New Journal of Chemistry

NJC

Nitration of the benzothioxanthene: towards a new class of dyes with versatile photophyscial properties

Journal:	New Journal of Chemistry
Manuscript ID	NJ-ART-11-2019-005804.R1
Article Type:	Paper
Date Submitted by the Author:	06-Dec-2019
Complete List of Authors:	Andres Castan, José María; MOLTECH Anjou Galán, Laura Abad; Curtin University, Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Science Li, Shi; university of kentucky dalinot, clément; University of Angers - CNRS, MOLTECH-Anjou Marques, Pablo; University of Angers - CNRS, MOLTECH-Anjou Allain, Magali; University of Angers, Moltech-Anjou UMR CNRS 6200 Risko, Chad; University of Kentucky, Chemistry Monnereau, Cyrille; Ecole Normale Superieure de Lyon, Laboratoire de Chimie - UMR CNRS 5182 Maury, Olivier; ENS Lyon, dept of chemistry; Blanchard, Philippe; University of Angers - CNRS, MOLTECH-Anjou Cabanetos, Clement; Univ Angers, Moltech;

8 9 10

11

12 13

14

15

16

17 18

19

20

21 22

23

24

25

26 27

28 29

30

31 32

33

34

35

36 37

38

39

40

41

42

43

48 49

50

51 52 53

54

55

56

57

PAPER

Received 00th January 20xx,

Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Nitration of the benzothioxanthene: towards a new class of dyes with versatile photophyscial properties

José María Andrés Castán,^{a+} Laura Abad Galán,^{b+} Shi Li,^c Clément Dalinot,^a Pablo Simón Marqués,^a Magali Allain,^a Chad Risko,^{*c} Cyrille Monnereau,^b Olivier Maury,^{*b} Philippe Blanchard,^a Clément Cabanetos^{*a}

The selective mono-nitration of benzothioxanthane (BTXI) is demonstrated herein. This leap opens doors to a wide range of chemical reactions since the nitro compound was successfully reduced into a primary amine that was, in turn, converted into an azide. Beyond the chemical achievement, this new series of functionalized BTXI was fully characterized, including from a photophysical point of view, expanding the scope of this promising rylene to build a new electroactive π -conjugated platform for electronic organic purposes.

Introduction

Organic semiconductors have attracted considerable research attention over the last few decades. Consequently, a wide variety of π -conjugated molecular- and macromolecular-based semiconductors have been synthesized and characterized. Among them, imide-containing rylenes hold intrigue as a molecular platform to build robust materials, as they have excellent thermal, chemical, and photochemical stabilities, as well as intriguing electronic and redox properties.¹ As a result, numerous studies have been reported so far and the very large majority of the latter deals with the synthesis, functionalization and use of naphthalene and perylene diimide derivatives. N-(alkyl)benzothioxanthene-3,4-Largely forgotten, dicarboximide (BTXI, Figure 1), a sulfur containing rylene-imide dye, has clearly been neglected as there are fewer than a dozen of papers in the literature.²

Figure 1. Expansion of BTXI core functionalization

- ^{a.} Laboratoire MOLTECH-Anjou, UMR CNRS 6200, UNIV Angers, SFR MATRIX, 2 Bd Lavoisier, 49045 Angers Cedex, France
- ^{b.} Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, F-69342 Lyon, France.
- ^c Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, KY 40506, USA.
- † These authors contributed equally.
- 58 Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x
- 59 60

ed **BTXI** core (**BTXI-Br**, Figure 1) opening doors to the design of new π -conjugated molecules for organic electronic applications.³ In this context and considering the high potential of this building block, efforts are currently devoted to further functionalize the **BTXI** with other functional groups than halogen atoms to explore complementary chemical reactions to conventional palladium-catalyzed cross couplings. In this context, we report herein an efficient approach to afford a new nitro derivative, a key precursor to amino **BTXI** that can be further involved in conventional and modified Sandmeyer reactions, thus widening the scope of design principles.

solution of **BTXI** at room temperature, leading to the formation of a new and predominant species. However, and regardless of the reaction time, the full conversion of the starting **BTXI** can only be achieved with an excess of nitric acid, *i.e.*, two molar equivalents (Figure 2).

