV Å-1.

In some cases of surface adsorption, particularly for large atoms (e.g. Au, Ag) adsorbed 

at higher coverage on surfaces with a smaller lattice (e.g. Cu), or stronger-binding metals (e.g. Ir, 

Rh) adsorbed on weaker-binding metals (Au, Ag), substantial corrugation or other deviations of 

the surface layer from ideal fcc stacking were observed. We chose to disregard energetics from 

these reconstructions from our analysis and subsequent parametrization, since the coordination 

number of atoms is much less clearly defined than in an ideal fcc stacking. The specific 

reconstruction criteria used to exclude data are: (1) deviations of more than 0.5 Å in the z-

coordinate of atoms within any given metal layer, (2) nearest-neighbor interatomic distances 

within a layer greater than 1.05 times the equilibrium lattice interatomic distance, and/or (3) 

nearest-neighbor interatomic distances within a layer less than 0.9 times the equilibrium lattice 

interatomic distance. Applying these criteria, only 9% of all adsorption energies were excluded 

from the training set, including no more than 25% of adsorption energies obtained for any 

specific bimetallic combination.  
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Results and Discussion

We discuss the formulation, validation, and applications of our coordination-based model for 

bimetallic nanoparticles across five sections. We begin by postulating our coordination-based 

model for predicting site stabilities of monometallic catalysts.34 We describe a scheme to 

efficiently treat compositional and structural variations across 21 different bimetallic pairings. In 

the second part, we evaluate our framework in depth on (111) surfaces of Pd-Pt alloys having 

compositions ranging from Pt rich to Pd rich. In the third section, we highlight the necessity of 

accounting for charge density accumulation on atoms within the first sublayer in bimetallic 

alloys. Next, we rigorously establish the transferability of our model in predicting both relative, 

and total energies of nanoparticles having wide ranging morphologies, compositions, and sizes. 

While analyzing the nanoparticle energies, we elucidate correction schemes that account for the 

destabilizing effect of charge density accumulation that is initially discussed in part three. 

Finally, we compare the accuracy, transferability, and computational cost of our paradigm to 

existing approaches for treating alloy nanoparticles and discuss the broader impact of this 

framework in understanding bimetallic catalysts.

A Coordination-Based Model for Bimetallic Systems

We first recount the important results of our model established in the context of 

monometallic adsorption calculations,34 and subsequently formulate our scheme for efficiently 

treating bimetallic compositional space. The energy  of a metal atom in a given configuration 𝐸𝑍
𝑛

is determined only by its identity (Z) and coordination number (n) to nearest-neighbor atoms in 

an fcc lattice stacking, with  = 0 (gas-phase atom) chosen as a reference state. This assumption 𝐸𝑍
0

arises from the inherent nearsightedness in transition metals where perturbations beyond one 
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lattice constant are dampened because of the itinerant nature of d-electrons.33 The discrete set of 

 for each metal is determined by assigning energies to each sequential coordination formed by 𝐸𝑍
𝑛

a central atom to its nearest-neighbor atoms; these bond-associated energies are denoted as . 𝛼𝑍
𝑖

The energy of an atom with a given coordination number is calculated as the sum of all  up to 𝛼𝑍
𝑖

that coordination number, i.e., . The individual parameters, , are determined 𝐸𝑍
𝑛 = ∑𝑛

𝑖 = 1𝛼𝑍
𝑖 𝛼𝑍

𝑖

through least-squares regression of metal atom adsorption energies to the corresponding changes 

in atomic coordination in both the metal atom and the metal surface (see a simple schematic in 

Figure 1). Since metal atom coordination of 1 or 2 is not explicitly considered within these 

calculations, we use one “lumped” parameter  containing the first three bond-associated 𝛼𝑍
1 ― 3

energies; this yields a total of 10 bond-associated energies { } for each metal 𝛼𝑍
1 ― 3, 𝛼𝑍

4,…,𝛼𝑍
12

considered. We showed that parameters derived in this manner from 14 simple adsorption 

calculations allowed accurate prediction of adsorption energies of metal atoms in larger surface 

unit cells, as well as on nanoparticle models. We also found that special attention was needed for 

the calculation of atomic energies for atoms located in the first subsurface layer; this was 

rationalized on the basis of subsurface charge accumulation due to the surface termination. We 

show explicitly how to apply these subsurface corrections to the bimetallic systems later in this 

work.

Figure 1: Schematic of changes in atomic coordination corresponding to sequential adsorption 
of metal atoms: (a) clean fcc(111) surface slab of metal B, (b) after addition of one atom of metal 
A, (c) after subsequent addition of one atom of metal B. The unit cell of the surface modeled is 
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indicated (red dashed line). The coordination number of surface atoms is shown. Metal A is 
shown in blue, and metal B in grey.

We now introduce compositional variations within the coordination-based framework by 

considering 21 possible bimetallic combinations of the seven fcc metals (Ag, Au, Cu, Ir, Pd, Pt, 

Rh). Our monometallic analysis considered 14 adsorption energies for each metal, which 

consisted of all unique sequential additions of metal atoms within the considered unit cell sizes 

and symmetry of (111), (100), and (211) surface terminations, along with a calculation of 

removing an atom from a bulk fcc lattice. We here consider the same sequence of metal 

adsorption energies within a 2 x 2 surface unit cell of (111) and (100) slab models, and within a 1 

x 3 surface unit cell of (211) slab models. The introduction of a second metal on a given surface 

provides a composition degree of freedom and breaks symmetry to yield additional unique 

surface configurations. We therefore added metal atoms (of either species “A” or “B”, generally) 

sequentially to fcc(111), fcc(100), and fcc(211) monometallic slabs of metal B to determine 

adsorption energies as a function of change in atomic coordination numbers; an example of such 

adsorptions is shown in Figure 1. These sequential adsorptions yield a surface layer composed of 

metals A and/or B on a slab of pure metal B. We also calculated the adsorption energy of one 

atom A or B in a 3 x 3 x 3 unit cell of bulk B. We note that up to four metal atoms may be added 

to form a complete adlayer in the 2 x 2 surface unit cells of fcc(111) and fcc(100) slabs, and up 

to three metal atoms to form an additional metal layer in the 1 x 3 surface unit cell of the 

fcc(211) slabs. By considering all permutations of adatoms A and B within these constraints, a 

total of 140 adsorption energies are computed for each bimetallic system (although, a small 

fraction of these is discarded during model parameterization in cases of substantial surface 

reconstruction with the specific criteria stated in the computational methods section). 
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These adsorption energies in bimetallic systems were used as the basis for a new model 

to predict the energies of bimetallic surface configurations, utilizing the same paradigm 

developed for monometallic systems: the energy  of an atom is determined by its coordination 𝐸𝑍
𝑛

number n and its identity Z, and is calculated as the sum of its corresponding bond-associated  𝛼𝑍
𝑖

parameters. Notably, the energy of an atom depends only on the total coordination number in our 

model, and not on the atomic identity of its nearest neighbors. We note, however, that unlike , 𝐸𝑍
𝑛

quantities such as the energetics of elementary processes (e.g., adsorption, diffusion) are longer-

range in nature because they are derived from changes in coordination (and energy) of both the 

atom under consideration and its nearest neighbors. Therefore, even though the energy assigned 

to a particular atom is defined only by its identity and its coordination number, the identity and 

coordination information about all its neighboring atoms is required to describe elementary 

processes involving movement of that central atom.