Solely functionalized on the nitrogen atom of the imide group,

we recently reported the selective mono-bromination of the

New Journal of Chemistry

PAPER

Upon purification, integration of the signals revealed the presence of 11 aliphatic protons, attributed to the ethylpropyl side chain, and 7 in the 7.5 to 9.5 ppm range, thus confirming the selective and single substitution of the aromatic core (Figure S1-B). The nature of the substituent was thereafter confirmed by high-resolution mass spectrometry (see SI for details). Nonetheless, exact position of the nitro group remained to be solved.

Density functional theory (DFT) calculations were performed at the OT- ω B97X-D/6-31g(d,p) level of theory to determine the low-energy nitro-substitution site for each unique and potential **BTXI-NO**₂ derivative. Determination of the relative free energies (Δ G°) of the potential mono-nitro products (Figure 3 and Table S2) reveals that NO₂ has a thermodynamic preference for the position labelled 4 but with positions 5, 6, and 7 being relatively close in energy.

Figure 3. Relative energies of **BTXI-NO**₂ derivatives calculated at the OT- ω B97xD/6-31G(d, p) level of theory. NB: the alkyl group was truncated to a methyl to reduce the computational cost.

Faced with the difficulty of crystal growth, the molecular structure of **BTXI-NO**₂ was experimentally investigated by nuclear overhauser effect spectroscopy (NOESY). In contrast with the theoretical predictions, it turned out that the nitration occurred on the naphthyl ring and more precisely either on position 8 or 7, *i.e.*, as for **BTXI-Br** (Figure S2).

To support this inference, an indirect synthetic strategy was subsequently considered, consisting of the preparation and comparison of two structural isomers obtained either from the structurally well solved **BTXI-Br** (Scheme 1, approach A) or from the nitro derivative (Scheme 1, approach B).

Once isolated and purified by column chromatography, both molecules were analyzed by NMR revealing a perfect superimposition of their proton spectra, suggesting a similar grafting position (Figure S3). The latter was subsequently confirmed by X-ray diffraction since single crystals of **(B)-BTXI-NPh**₂ were successfully grown and analyzed (Figure S31).

Hence, while computational chemistry predicted a functionalization in position 4, corresponding to the thermodynamic product (Figure 2), the nitration conditions reported here result with the exclusive formation of the kinetic product. This nitro derivative opens doors to a wide range of chemical reactions and possible designs for novel π -conjugated chromophores. For instance, the latter was successfully reduced

into a primary amine (**BTXI-NH**₂) that was, in turn, converted into an azide, thus affording the "clickable" **BTXI-N**₃ (Scheme 2). Besides palladium-catalyzed cross coupling reactions, the copper-catalyzed azide–alkyne cycloaddition (CuAAC) is a major tool in synthetic chemical strategies spanning various applications from drug discovery to materials science. As a proof of concept, the **BTXI-Tr-BTXI** dimer was synthesized by combining both coupling approaches (Scheme 2) since the alkyne derivative (**BTXI-A**) was prepared from the bromo derivative *via* Sonogashira cross-coupling reaction.

Though isolated with a modest yield, mainly due to the lack of solubility of the target compound, the dimer demonstrates the potential, reactivity and complementarity of both coupling methods to expand the scope of π -functional **BTXI**-based materials.

Considering that rylene derivatives are usually characterized by distinctive photophysical properties and the almost total absence of data related to the **BTXI**,⁴ the spectroscopic features of the series reported herein were naturally investigated. In addition to absorption and emission profiles, fluorescence lifetimes (τ_{obs}) and quantum yields (Φ_f) were determined in dichloromethane solutions (Table 1). Due to the presence of heavy heteroatoms (S and in one instance Br) that are expected to increase spin-orbit coupling (SOC) within the molecule,⁵ the potential of these derivatives to generate singlet oxygen (Φ_{Δ}) based on their triplet excited states, was also quantified.⁶ The absorption and emission spectra of all the molecules are displayed in Figure 4.

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60 New Journal of Chemistry

Figure 4. Normalized absorbance (a) and emission (b) of all BTXI derivatives in diluted dichloromethane solutions at room temperature.

Except for BTXI-NH₂ and, in a somewhat lesser degree, BTXI-NPh₂, all studied derivatives are characterized by structured spectra both in absorption and in emission. For BTXI, BTXI-Br, BTXI-N₃ and BTXI-Tr-BTXI, the main transition located at ca 480 nm can thus be assigned to a localized π - π * transition of the polyaromatic **BTXI** core, whose position is slightly affected by the presence of substituents. Time-dependent DFT (TDDFT) calculations at the OT- ω B97X-D/6-31g(d,p) level of theory confirm this assignment, also showing a significant red-shift for BTXI-NH₂ when compared to other BTXI derivatives (Figure S19). As expected for such transitions, no significant solvatochromism was observed for the emission band of BTXI when moving from toluene to N,N-dimethylformamide (DMF) (Figure S4). In stark contrast, BTXI-NH₂ shows broad and structureless absorption and emission bands which are i) significantly red-shifted compared to other BTXI derivatives (ca 490 nm) and ii) solvent dependent (Figure S5).

Plotting the energy of the Stokes shift against the solvent polarizability following the Lippert-Mataga equation gave a clear linear tendency with positive slope (Figure S6). All these features are consistent with an assignment of this band to a charge transfer (CT) transition, indicative of push pull effect between the amino and naphthalimide parts of the molecule. Similar features in the absorption and emission spectra were found for BTXI-NPh₂. In the latter case, the bathochromic shift of the emission compared to BTXI-NH₂ (Figure S7) can be rationalized on the basis of a stronger reorganization between a distorted ground state (induced by the steric hindrances of the phenyl substituents) and a more planar excited state. For BTXI-NPh₂, natural transition orbitals (NTOs) derived from the TDDFT calculations reveals that the transitions with significant oscillator strength are mainly between the amino and naphtalimide moieties, confirming the CT-like assignment (Figure S25).

Comparatively with the other BTXI derivatives, BTXI-NO2 exhibits a red-shifted broad and structureless emission band

alongside BTXI-NH₂. However, it is noteworthy that this band does not display a solvatochromic behaviour and therefore cannot clearly be assigned to a CT (Figure S8). Furthermore, a clear contribution of phosphorescence from the triplet state band at 650 nm could be observed from the emission spectrum of BTXI-NO₂ when recorded at 77K in a 1:4 mixture of MeOH and EtOH. Then, by applying a delay of 0.05 ms, the phosphorescence band could be observed (Figure S9) and an energy at zero-phonon transition of 15,870 cm⁻¹ was recorded. Quite counterintuitively, while a phosphorescence band is also present in BTXI-Br, in which the heavy bromine substituent is expected to significantly enhance SOC, and thus facilitates the spin forbidden S1-T1 intersystem crossing (Figure S11), its magnitude turns out to be much lower than that of BTXI-NO₂, witnessing a faster intersystem crossing. Regarding BTXI-NPh2 and BTXI-Tr-BTXI the phosphorescence band was also observed probably due to distortions of the π -conjugated backbone, inducing an enhancement of SOC since triplet state energy of 14,600 and 15,385 cm⁻¹ were calculated respectively. On the other hand, 77K measurements performed on all other BTXI derivatives of the series did not show any significant triplet emission (Figures S12-S17).