As a first test of this method, we attempted to describe adsorption energies in bimetallic 

systems using the parameters obtained from the monometallic analysis, i.e., the energies of 

atoms of metal “A” were predicted as a function of the  parameters associated with metal A, 𝛼𝐴
𝑖

and the energies of metal atoms “B” were determined by the  parameters associated with metal 𝛼𝐵
𝑖

B from our previous work.34 Thus, by neglecting perturbations caused by chemically disparate 

nearest neighbors, this formalism represents a limiting case where strong d-electron screening is 

assumed. The implications of this assumption, along with refinements to our model that 

introduce compositional variation in a mean field approach are discussed throughout the 

subsequent text. Discussions with an example prediction of metal adsorption energies using the 

monometallic parameters is provided in the ESI, and the full set of DFT-calculated adsorption 

energies is provided in Tables S1 – S8. The monometallic parameters are presented in the shaded 
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columns of Table 1, and summarized results of the accuracy of these predictions are given in 

Table 2A-B. The average mean absolute error (MAE) across all 21 bimetallic combinations is 

0.18 eV. The worst fits (MAE > 0.20 eV) were found for combinations across two columns of 

the periodic table (i.e., Ag/Au/Cu with Ir/Rh); remaining combinations were described with a 

MAE of 0.13 eV. These results imply that d-electron screening in alloys composed of chemically 

dissimilar elements are weaker and compositional effects need to be explicitly included within 

 parameters. Still, the overall magnitude of the error is relatively small, particularly 𝛼𝑍
𝑖

considering that only 98 monometallic calculations (14 for each metal) were used to predict over 

2200 bimetallic adsorption energies (up to 140 for each bimetallic pairing, including the 28 total 

adsorption energies for the monometallic components).
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Table 1: Bond-associated  parameters optimized for the bimetallic systems considered in this 𝜶𝒁
𝒊

study. The values listed in each row are bond-associated parameters  used to determine the 𝜶𝒁
𝒊

energy of the listed metal Z, corresponding to bimetallic pairings of Z with the elements in each 
column. The parameters corresponding to monometallic systems are lightly shaded. All values 
are provided in eV.

Ag Au Cu Ir Pd Pt Rh Ag Au Cu Ir Pd Pt Rh
𝛼𝐴𝑔

1 ― 3 -1.247 -1.375 -1.336 -1.271 -1.315 -1.421 -1.316 𝛼𝑃𝑑
1 ― 3 -1.787 -1.905 -1.898 -2.005 -1.832 -2.049 -1.894

𝛼𝐴𝑔
4 -0.118 -0.094 -0.129 -0.087 -0.124 -0.081 -0.096 𝛼𝑃𝑑

4 -0.250 -0.211 -0.282 -0.158 -0.237 -0.170 -0.225
𝛼𝐴𝑔

5 -0.096 -0.102 -0.051 0.029 -0.083 -0.080 -0.006 𝛼𝑃𝑑
5 -0.078 -0.093 -0.051 -0.064 -0.096 -0.103 -0.068

𝛼𝐴𝑔
6 -0.076 -0.089 -0.073 -0.079 -0.084 -0.093 -0.064 𝛼𝑃𝑑

6 -0.160 -0.160 -0.155 -0.111 -0.141 -0.131 -0.123
𝛼𝐴𝑔

7 -0.091 -0.069 -0.055 -0.033 -0.095 -0.057 -0.057 𝛼𝑃𝑑
7 -0.162 -0.134 -0.154 -0.118 -0.169 -0.130 -0.151

𝛼𝐴𝑔
8 -0.072 -0.060 -0.068 -0.059 -0.077 -0.077 -0.052 𝛼𝑃𝑑

8 -0.145 -0.120 -0.133 -0.107 -0.146 -0.124 -0.132
𝛼𝐴𝑔

9 -0.074 -0.076 -0.043 -0.033 -0.077 -0.064 -0.030 𝛼𝑃𝑑
9 -0.159 -0.164 -0.147 -0.125 -0.139 -0.128 -0.122

𝛼𝐴𝑔
10 -0.087 -0.070 -0.056 0.006 -0.081 -0.035 -0.020 𝛼𝑃𝑑

10 -0.163 -0.140 -0.150 -0.078 -0.138 -0.095 -0.110
𝛼𝐴𝑔

11 -0.082 -0.067 -0.053 -0.025 -0.079 -0.047 -0.060 𝛼𝑃𝑑
11 -0.151 -0.144 -0.140 -0.115 -0.132 -0.114 -0.120

𝛼𝐴𝑔
12 -0.058 -0.058 -0.043 -0.028 -0.056 -0.045 -0.046 𝛼𝑃𝑑

12 -0.100 -0.107 -0.098 -0.096 -0.100 -0.103 -0.096
Ag Au Cu Ir Pd Pt Rh Ag Au Cu Ir Pd Pt Rh

𝛼𝐴𝑢
1 ― 3 -1.830 -1.830 -1.943 -1.819 -1.756 -1.827 -1.832 𝛼𝑃𝑡

1 ― 3 -3.071 -3.144 -3.286 -3.346 -3.146 -3.414 -3.253
𝛼𝐴𝑢

4 -0.125 -0.111 -0.117 -0.071 -0.139 -0.099 -0.089 𝛼𝑃𝑡
4 -0.322 -0.303 -0.315 -0.230 -0.317 -0.228 -0.288

𝛼𝐴𝑢
5 -0.105 -0.125 -0.100 -0.029 -0.138 -0.138 -0.091 𝛼𝑃𝑡

5 -0.124 -0.135 -0.184 -0.209 -0.190 -0.206 -0.205
𝛼𝐴𝑢

6 -0.084 -0.097 -0.045 -0.097 -0.090 -0.099 -0.057 𝛼𝑃𝑡
6 -0.206 -0.214 -0.165 -0.141 -0.188 -0.157 -0.147

𝛼𝐴𝑢
7 -0.092 -0.071 -0.094 -0.023 -0.119 -0.082 -0.084 𝛼𝑃𝑡

7 -0.221 -0.175 -0.239 -0.198 -0.236 -0.190 -0.237
𝛼𝐴𝑢

8 -0.059 -0.053 -0.023 -0.053 -0.066 -0.065 -0.028 𝛼𝑃𝑡
8 -0.148 -0.128 -0.145 -0.103 -0.154 -0.116 -0.127

𝛼𝐴𝑢
9 -0.081 -0.080 -0.059 -0.027 -0.092 -0.072 -0.051 𝛼𝑃𝑡

9 -0.224 -0.230 -0.206 -0.223 -0.219 -0.211 -0.225
𝛼𝐴𝑢

10 -0.068 -0.042 -0.049 0.043 -0.071 -0.016 -0.012 𝛼𝑃𝑡
10 -0.188 -0.157 -0.173 -0.112 -0.166 -0.111 -0.150

𝛼𝐴𝑢
11 -0.054 -0.033 -0.026 0.018 -0.046 -0.005 -0.024 𝛼𝑃𝑡

11 -0.139 -0.125 -0.106 -0.083 -0.111 -0.088 -0.103
𝛼𝐴𝑢

12 -0.034 -0.028 -0.021 0.002 -0.026 -0.011 -0.018 𝛼𝑃𝑡
12 -0.062 -0.064 -0.052 -0.051 -0.056 -0.056 -0.055

Ag Au Cu Ir Pd Pt Rh Ag Au Cu Ir Pd Pt Rh
𝛼𝐶𝑢

1 ― 3 -1.799 -1.991 -1.750 -1.549 -1.922 -2.051 -1.764 𝛼𝑅ℎ
1 ― 3 -2.668 -2.874 -2.858 -2.990 -2.886 -3.167 -2.942