The fluorescence quantum yields were determined for all molecules and turned out to be strongly dependent on the nature of the substituents. While BTXI and BTXI-TMS present almost quantitative quantum yields, the addition of Br, NH₂, $NO_{2,}$ NPh₂, N₃ or Tr-BTXI indeed seems to efficiently quench their emission (Table 1). In the case of BTXI-NH₂ and BTXI-NPh₂, the CT character could explain the difference in $\Phi_{f_{2}}$ as the distinctively lower recorded emission energy is prone to induce more efficient non-radiative deactivation through vibronic coupling between the ground and excited electronic states (energy gap law). Regarding **BTXI-N₃**, a non-radiative decay through photoinduced electron transfer (PET) between BTXI core and azido substituent would presumably be the most efficient pathway of quenching, as previously reported in the literature for similar compounds.7

For BTXI-Br, the presence of a bromine atom might enhance intersystem crossings (ISC) and therefore quenches emission from singlet state, while providing the aforementioned triplet emission. With regard to BTXI-NO₂, the presence of a long-lived triplet state even at room temperature can be related to its low fluorescence quantum yield, thus confirming the very efficient SOC and thus ISC achieved upon nitro substitution. This was further confirmed by the fact that BTXI-Br and BTXI-NO2 displayed significant singlet oxygen generation efficiencies of 0.11 and 0.42, respectively. Although the large magnitude of ISC in BTXI-NO₂ is quite surprising, the occurrence of such effects in nitro substituted polyaromatics is well documented in literature.^{5c,8} In addition to a lowest lying emitting ${}^{3}\pi$ - π * state, this feature is attributed to the existence of a more energetic $^{3}n-\pi^{*}$ state centred on the nitroaromatic part of the molecule. The latter state, being comparatively closer in energy to the $^{1}\pi$ - π^* state, and involving a change in electronic configuration ($^{1}\pi$ - $\pi^* \rightarrow {}^{3}n-\pi^*$), favours important SOC effects, and is at the origin of the outstanding properties of BTXI-NO2. Finally, the BTXI-Tr-BTXI dimer presents a lower quantum yield in comparison to a

New Journal of Chemistry

PAPER

single **BTXI** and shows relatively high generation of singlet oxygen, which may also be enhanced by the previously mentioned conformation restrictions that give rise to π -distorted ground state geometry.⁷ A similar observation and

conclusion can be drawn for **BTXI-NPh₂**, which shows the strongest singlet oxygen generation within the series witnessing important SOC despite of the absence of heavy atoms.

	$\lambda_{abs}(max)$ (nm)	λ_{em} (nm)	Stokes Shift (cm ⁻¹)	$\Phi_{\rm f}{}^{\rm a}$	au _{obs} (ns)	Φ_{Δ^b}	E _{Triplet} (cm ⁻¹) ^c
BTXI	455	510	2,370	0.99	7.48	0.00	-
BTXI-TMS	461	515	2,275	0.86	8.55	0.00	-
BTXI-Br	469	500	1,322	0.78	6.49	0.11	14,925
BTXI-NO ₂	486	585	3,482	0.01	8.14	0.42	15,870
BTXI-NH ₂	490	555	2,390	0.67	11.17	0.00	-
BTXI-NPh ₂	483	600	4,037	0.33	10.68	0.46	14,600
BTXI-N₃	523	550	939	0.11	5.84	0.00	-
BTXI-Tr-BTXI	458	520	2,603	0.56	6.91	0.23	15,385

^a Measured using coumarine-153 as reference (Φ_f = 0.45 in MeOH); ^b Measured using phenalenone as reference (Φ_f = 0.95 in DCM).¹² ^c Calculated at the first band maximum.

Table 1. Photophysical data of the BTXI derivatives in diluted dichloromethane solution