𝛼𝐶𝑢
4 -0.218 -0.161 -0.200 -0.203 -0.154 -0.148 -0.208 𝛼𝑅ℎ

4 -0.481 -0.439 -0.425 -0.392 -0.431 -0.353 -0.430
𝛼𝐶𝑢

5 -0.069 -0.084 -0.112 -0.031 -0.097 -0.085 -0.062 𝛼𝑅ℎ
5 -0.159 -0.178 -0.205 -0.151 -0.148 -0.166 -0.148

𝛼𝐶𝑢
6 -0.133 -0.158 -0.129 -0.105 -0.138 -0.153 -0.136 𝛼𝑅ℎ

6 -0.262 -0.255 -0.225 -0.226 -0.246 -0.225 -0.214
𝛼𝐶𝑢

7 -0.123 -0.111 -0.159 -0.163 -0.144 -0.102 -0.136 𝛼𝑅ℎ
7 -0.258 -0.224 -0.268 -0.211 -0.233 -0.196 -0.241

𝛼𝐶𝑢
8 -0.111 -0.074 -0.132 -0.139 -0.124 -0.096 -0.130 𝛼𝑅ℎ

8 -0.240 -0.204 -0.234 -0.197 -0.224 -0.180 -0.219
𝛼𝐶𝑢

9 -0.113 -0.132 -0.132 -0.181 -0.140 -0.148 -0.139 𝛼𝑅ℎ
9 -0.232 -0.247 -0.244 -0.278 -0.245 -0.250 -0.261

𝛼𝐶𝑢
10 -0.148 -0.142 -0.171 -0.213 -0.170 -0.142 -0.151 𝛼𝑅ℎ

10 -0.259 -0.239 -0.269 -0.270 -0.263 -0.237 -0.276
𝛼𝐶𝑢

11 -0.140 -0.128 -0.153 -0.247 -0.163 -0.163 -0.170 𝛼𝑅ℎ
11 -0.211 -0.208 -0.220 -0.262 -0.231 -0.231 -0.258

𝛼𝐶𝑢
12 -0.078 -0.088 -0.085 -0.088 -0.093 -0.106 -0.096 𝛼𝑅ℎ

12 -0.132 -0.145 -0.140 -0.167 -0.151 -0.162 -0.159
Ag Au Cu Ir Pd Pt Rh

𝛼𝐼𝑟
1 ― 3 -3.222 -3.546 -3.387 -3.736 -3.638 -3.913 -3.671
𝛼𝐼𝑟

4 -0.499 -0.576 -0.641 -0.501 -0.562 -0.502 -0.562
𝛼𝐼𝑟

5 -0.382 -0.335 -0.261 -0.319 -0.291 -0.302 -0.296
𝛼𝐼𝑟

6 -0.316 -0.304 -0.326 -0.271 -0.321 -0.310 -0.302
𝛼𝐼𝑟

7 -0.357 -0.314 -0.351 -0.310 -0.322 -0.258 -0.338
𝛼𝐼𝑟

8 -0.328 -0.252 -0.277 -0.252 -0.284 -0.226 -0.269
𝛼𝐼𝑟

9 -0.360 -0.337 -0.386 -0.400 -0.335 -0.349 -0.376
𝛼𝐼𝑟

10 -0.344 -0.293 -0.396 -0.365 -0.330 -0.298 -0.367
𝛼𝐼𝑟

11 -0.256 -0.222 -0.297 -0.311 -0.254 -0.248 -0.295
𝛼𝐼𝑟

12 -0.128 -0.134 -0.142 -0.160 -0.145 -0.154 -0.157

We refine our treatment of compositional effects by re-optimizing the 20  parameters 𝛼𝑍
𝑖

(10 for each metal) for each of the 21 possible bimetallic systems. Using  from the 𝛼𝑍
𝑖

monometallic optimizations as initial guess values, we minimize the sum of squared residuals in 

the predicted bimetallic adsorption energies and generate a new set of  parameters which 𝛼𝑍
𝑖
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explicitly include interactions between binary pairs through a mean field approach. The  𝛼𝑍
𝑖

parameters are fit to the set of up to 140 bimetallic adsorption energies (obtained from 96 DFT 

calculations on bulk, (100), (111), and (211) surfaces) using the coefficient arrays presented in 

Tables S9 – S12 and the adsorption energies in Tables S1 – S8. The optimized parameters for 

each bimetallic system are provided in Table 1. We note here that we choose to include the 

monometallic adsorption energies in determining these bimetallic parameter sets, so as to train 

the bimetallic parameters to the full composition range of 0-100% of metal A/B. Including these 

monometallic data aids our understanding of dilute systems and a general description of the full 

composition range; the parameter sets can in principle be improved and tuned by increasing 

sampling at a particular bimetallic ratio, though such an analysis is outside the scope of the 

present work. There are two physically meaningful trends among  parameters in Table 1. First, 𝛼𝑍
𝑖

as they represent gains in energy for each additional bond,  parameters should have negative 𝛼𝑍
𝑖

signs. We indeed observe this trend without adding additional constraints as only 5 out of 490 

parameters across 21 bimetallic combinations, are small positive numbers. The exceptions (Ag/Ir 

and Au/Ir parameters) correspond to cases less relevant to real catalytic systems, as discussed 

subsequently for bimetallic pairings across two columns of the periodic table. Second, the 

differential gain in energy represented by  parameters is anticipated to be greater (lower) for 𝛼𝑍
𝑖

lower coordinated (higher coordinated) atoms. This trend is also manifested in Table 1 as  𝛼𝑍
𝑖

parameters are typically more negative for lower coordination numbers.

We then used these parameters to reconstruct the adsorption energy set for each 

bimetallic system (example adsorption energy calculations are discussed in detail in the ESI), 

and compared the resulting values with the DFT-calculated adsorption energies; the MAE and 

maximum error for each system are provided in Table 2C-D. Since these parameters are 
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determined by regression, we note that they are averaged values that cannot obtain absolute 

agreement with every adsorption configuration considered in this study. Still, the average MAE 

across all systems was substantially reduced from 0.18 eV using only the monometallic 

parameters to just 0.13 eV using the re-optimized bimetallic parameters. The MAE 

corresponding to systems with bimetallic pairings across two columns of the periodic table was 

again the highest (> 0.15 eV); the remaining bimetallic pairings had an average MAE of just 0.08 

eV. The increased errors for bimetallic pairings consisting of elements further apart in the 

periodic table hints that the d-electron screening is not as efficient, and that the error could be 

further reduced by including bond-specific compositional effects that are over and above the 

mean field approximation. These systems also exhibit very poor miscibility in experimental 

phase diagrams,44 resulting in poor fits found using our parameterization procedure since they 

are not known to adopt an fcc-like intermixed alloy structure. We therefore do not focus much 

additional attention on these systems, since they likely do not correspond to systems that are as 

relevant for experimental bimetallic catalysis. When later demonstrating the transferability of our 

model to nanoparticles, we show that deviations of 1.7% (DEC) and 5.1% (ICO) in intraplanar 

distances from an ideal FCC stacking are tolerated within this framework. 

For the remaining data points, a MAE of 0.08 eV represents a strong fit of the calculated 

adsorption energies to the parameterized model. This validates our underlying assumption that 

perturbations in coordination or composition around a site are largely confined to the first 

coordination shell, and generic morphological and local chemical environments are efficiently 

represented by explicitly considering atoms within the first coordination shell, hence, greatly 

reducing the number of fitted parameters required. Unlike the monometallic method we 

presented previously, in which 14 adsorption energies were used to determine 10 model 
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parameters, in this case at least 105 (up to 140) adsorption energies were used for determining 

the 20 model parameters for each bimetallic system, which minimizes the risk of overfitting our 

model. We anticipate that the minimum set of adsorption energies needed to parameterize the  𝛼𝑍
𝑖

for new bimetallic systems should be substantially smaller than the 140 adsorption energies 

utilized for each bimetallic system in this study. The determination of that specific set is outside 

the scope of the present work; however, we briefly investigated the size of the training set by 

performing a non-exhaustive optimization of the set of geometries used to construct the  𝛼𝑍
𝑖

parameters for each bimetallic combination (see ESI for more details). Considering the seven 

bimetallic combinations (Ag-Au, Ag-Pd, Au-Pd, Au-Pt, Pd-Pt, Ir-Rh, and Pt-Rh) for which no 

data points were discarded (due to reconstruction, etc.), we identify a training set of 70 out of 

140 adsorption geometries that can determine  parameters for all seven bimetallic systems 𝛼𝑍
𝑖

with a MAE less than 0.10 eV across the entire data set (140 adsorption energies for each of 7 

bimetallic combinations). While we make no claim about the global optimality of this data set, it 

suggests possible bounds for an ideal bimetallic training set in terms of error and number of 

calculations. Further optimization of the set would consider, e.g., data from larger unit cells and 

other mixed surface calculations, as discussed briefly in the following for the Pt-Pd bimetallic 

system. Finally, we also note that the exact values of the  parameters are sensitive to 𝛼𝑍
𝑖

calculation details such as the DFT functional and pseudopotential, though we anticipate that the 

general trends should be preserved regardless of these computational choices. 
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Table 2: Mean absolute error (MAE) and maximum absolute error in reconstructing adsorption 
energies from the bond-associated parameters in Table 1 to the corresponding bimetallic data 
sets: (A) MAE and (B) maximum error when using only the monometallic parameters to predict 
bimetallic data; (C) MAE and (D) maximum error when using the re-optimized parameters 
corresponding to each specific bimetallic system. All values are provided in eV.

A Au Cu Ir Pd Pt Rh B Au Cu Ir Pd Pt Rh
Ag 0.09 0.12 0.48 0.08 0.20 0.29 Ag 0.37 0.51 1.80 0.29 0.84 1.17
Au 0.12 0.43 0.09 0.13 0.20 Au 0.79 1.46 0.38 0.55 0.71
Cu 0.23 0.12 0.20 0.11 Cu 1.05 0.39 0.80 0.47
Ir 0.21 0.14 0.08 Ir 0.75 0.54 0.32
Pd 0.14 0.11 Pd 0.48 0.34
Pt 0.12 Pt 0.45

C Au Cu Ir Pd Pt Rh D Au Cu Ir Pd Pt Rh
Ag 0.06 0.09 0.42 0.06 0.09 0.25 Ag 0.17 0.35 1.25 0.20 0.39 0.66
Au 0.10 0.35 0.07 0.09 0.15 Au 0.66 0.99 0.25 0.36 0.38
Cu 0.19 0.11 0.14 0.08 Cu 0.90 0.33 0.42 0.31
Ir 0.15 0.07 0.06 Ir 0.57 0.29 0.25
Pd 0.05 0.08 Pd 0.16 0.21
Pt 0.05 Pt 0.19

Model Validation on Extended Surfaces of Pd-Pt Alloys

As a first test of the predictive power of the parameters derived from this model, we 

briefly evaluated adsorption energies for extended surfaces of Pd-Pt alloys (including Pt3Pd and 

Pd3Pt), which represent a system of two relatively miscible metals that are important components 

in a number of bimetallic heterogeneous catalysts.45–47 We performed calculations using a 3x3 

surface unit cell of (100) and (111) surface slabs, which allows for more arrangements of metal 

atoms with fewer restrictions imposed by the periodic boundary conditions. We considered metal 

adlayers having a coverage of up to 4/9 ML (4 atoms added to a 3x3 surface unit cell), since in 

our previous work we found those to correspond to the highest errors in predicted adsorption 

energies.34 This yields a total of 912 adsorption energies for the Pt-Pd bimetallic system, 

considering all permutations of 1, 2, 3, or 4 atoms of Pt and/or Pd within the 3x3 unit cell 

constraints (772 adsorption energies) in combination with the originally-collected Pt and Pd data 

in the 2x2 unit cell (140 adsorption energies). Using the parameters optimized for the Pd-Pt 

bimetallic system shown in Table 1, we calculated a MAE for predicting adsorption energies in 
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the full Pd-Pt set of 0.09 eV (plotted in Figure 2A); the error in the original 140-point bimetallic 

data set for this system was 0.05 eV. The adsorption energies with the largest error (> 0.40 eV) 

correspond to adsorption on (111) slabs with triangular or diamond-like clusters of 3-4 metal 

adatoms, as was the case for the monometallic Pd and Pt systems.34 This phenomenon was 

discussed in more detail in our previous work and can be attributed to inward relaxations of 

surface atoms in those geometries and hence a significant increase in coordination for these 

atoms that is not captured well by our parameterization procedure. We again note that our  𝛼𝑍
𝑖

parameters represent average values, and therefore perfect agreement with all arrangements of 

atoms cannot be obtained using this simple energy scheme. Attempts at further re-optimization 

of the 20 Pd-Pt parameters to include this expanded 3x3 surface data set in the parameterization 

resulted in only minimal reduction of the MAE (reduced from 0.09 eV to 0.08 eV), reinforcing 

this limitation of our model in capturing every possible configuration. Still, the accuracy 

demonstrated by our method is sufficiently high to enable reliable simulation of nanoparticle 

structures having different morphologies, sizes, and compositions, as we will demonstrate 

subsequently.
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Figure 2: Comparison of model-predicted and DFT-calculated energies for Pt-Pd bimetallic 
systems: (A) 3x3 surface unit cells of (100) and (111) geometries (MAE 0.09 eV) and (B) 2x2 
Pd3Pt(111) and PdPt3(111) unit cells (MAE 0.03 eV). 

Since our model was parameterized considering adsorption of metals A and/or B on slabs 

of pure metal B, we also performed adsorption energy calculations on Pd3Pt(111) and PdPt3(111) 

alloy surfaces in 2 x 2 surface unit cells to briefly investigate the effect of heterogeneous surface 

composition on the model’s ability to predict metal adsorption energies. This corresponds to an 

additional 112 Pd/Pt adsorption energies in cells with varying metal surface layer coverage. For 

these calculations, the unit cell was constructed with lattice constants interpolated between those 

of Pd and Pt, based on the surface composition (i.e., using Vegard’s law). In this case, the Pd-Pt 

bimetallic parameters predicted adsorption energies with a MAE of just 0.03 eV and a maximum 

error of 0.16 eV without any further optimization to the parameter set given in Table 1 (plotted in 

Figure 2B). This demonstrates the insensitivity of our model to surface composition.