Conclusions

Forgotten by the community, we have recently pointed out the potential of the benzothioxanthene block for organic electronic applications. In addition to the previous demonstration of its bromination, opening doors to conventional palladium crosscoupling reactions, we report here the selective mono-nitration of the BTXI core. Once fully characterized, this new compound was successfully reduced into an amino derivative that was, in turn, converted in an azido group. BTXI-N₃ was found to be perfectly compatible with the well-known, copper-catalyzed azide-alkyne cycloaddition (CuAAC), and this manuscript adds another important string to the bow of the BTXI functionalization, design principle and therefore potential applications. Moreover, to gain further insights into the new BTXI derivatives reported here, their photophysical properties have been investigated in parallel. While the unsubstituted BTXI core presents very high emission efficiency associated with a localized electronic transition, introduction of electron withdrawing or donating substituents on the naphthalene ring strongly modifies the spectroscopic signatures. Moreover, it was demonstrated that large SOC, and thus efficient singlet oxygen generation properties can also be efficiently achieved, not only by classical addition of heavy atom substituents, but also upon the choice of substituents that lead to a ground state distortion of the π -conjugated backbone. For instance, **BTXI-**NPh2 efficiently combines both marked CT character (redshifted luminescence with a relevant emission quantum yield) and a large singlet oxygen generation efficiency, making it a potential candidate for application in biophotonics and theranostics.9

Experimental

General

59 60 All reagents and chemicals from commercial sources were used without further purification. Solvents were dried and purified using

standard techniques. Flash chromatography was performed with analytical-grade solvents using Aldrich silica gel (technical grade, pore size 60 Å, 230-400 mesh particle size). Flexible plates ALUGRAM[®] Xtra SIL G UV254 from MACHEREY-NAGEL were used for TLC. Compounds were detected by UV irradiation (Bioblock Scientific). NMR spectra were recorded with a Bruker AVANCE III 300 (1H, 300 MHz and 13C, 75MHz) or a Bruker AVANCE DRX500 (1H, 500 MHz; 13C, 125 MHz). Chemical shifts are given in ppm relative to TMS and coupling constants J in Hz. IR spectra were recorded on a Bruker spectrometer Vertex 70 and UV-vis spectra with a Perkin Elmer 950 spectrometer. Matrix Assisted Laser Desorption/Ionization was performed on MALDI-TOF MS BIFLEX III Bruker Daltonics spectrometer using dithranol as matrix. High resolution mass spectrometry (HRMS) was performed with a JEOL JMS-700 B/E. Melting points are uncorrected.

Synthetic procedures

BTXI-NO2: HNO3 (0.13 mmol or 0.26 mmol,) solubilized in CH₂Cl₂ (2 mL) was added dropwise on a stirred solution of **BTXI** (50.0 mg, 0.13 mmol) in CH₂Cl₂ (3 mL). After 20 minutes, water was added to the reaction mixture and the organic phase was concentrated under vacuum. To get rid of impurities the resulting powder was recrystallized from CH₂Cl₂ yielding **BTXI-NO**₂ as an orange solid (30.2 mg, 54%). m.p.: 290 - 292 °C. ¹H NMR (500 MHz, CDCl₃): *δ* (ppm) 9.43 (s, 1H), 8.84 (d, *J* = 8.3 Hz, 1H), 8.53 (d, *J* = 8.4 Hz, 1H), 8.42 – 8.36 (m, 1H), 7.74 – 7.69 (m, 1H), 7.63 – 7.56 (m, 2H), 5.10 – 5.01 (m, 1H), 2.31 – 2.19 (m, 2H), 1.99 – 1.88 (m, 2H), 0.91 (t, *J* = 7.5 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃): *δ* (ppm) 141.5, 139.0, 138.1, 131.7, 131.6, 130.7, 129.2, 127.4, 127.2, 126.2, 125.8, 121.2, 58.1, 25.0, 11.5. HRMS (EI): *m/z* calcd for C₂₃H₁₈N₂O₄S: 418.0982, found: 418.0986 (Δ = 1.0 ppm).