Model Validation on Nanoparticles: Charge Accumulation on Subsurface Atoms

The primary target of our proposed model is to predict the energies of metal atoms in 

general configurations, such that we might ultimately predict the relative stability of different 

nanoparticle structures and understand the phenomena governing transformations between 

different structures. We note that, as in our previous work, we find substantial discrepancies 

between the calculated total energies of nanoparticles using DFT and using our model, on the 

order of 10-20 eV per particle (0.07 – 0.14 eV per atom). These discrepancies arise from finite-

size effects: our model is parameterized using slab-based adsorption calculations, while the small 

nanoparticles exhibit considerable lattice contraction due to their small size. This effect was 

more thoroughly elucidated for the monometallic nanoparticles published in our previous work, 

including a series of fixed-lattice calculations to understand the nature of the finite size effects.34 
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Errors introduced by such finite-size effects can be swiftly eliminated while maintaining our 

simple coordination and composition based arguments by simply calibrating energies using best-

fit lines as indicated in Figures 4, 5, and in the ESI. However, far more important than 

reproducing the total energy of nanoparticles is determining accurate relative energies of 

nanoparticle structures; these dictate the relative ease of transformations between structural 

arrangements. 

We focus our analysis on accurately modeling these relative differences in small 

nanoparticles (~ 1.6 – 2.2 nm), while noting that our predictions will become more accurate in 

the limit of larger nanoparticles as the slab models from which the parameters were derived 𝛼𝑍
𝑖

become more representative of the nanoparticle structure. In this section, we will highlight the 

need for a robust scheme that corrects for destabilization induced by charge accumulation on 

second-layer atoms. Building on these insights, we will then introduce a correction scheme for 

this phenomenon, and subsequently utilize the refined model in predicting relative energies of 

nanoparticles having different morphologies, sizes, and compositions. 

Our coordination-based model does not differentiate between configurations of atoms 

within the bulk of the nanoparticle, as all have the same coordination number and therefore 

possess no distinguishing features for different arrangements. As a first test of our model, we 

performed nanoparticle calculations with fixed monometallic shells and randomly arranged alloy 

cores of varying compositions. We initially focused on systems with Pt or Pd shells and Pt-Pd 

bimetallic cores. We first calculated the optimized structure of Pt and Pd monometallic particles; 

the 92 atoms in the outermost layer were then fixed at their optimized coordinates. The effect of 

shell relaxation on the relative nanoparticle energies for this series of calculations was found to 

be negligible for the Pd-Pt systems (differences in relative total energies of less than 0.02 eV). 
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We subsequently randomly substituted core atoms at 5 intermediate compositions ranging from 

Pd-rich to Pt-rich and performed DFT calculations in which these core atoms were allowed to 

fully relax. A schematic of these calculations is shown in Figure 3A. We note that these (and all 

subsequent figures) present only the total energies of nanoparticles and no information about 

configurational entropy; the latter could be determined in a relatively straightforward manner by 

counting the number of equivalent structures. 
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Figure 3: (A) Cross-sectional view of sample fixed-shell, variable-core calculations. The 92-
atom shell (comprising only metal A) is fixed at its optimized nanoparticle coordinates, while the 
55-atom core structure is randomly shuffled, and its composition varied. Pt and Pd atoms are 
depicted in grey and turquoise respectively. Plotted are the relative energies (per 55 atom 
shuffle) around the mean energy for each composition for (B) fixed Pd shell; (C) fixed Pt shell; 
(D) fixed Pd shell, Pt and Pd subsurface energies corrected separately, (E) fixed Pt shell, Pt and 
Pd subsurface energies corrected separately. To facilitate comparison, the mean energy for each 
Pt/Pd core fraction is realigned to 0. 

We first considered the case in which all 55 atoms below the surface are treated as 

completely interchangeable by the model; that is, we neglected all configurational effects for 

atoms with 12-fold coordination, including second-shell corrections. In this case, we determine 

the variations in DFT-calculated nanoparticle total energy as internal atomic arrangements 
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change and compare them to the model prediction that such rearrangements should have no 

change in energy. For the nanoparticle with the fixed Pd shell (Figure 3B), we found very small 

variations in nanoparticle total energy across Pd-Pt core compositions: the mean fluctuation of 

individual nanoparticle energies around the average total energy (realigned to 0 for each 

considered Pt or Pd core fraction) was 0.06 eV, which is a small value for a 55-atom mixing 

process. This fluctuation is one to two orders of magnitude smaller than the energies of Pt/Pd 

atomic swaps between the core and the surface (on the order of 0.1 eV/atom), which will be 

discussed subsequently. In contrast, the nanoparticle with a fixed Pt shell exhibited larger 

fluctuations around the mean energy for each composition (mean fluctuation 0.14 eV, Figure 

3C). While these fluctuations are still reasonably small considering the number of atoms (55) 

intermixed internally, it was unexpected that there should be such a relatively large discrepancy 

in comparison with the Pd shell system, given that both systems involve intermediate internal 

compositions of a Pt-Pd alloy. As control calculations, we investigate energy changes in random 

Pd-Pt bulk structures (3x3x3 unit cell) at different internal compositions (see ESI for more 

details). As bulk atoms are shuffled at a given overall composition, we observe far lower 

fluctuations in relative energies of around 0.017 eV per 27 atom unit cell. This corroborates 

model predictions that enthalpy changes for shuffling bulk atoms in a bulk unit cell at a given 

composition are essentially zero and suggests that near-surface contributions are likely 

responsible for the model discrepancies. Thus, the unexpected fluctuations in energy shown in 

Figure 3 are unlikely to arise from the 13 atoms in the second and third subsurface layer (which 

closely represent atoms in the 3x3x3 bulk structures) but could stem from 42 atoms in the first 

sublayer being energetically dissimilar to bulk atoms.

Page 22 of 41Nanoscale



23

The origin of this discrepancy is found by considering corrections to the energies of 

atoms in the first subsurface layer. As discussed in detail in our previous work, surface 

terminations of bulk structures result in the transfer of charge density from the surface layer to 

underlying layers.34 This leads to a destabilization of atoms, particularly in the first subsurface 

layer; this destabilization is accounted for in our parameterization procedure by correcting the 

energy of atoms in the first subsurface layer by a fixed amount, depending on metal identity. 

From our previous work, the corrections on Pd and Pt atoms in the first subsurface layer were 

found to be 0.11 and 0.23 eV, respectively; we do not perform any direct re-optimization of these 

parameters in this work. Consideration of these simple energetic corrections in our model now 

enables it to distinguish between the internal configurations of 12-fold coordinated Pt and Pd 

atoms: of the 55 atoms in the core, 42 are located in the first subsurface layer. For a fixed core 

and shell composition, the relative energies of nanoparticles can thus be predicted by the relative 

amounts of Pt and Pd in that first subsurface layer according to the respective corrections to the 

two metals. We replotted the data in the Pt-shell, mixed Pt-Pd core system accounting for these 

corrections: for a fixed Pt-Pd 55-atom core composition, each additional Pt atom in the second 

layer is penalized by 0.12 eV (the difference between Pd and Pt corrections). This simple 

correction reduced the error of our predicted energies to just 0.05 eV around the mean (Figure 

3E). 

For consistency, we also applied this same correction scheme to the system with a Pd 

shell and mixed Pt-Pd core. This system demonstrated small fluctuations in total energy 

(averaging 0.06 eV around the mean) when subsurface corrections were not applied; large 

fluctuations averaging 0.11 eV were therefore seen when the separate Pt and Pd corrections were 

applied to the subsurface atoms (Figure 3D). This suggests that because of charge disruption 
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caused by dissimilar nearest neighbors, energy corrections to subsurface atoms are not 

necessarily straightforward in bimetallic systems: we must separately apply the Pt-derived 

second layer correction to Pt atoms and the Pd-derived correction to Pd atoms when they are 

located directly beneath a Pt shell (Figure 3E). The model predictions for systems with a Pd shell 

are, however, most accurate when we do not apply different corrections between Pt and Pd, and 

instead use the same value to correct the energy of subsurface Pd and subsurface Pt (Figure 3C). 