BTXI-NH₂: THF (60 mL) was added to a solid mixture of **BTXI-NO₂** (500.0 mg, 1.20 mmol) and powdered iron (467.0 mg, 8.40 mmol). Hydrochloric acid (5.00 mL, 37%) was subsequently added and the mixture was heated at 65 °C for 40 minutes. Water was added to quench the reaction and the obtained solid was filtered and washed thoroughly with water. The crude was passed through a pad of neutral alumina (eluent: chloroform) affording **BTXI-NH₂** (411 mg, 89%) as a red powder. m.p.: 288 - 290 °C. ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.41 (d, *J* = 8.0 Hz, 1H), 8.22 - 8.09 (m, 2H), 8.05 (s, 1H), 7.48

3

4

5

6

7

8

9

- 7.34 (m, 3H), 5.12 - 4.98 (m, 1H), 4.04 (s, 2H), 2.43 - 2.11 (m, 2H), 2.02 – 1.78 (m, 2H), 0.89 (t, J = 7.5 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 137.3, 134.8, 130.4, 129.7, 128.7, 127.9, 127.3, 126.8, 126.2, 125.3, 119.8, 57.5, 25.1, 11.5. HRMS (FAB): m/z calcd for C₂₃H₂₀N₂O₂S: 388.1240, found: 388.1250 (Δ = 2.6 ppm).

(A)-BTXI-NPh2: Sodium tert-butoxyde (26.5 mg, 0.28 mmol), Pd₂(dba)₃ (10.1 mg, 0.011 mmol), diphenylamine (39.3 mg, 0.23 10 mmol) and BTXI-Br (100.0 mg, 0.22 mmol) were dissolved in dry and degassed toluene (5 mL). Then, a solution of tri-tert-butylphosphine 11 in toluene (220 µL, 0.22 mmol) was added and the mixture was 12 heated to reflux and stirred overnight. The reaction was filtered 13 through a silica plug and eluted with ethyl acetate. The solution was 14 concentrated under reduced pressure and the final product was 15 purified by column chromatography on silica gel (eluent: CH₂Cl₂/ 16 Petroleum ether 7:3) affording an orange solid (53.2 mg, 45%).

17 (B)-BTXI-NPh2: Sodium tert-butoxyde (35.6 mg, 0.37 mmol), 18 Pd₂(dba)₃ (14.1 mg, 0.015 mmol), and **BTXI-NH**₂ (60.0 mg, 0.15 mmol) 19 were dissolved in dry and degassed toluene (2.5 mL). Iodobenzene 20 (87 µL. 0.77 mmol) and a solution of tri-*tert*-butylphosphine in 21 toluene (310 µL, 0.31 mmol) were added to the reaction mixture. The 22 latter was heated to reflux and stirred overnight. Once cooled to 23 room temperature, the reaction was filtered through a silica plug (CH₂Cl₂). The solution was concentrated under reduced pressure and 24 the final product was purified by column chromatography on silica 25 gel (eluent: CH₂Cl₂/ Petroleum ether 7:3) affording an orange solid 26 (52.0 mg, 62%). 27

m.p.: 245 - 247 °C. ¹H NMR (300 MHz, CD₂Cl₂): δ (ppm) 8.59 (d, J = 8.2 28 Hz, 1H), 8.33 (s, 1H), 8.31 - 8.22 (m, 2H), 7.43 - 7.32 (m, 3H), 7.31 -29 7.23 (m, 4H), 7.11 – 7.01 (m, 6H), 5.07 – 4.93 (m, 1H), 2.31 – 2.12 (m, 30 2H), 1.94 – 1.76 (m, 2H), 0.88 (t, J = 7.5 Hz, 6H). ¹³C NMR (75 MHz, 31 CD₂Cl₂): δ (ppm) 146.1, 139.9, 137.6, 136.8, 132.5, 130.3, 129.9, 32 129.5, 128.2, 128.1, 127.8, 127.5, 126.4, 123.6, 122.3, 120.1, 57.8, 33 25.4, 11.7. HRMS (EI): *m/z* calcd for C₃₅H₂₈N₂O₂S: 540.1866, found: 34 540.1864 ($\Delta = 0.4$ ppm).