Thus, changing nearest neighbor identities around second layer Pt atoms from Pt to Pd results in 

electronic interactions between Pt and Pd that partially alleviates the destabilization effect caused 

by charge accumulation at the second layer Pt atoms. Although this correction scheme is 

developed for limiting scenarios of systems having a monometallic shell, we discuss its 

extension to random alloys with mixed Pd-Pt cores and shells in the next section. 

While determining an exact rationale for this behavior is not within the scope of this 

current study (though it is potentially related to the extended 5d states in Pt compared with 4d 

states in Pd), this truly is a fine-tuning of the model since the fluctuations around the mean 

(~0.14 eV per 55 atom shuffling) are relatively small. Further, we are mostly interested in 

reliable predictions of surface energetics, which we examine more carefully in the subsequent 

sections and show to have a much broader energy range. We also briefly performed analogous 

variable-core, fixed-shell calculations for Cu-Rh, Pt-Au, and Cu-Au systems representing less 

ideal intermixing than the Pt-Pd case; important results are outlined in the ESI. 

Model Validation on Nanoparticles: Effects of Morphology, Composition, and Size

Although it is desirable to describe all atomic shuffling processes with a high degree of 

accuracy, it is far more important from the perspective of catalysis to accurately represent 
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energetics near the catalyst surface. We therefore performed DFT calculations on nanoparticles 

having different morphologies (CUB, DEC, ICO, OCT), sizes (147 atom and truncated 309 atom 

clusters), and wide-ranging compositions. We examine the validity of our model towards 

predicting relative energies of nanoparticles, binding energies of metal atoms, and energetic 

changes of single atom swaps. Through these examples, we will illustrate the applicability of our 

framework to nanoparticles having slight deviations from an ideal FCC stacking.

We first consider idealized CUB structures with a core of metal B (55 atoms) and a 

monolayer shell of metal A (92 atoms), focusing initially on Pd-Pt and Pt-Pd core-shell 

structures. We then randomly shuffled all 147 atoms, yielding mixed Pd-Pt cores and shells, and 

evaluated their energies using DFT to determine how reliably our model predicts the relative 

energies of structures with variable surface compositions (example schematic shown in Figure 

4A). The Pt/Pd nanoparticles also serve as a benchmark to compare our model with other 

approaches such as the effective medium theory48 and the bond centric model27. Truly random 

core-shell arrangements result in roughly similar fractions of Pt and Pd in the core and shell 

across all arrangements of atoms, and our model predicts these to all fall within a similar energy 

range since energy differences are driven primarily by surface segregation of Pt and Pd. To avoid 

oversampling these particular energy ranges, we included additional shuffling in which fewer 

atoms were randomly exchanged between the 55-atom core and the 92-atom shell to specifically 

include sample compositions that fall in intermediate energy ranges. 

In accordance with the results from the fixed-shell/variable core calculations in Figure 3, 

the energies of Pd and Pt atoms in the first subsurface layer must be corrected, depending on the 

surface composition. We found that Pd subsurface atoms should be corrected by the same 

amount, 0.11 eV, regardless of whether the surface layer consists of either pure Pt or pure Pd. On 
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the other hand, Pt subsurface atoms should be corrected by a larger amount (0.12 eV more) if the 

surface contains only Pt, and by the same amount as Pd subsurface atoms if the surface 

comprises only Pd. Extension of this scheme from systems having monometallic shells to those 

possessing mixed Pt-Pd surface composition therefore requires some additional consideration. 

Since the correction applied to subsurface Pd is the same in the presence of pure Pd and pure Pt 

overlayers, it follows that the same correction should be applied to Pd when it is located adjacent 

to some mixed fraction of Pd and Pt surface atoms. On the other hand, because of electronic 

interactions between Pt (subsurface layer) and Pd (surface) atoms, corrections to subsurface Pt 

atoms are dependent on the shell composition. We first attempted to determine these corrections 

using a linear scheme, in which the correction on a particular Pt atom was weighted by the 

fraction of its nearest-neighbor surface atoms that are Pd (x). The total correction on Pt 

subsurface atoms in this case was therefore calculated as . 𝑥 ∗ 𝛼𝑃𝑑
2𝑛𝑑 + (1 ― 𝑥) ∗ 𝛼𝑃𝑡

2𝑛𝑑

We plot the results of these core-shell shuffling calculations in Figure 4B-C by 

considering a parity plot of predicted vs. calculated energies relative to the respective core-shell 

structures. A best-fit line for the respective shuffled data points (excluding the structures closest 

to the respective core-shell structures, which we will discuss subsequently) is also included. 

Ideally, this best-fit line would have unity slope and zero intercept to demonstrate perfect 

agreement between the model and DFT calculations (i.e., falling exactly on the true parity line). 

Because these nanoparticles exhibit finite-size effects compared to the slab models used to 

parameterize the coordination-based model, slight deviations from unity slope and zero intercept 

are to be expected due to lattice contraction and strain. These effects are not directly captured by 

the model; we will discuss this in more detail later in the text. In the case of a linear correction to 

the subsurface Pt energies, we calculated best-fit slopes of 1.34 and 1.17 for the particles based 
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on Pt and Pd shells, respectively. The scatter of these data around the best-fit line was relatively 

small for 147-atom cuboctahedral particles: the MAE from the best-fit line was 0.17 eV for the 

Pt-shell and 0.14 eV for the Pd-shell references, respectively. 
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Figure 4: (A) Schematic of shuffling from a core-shell alloy structure to a randomly-ordered 
alloy structure. Pt and Pd atoms are depicted in grey and turquoise respectively. Comparison of 
model-predicted and DFT-calculated energies relative to core-shell structures using (B) Pd-Pt 
core-shell reference, w = 1 correction to subsurface energies; (C) Pt-Pd core-shell reference, w = 
1 correction to subsurface energies; (D) Pd-Pt core-shell reference, w = 1.93; (E) Pt-Pd core-shell 
reference, w = 1.93.

The nature of the second-layer correction dependence on shell composition and 

subsurface atom identity suggests that a linear correction may not be the most suitable approach. 

We performed a data exercise to determine the correction scheme that provides the most optimal 

relative energies between the various nanoparticle configurations.  We chose to introduce a 

correction factor y that is nonlinear in composition, such that  for some positive 𝑦 = (1 ― 𝑥)𝑤
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value w. We then calculate the total correction on Pt subsurface atoms as (1 ― 𝑦) ∗ 𝛼𝑃𝑑
2𝑛𝑑 +𝑦

. We note that the linear correction described previously corresponds to the case in which ∗ 𝛼𝑃𝑡
2𝑛𝑑

w = 1 (Figures 4(B) and 4(C)), and that a case in which subsurface Pt corrections are treated 

independently of surface composition (i.e. Pt is assigned only its own correction factor 

determined from the monometallic parameterization) corresponds to w = 0, the limiting scenario 

discussed in Figure 3(E). We varied w to determine the value that minimizes the MAE and found 

that w = 1.93 yielded MAE of 0.15 eV and 0.12 eV around the respective best-fit lines for the 

systems based on the Pt and Pd shells (Figure 4D-E). The respective slopes of the resulting linear 

relationships were also closer to unity (1.16 and 1.09 eV, respectively). We note that the overall 

compositions of nanoparticles in the training set (Pt55Pd92 or Pt92Pd55) has negligible impact on 

the fitted coefficient of 1.93 thereby indicating that the exponent is species dependent and not 

strongly influenced by the overall composition. Furthermore, we will later show that this 

coefficient is directly transferable across Pt/Pd nanoparticles having wide-ranging overall 

compositions (Pt rich to Pd rich), morphologies, and sizes, reinforcing the local nature of this 

correction. Such a conclusion is not unexpected, given the strong d-electron screening prevalent 

beyond the first coordination shell. The nonlinear nature of this correction (1.93) indicates that 

progressive replacement of surface Pt atoms with Pd acutely reduces the destabilization caused 

by charge accumulation on second layer Pt atoms hinting at a synergistic electronic interaction 

between Pt and Pd. 

As we discussed previously, we anticipated that slight deviations from ideal behavior 

would arise from finite-size effects; these effects should diminish in larger systems. Still, the 

small errors in the relative energies between particles suggest that this approach is useful even 

for determining the energies of small nanoparticles such as in this study. Furthermore, the parity 
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plots reveal that while total energy predictions from our model deviate from the parity line, 

relative energies corresponding to single atom swaps will correspond more closely to DFT 

derived energies. These relative changes represent, for example, thermodynamics of elementary 

steps in a particle migration model, and are more directly related to catalysis applications than 

are the total energies of nanoparticles. A parity plot, contrasting DFT and model predictions for 

single atom swaps will be discussed subsequently in Figure 5. A direct comparison of our model 

predictions (Figure 4) to alternative approaches is illustrated in the ESI.

When examining the data for the optimized model (i.e. Figure 4D-E), we note that the 

data for the case based on the Pt shell (Figure 4D) are still noticeably offset from the parity line. 

This offset appears to originate from strain present in the core-shell structure. The data points 

closest to the high-energy core-shell structure, which is plotted as the zero-energy reference, fall 

sharply in energy compared to the structure with the pure Pt shell as Pd atoms are introduced 

one-by-one into various surface sites in the shell. This sharp release in energy explains the large 

magnitude of the best-fit intercept shown in Figure 4D: once a total of 6-7 Pd atoms have been 

introduced into the 92-atom Pt shell, the energy curve then adopts a slope similar to that of the 

more stable structures at lower energy ranges. The exact origin of this strain effect is beyond the 

scope of the present study, though we note it is not prominent in the case of the more stable Pd 

shell (Figure 4E), as the best-fit line shows a nearly zero intercept. This represents a limitation of 

our model, although we note that it does capture the desired features of physically favorable 

structures (the perfect Pt shell is both energetically and entropically unfavorable). We performed 

similar studies on the Au-Cu bimetallic system (see ESI), finding that the model is qualitatively 

accurate in predicting relative energies though exhibits a larger degree of scatter as anticipated 

due to the large size mismatch of Au and Cu atoms and their strong preference to form well-
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ordered alloys to minimize strain. Still, the overall accurate representation of relative surface 

atom preferences (i.e. segregation) is the most important feature of our model, even for 

bimetallic systems lacking idealized fcc stacking, since the atoms nearest the surface are most 

relevant for practical investigations in heterogeneous catalysis.

Following our analysis of cuboctahedral nanoparticles, we examine the transferability of 

our model to nanoparticles having different morphologies (OCT, DEC, ICO), sizes (147 atom 

and truncated 309 atom), and compositions (Pt rich to Pd rich). We choose DEC and ICO 

structures to investigate the validity of our model in the presence of deviations in intraplanar 

bonds (1.7% for DEC and 5.1% for ICO) from an ideal FCC stacking. Model predictions with 

the 147 atoms, truncated 309 atoms, and extended surfaces are compared to qualitatively 

understand the impact of finite size effects on total and relative energies. A detailed discussion 

about morphological and compositional variations is presented in the ESI. Cohesive energy 

predictions for PtPd nanoparticles having progressively varying compositions from Pt rich to Pd 

rich are in good agreement with DFT derived energies. More crucially, relative energies of 

nanoparticles (referenced to monometallic Pd) having varying compositions have an even better 

agreement with a MAE of 0.005 eV per atom. This clearly indicates that our model describes 

compositional variations that can occur during segregation or sintering with a high degree of 

accuracy. We next investigate the impact of nanoparticle morphology, specifically focusing on 

DEC and ICO structures that deviate from an ideal FCC stacking. Despite intraplanar distortions 

of 1.7% and 5.1% for DEC and ICO, binding energies of metal atoms are predicted within 0.19 

eV which is comparable to the errors on CUB nanoparticles. Nanoparticle cohesive energies also 

display similar errors between CUB (0.15 eV per atom) and ICO, DEC (0.16 eV per atom) 
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indicating that despite mild structural distortions, our distance independent framework is still 

valid. Further details are presented in the ESI.

The final set of DFT nanoparticle calculations investigates the accuracy of our model in 

predicting the energies of selected single-atom swaps, which is of most relevance to future 

studies related to understanding catalyst dynamics with atom-by-atom precision. We consider 

nanoparticles having varying morphologies, sizes, and compositions as listed in the preceding 

paragraph. We here implement the subsurface correction scheme in which the composition was 

numerically optimized as described previously for the Pt-Pd CUB system (w = 1.93). A full 

accounting of all considered swaps and associated energies is tabulated in the ESI. In general, 

these consisted of swaps between atoms in the core, between the 1st and 2nd subsurface layers, 

between the surface and 1st subsurface layer, and between surface sites. The calculated MAE of 

the 42 atomic swaps was just 0.05 eV, with a maximum error of 0.16 eV. Further details about 

initial and final states are provided in the ESI. Larger errors also correspond to a swap between 

the central core atom and an atom in the 2nd subsurface layer in the Pt3Pd system, which is 

predicted by the model to have zero energy change but has a DFT-calculated 0.13 eV energy cost 

(Figure 5). We note that there are several other swaps with model-predicted energy 0.0 eV that 

reflect small variations in DFT energy as observed for our shuffling studies (Figure 3). Our 

model does not include any corrections to account for such behaviors deep in the nanoparticle 

core, but we envision that future refinements could aid our understanding of such behaviors. We 

briefly discuss the influence of finite size effects by comparing energy changes of single atom 

swaps on 147 atom and truncated-309 atom (half-309) nanoparticles. With increasing terrace 

sizes, we note a modest improvement in the MAE from 0.05 eV (147 atom) to 0.02 eV (half-

309). In the limit of infinitely large terraces on periodic slabs (Figure 2), we see an error of 0.03 
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eV for Pt3Pd and Pd3Pt slabs. These results clearly indicate that the fidelity of our framework is 

enhanced with increasing nanoparticle size. We again emphasize the importance in catalytic 

contexts of obtaining correct energies for atomic movements at the surface and believe that the 

high model accuracy corresponding to these swaps demonstrates the effectiveness of our model 

for future studies in heterogeneous catalysis.
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Figure 5: (A) Schematics of PtPd alloy nanoparticles considered for single-atom swaps in this 
study. Pt and Pd atoms are depicted in grey and turquoise respectively. (B) Comparison of 
model-predicted and DFT-calculated energies of single-atom swaps in these structures.