35 BTXI-N₃: BTXI-NH₂ (50.0 mg, 0.13 mmol) was dissolved in 36 trifluoroacetic acid (0.5 mL) at 0 °C before adding a solution of NaNO₂ 37 (11.5 mg, 0.17 mmol) solubilized in water (0.1 mL). After 20 min, 38 NaN₃ (10.9 mg, 0.17 mmol), also solubilized in water (0.1 mL) was 39 added to the reaction mixture. Still stirred for an extra hour at 0°C, 40 the mixture was warmed up to rt and water was added to guench 41 the reaction. The resulting solid was filtered off, washed thoroughly 42 with water and dried, yielding BTXI-N₃ (48.0 mg, 90%). m.p.: 146 -43 148 °C (d). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.55 (d, J = 8.3 Hz, 1H), 8.37 (s, 1H), 8.27 - 8.18 (m, 2H), 7.48 - 7.39 (m, 3H), 5.19 - 4.95 (m, 44 1H), 2.41 – 2.14 (m, 2H), 1.98 – 1.80 (m, 2H), 0.90 (t, J = 7.5 Hz, 6H). 45 ¹³C NMR was not recorded due to stability issues in solution. IR 46 (neat): cm⁻¹ 2112 (-N₃). MS (MALDI): *m/z* calcd for C₂₃H₁₈N₄O₂S: 47 414.48, found: 305 [M-H-N₂]+. 48

49 BTXI-A: NBu₄F 1M in THF (0.19 mL, 0.19 mmol) was added dropwise 50 to a solution of BTXI-A-TMS in anhydrous THF (12 mL). After 1h, 51 water was added to guench the reaction and the organic phase was 52 extracted with dichloromethane, dried with MgSO₄ and 53 concentrated under reduced pressure. The crude was purified by 54 column chromatography on silica gel (eluent: CH₂Cl₂) yielding BTXI-A (67.0 mg, 88%) as an orange powder. m.p.: 224 - 226 °C (d). ¹H NMR 55 (300 MHz, CDCl₃): δ (ppm) 8.62 – 8.46 (m, 2H), 8.26 – 8.13 (m, 2H), 56 7.48 - 7.36 (m, 3H), 5.10 - 4.98 (m, 1H), 3.80 - 3.76 (m, 1H), 2.33 -57 2.16 (m, 2H), 1.99 – 1.83 (m, 2H), 0.90 (t, J = 7.4 Hz, 6H). ¹³C NMR (75 58 MHz, CDCl₃): δ (ppm) 143.6, 136.3, 134.5, 132.8, 131.6, 130.1, 129.9, 59

128.0, 127.6, 126.9, 126.0, 125.4, 121.6, 119.8, 118.1, 113.3, 87.6, 87.6, 79.6, 57.6, 25.0, 11.5. HRMS (FAB): *m/z* calcd for C₂₅H₁₉NO₂S: 397.1131, found: 397.1136 (Δ = 1.3 ppm).

BTXI-Tr-BTXI: A solution of 10 drops of N,N,N',N",N"pentamethyldiethylenetriamine (PMDETA) in toluene (45 mL) was degassed five times via freeze-pump-thaw cycling. This solution was then transferred into a Schlenk flask containing **BTXI-A** (38 mg, 0.096 mmol), CuBr (12 mg) and **BTXI-N₃** (36 mg, 0.087 mmol) under argon atmosphere at rt. The reaction mixture was protected from light and stirred overnight. The solvent was removed in vacuo and the residue was purified by chromatography on silica gel (eluent: CHCl₃/MeOH from 100:0 v/v to 99:1 v/v). The resulting solid was dissolved in CH₂Cl₂ and then precipitated with pentane affording an orange powder (28 mg, 40%). m.p.: 246 - 248 °C (d). ¹H NMR (300 MHz, $CDCl_3$): δ (ppm) 9.02 (s, 1H), 8.76 (d, J = 7.9 Hz, 1H), 8.68 (d, J = 8.1Hz, 1H), 8.62 (s, 1H), 8.48 (s, 1H), 8.40 (d, J = 8.2 Hz, 1H), 8.36 - 8.24 (m, 3H), 7.53 - 7.39 (m, 6H), 5.15 - 5.04 (m, 2H), 2.36 - 2.21 (m, 4H), 2.02 - 1.89 (m, 4H), 0.93 (t, J = 7.4 Hz, 12H). ¹³C NMR (125 MHz, $CDCl_3$): δ (ppm) 130.6, 130.1, 128.6, 128.1, 127.5, 124.2, 121.9, 120.7, 120.2, 29.9, 25.1, 25.0, 11.5, 11.5. HRMS (FAB): m/z calcd for $C_{48}H_{38}N_5O_4S_2$: 812.2360, found: 812.2364 [M+H]⁺ (Δ = 0.5 ppm).