Comparisons with Existing Alloy Stability Models and Broader Impact

We briefly compare our coordination-based approach to existing models in the literature 

in terms of accuracy, transferability, parameter space, and computational cost. We then highlight 

future extensions needed to better describe small nanoparticles (below ~ 1.6 nm) having 

significant finite size and strain effects and conclude by discussing the broader impact of our 

model in engineering the next generation of bimetallic alloys that are designed with atomic level 

precision. 
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Our coordination-based model utilizes a small set of bond-associated parameters (10 per 

element) to wholly describe nanoparticle energies. These assumptions are founded on the “near-

sightedness” in transition metals wherein perturbations in coordination and composition rapidly 

decay beyond the first coordination shell.33 Our rigorous comparison of model predictions with 

DFT calculations in Table 2 and Figures 2-5 reveals a mean average error in the region of 0.10 to 

0.15 eV per atom. Here, we summarize a comparison between our approach and alternative 

models including the effective medium theory48, bond centric model (BCM)27, Bayesian linear 

regression18,19, and cluster expansions20. Trends in cohesive and relative energies of PdPt 

nanoparticles as a function of local chemical composition are better described using  𝛼𝑍
𝑖

parameters in comparison with either EMT or BCM, with the latter approaches overestimating 

cohesive energies. A more detailed discussion is provided in the ESI. Unlike EMT or BCM 

which rely on a small number of fitted parameters (7 and 2 respectively), Bayesian linear 

regression and cluster expansions have a significantly larger parameter space which also require 

a greater number of DFT calculations (800 and 107 respectively) in the training set. This 

enhanced flexibility in parameter space yields predicted cohesive energies with an error below 

0.02 eV per atom but makes reparameterizations for new bimetallic pairing computationally 

intensive. Our method uses parameters (20) based on simple slab models across 21 bimetallic 

pairings and predicts cohesive energies within 0.15 eV per atom for 147 atom nanoparticles. We 

anticipate the accuracy to improve with increasing nanoparticle size as finite and quantum size 

effects diminish. We believe that our coordination-based model, which exploits well known 

screening effects in transition metals, represents an effective compromise between accuracy and 

size of parameter space and can efficiently screen alloy stabilities across a wide range of 

morphology and local chemical ordering. 

Page 33 of 41 Nanoscale



34

We finally discuss some limitations of our model and future extensions that may be 

needed to maximize its utility in describing heterogeneous catalysts. First, since this model is 

based entirely on atomic coordination and parameterized by a series of slab-based surface 

calculations it is unable to capture finite-size strain effects characteristic of small nanoparticles. 

Such effects typically have a destabilizing effect on adsorption energies (as was shown in our 

previous works for metal and molecular adsorption).34,49 The impact of compressive strain on 

metal atom stabilities has a clear dependence on the metal coordination number. We show that 

compressive strain has a stronger influence on stabilities of nine-coordinated atoms on (111) 

terraces in comparison to low-coordinated corner atoms. A detailed discussion along with a 

comparison between model predicted and DFT derived adsorption energies is presented in the 

ESI. These results are consistent with a rigorous study by Li and coworkers who report strong 

surface tension effects on 147 (1.6 nm) atom Pt nanoparticles.49 Accurate descriptions of 

nanoparticles having sizes below 1.6 nm require systematic treatments of both finite and 

quantum size effects, which is beyond the scope of our paper.49–51 An implication of these effects 

is that our model becomes more accurate as nanoparticles become larger and more representative 

of the extended surface calculations used to parameterize the model; deviations from ideality, 

such as the non-unity slopes shown in Figure 4D-E, will be present in smaller nanoparticles as in 

this study. One could envision a possible correction scheme in which the corresponding  𝛼𝑍
𝑖

parameters could be adjusted according to the observed contraction of a nanoparticle. This 

remains a somewhat abstract concept, since such relaxations will be dependent on the 

nanoparticle shape and local environment of each atom. Still, the DFT calculations associated 

with such corrections should remain tractable since the corrections are most relevant for small 

system sizes. Alternatively, model predictions using  parameters for such special cases can be 𝛼𝑍
𝑖
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calibrated to a limited set of DFT calculations using best fit lines as shown in Figure 4 and in the 

ESI. The latter approach retains the simple formulation of our coordination-based model while 

almost entirely eliminating errors induced by finite size effects. 

In addition to whole-particle strain effects, this study also underscores the importance of 

understanding localized strain effects in bimetallic systems of atoms with highly disparate sizes 

(e.g., Au and Cu, as outlined in the ESI). While the present study does not make any corrections 

that would describe the formation of well-ordered bulk phases (such as in the Au-Cu systems), 

we again note that our primary goal is an accurate representation of surface atom energies, as 

these are most relevant for sintering as well as catalysis applications. While we anticipate future 

refinements to the model that will account for effects of nearest-neighbor identity to more 

accurately describe well-ordered systems such as Au-Cu, we note that even for Au-Cu systems 

we are able to reproduce the relative energies of different surface terminations in nanoparticle 

models and therefore the model will have the ability to describe catalytic processes if these 

energies are treated accurately. Future work may also yield a more refined approach to treating 

the corrections on atoms in the first subsurface layer, which were not treated in detail in this 

study. It is somewhat more important to understand these subsurface effects on the energetics in 

better detail than bulk properties, since they directly affect surface atom stability and thereby 

their reactivity toward intermediates in catalytic reactions. 

In principle, an extension of these coordination-based arguments to predict kinetics of 

atomic motion should be a straightforward concept. In practice, it is somewhat difficult to 

precisely define the coordination numbers of atoms located at transition states, since they involve 

atoms moving off fcc lattice sites to, e.g., bridge sites, and therefore exhibit varying degrees of 

partial coordination to surface atoms. As shown in this work, however, a monometallic model for 
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the kinetics of atomic diffusion should have a relatively straightforward extension to bimetallic 

systems simply by tracking associated changes in coordination number for each metal type. 

Understanding and generalizing this model to include activation barriers of diffusion processes 

will enable direct extensions to dynamic simulations of phenomena such as sintering of multi-

metallic systems.35

Finally, we again mention that the presence of catalytic intermediates can dramatically 

alter the segregation of metal components near the surface, and that extensions of this bimetallic 

coordination model to real catalytic systems must account for these phenomena. This will require 

a great deal of further investigation, though we note in principle the possibility of coupling with 

a model such as the one we derived for monometallic systems, in which adsorption energies of 

metal atoms can directly predict adsorption energies of catalytic intermediates.36 Such a scheme 

will not only reveal surface dynamics at a site-by-site specificity, but in conjunction with the 

coordination-based model can also be integrated with volcano-based screening paradigms, 

creating a powerful framework for reverse engineering targeted active site ensembles on 

bimetallic catalysts with atomic resolution. 

Conclusions

In this work, we have presented a general scheme for predicting metal atom adsorption energies 

for bimetallic systems that is based on their nearest-neighbor coordination number with 

compositional effects considered through a mean field approximation. We showed that a series 

of simple slab-based calculations reliably parameterizes a model that predicts relative energies of 

both extended surfaces and nanoparticles with accuracies within 0.15 eV. By exploiting strong 

screening effects of d-electrons, we reveal that a remarkably limited set of parameters (10 for 
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each element) can represent an expansive morphological and compositional space across 

bimetallic alloys. The model is particularly adept at describing surface and near-surface 

phenomena, which is essential for its potential use in catalyst design applications. In a broader 

context, it also accurately predicts relative energies of nanoparticles with different atomic 

arrangements across wide ranging morphologies, sizes (above 1.6 nm), and composition. We 

further anticipate that coupling this bimetallic model with an adsorption model similar to that 

found for monometallic systems opens the possibility of efficient catalyst screening and design. 

While we suggest further refinements to the model to capture the fine details of bulk ordering 

and immiscible systems, the accurate prediction offered by the methods presented will prove a 

valuable tool in understanding the ordering of bimetallic heterogeneous catalysts. 
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