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

Authors thank the MATRIX SFR of the University of Angers. J.M.A.C. and P.S.M. thanks the European Union's Horizon 2020 research and innovation program under Marie Sklodowska Curie Grant agreement No.722651 (SEPOMO). The Région Pays de la Loire is acknowledged for the grant of C. D. (Projet étoile montante SAMOA). Benjamin Siegler is thanked for his help on structure solving by NMR experiments. LAG thanks Agence Nationale de la Recherche (SADAM ANR-16-CE07-0015-02) for her grant. S.L. and C.R. thank the Office of Naval Research Young Investigator Program (award no. N00014-18-1-2448) for their support of this project. Supercomputing resources on the Lipscomb High Performance Computing Cluster were provided by the University of Kentucky Information Technology Department and the Center for Computational Sciences (CCS).

Notes and references

+These authors contributed equally.

- (a) Feng, J.; Jiang, W.; Wang, Z. Chemistry An Asian Journal (1) 2018, 13, 20(b) Sun, M.; Müllen, K.; Yin, M. Chemical Society Reviews 2016, 45, 1513.
- (a) Grayshan, P. H.; Kadhim, A. M.; Perters, A. T. Journal of (2) Heterocyclic Chemistry 1974, 11, 33(b) Qian, X.; Mao, P.; Yao, W.; Guo, X. Tetrahedron Letters 2002, 43, 2995(c) Danko, M.; Hrdlovič, P.; Chmela, Š. Polymer Degradation and Stability 2011, 96.1955.
- (a) Josse, P.; Li, S.; Dayneko, S.; Joly, D.; Labrunie, A.; Dabos-(3) Seignon, S.; Allain, M.; Siegler, B.; Demadrille, R.; Welch, G. C.; Risko, C.; Blanchard, P.; Cabanetos, C. Journal of Materials Chemistry C 2018, 6, 761(b) Payne, A.-J.; Rice, N. A.; McAfee, S. M.; Li, S.; Josse, P.; Cabanetos, C.; Risko, C.; Lessard, B. H.; Welch, G. C. ACS Applied Energy Materials 2018, 1, 4906(c) Dayneko, S.

60

2		
3		V.; Hendsbee, A. D.; Cann, J. R.; Cabanetos, C.; Welch, G. C. New
4	(4)	Kollár, J.: Chmela, Š.: Hrdlovič, P. Journal of Photochemistry and
5	()	Photobiology A: Chemistry 2013 , 270, 28.
6	(5)	(a) Turro, N. J.; Ramamurthy, V.; Scaiano, J. C. Photochemistry
7		and Photobiology 2012 , 88, 1033(b) Penfold, T. J.; Gindensperger, E: Daniel, C: Marian, C. M. <i>Chemical Reviews</i> 2018 , 118, 6975(c)
8		Zobel, J. P.; Nogueira, J. J.; González, L. <i>Chemistry – A European</i>
9		Journal 2018 , <i>2</i> 4, 5379.
10	(6)	(a) Schmidt, R.; Tanielian, C.; Dunsbach, R.; Wolff, C. <i>Journal of</i>
11		Zhang, L.: Huang, Z.: Dai, D.: Xiao, Y.: Lei, K.: Tan, S.: Cheng, L.: Xu.
12		Y.; Liu, J.; Qian, X. Organic Letters 2016 , <i>18</i> , 5664.
13	(7)	Shie, JJ.; Liu, YC.; Lee, YM.; Lim, C.; Fang, JM.; Wong, CH.
14 15	(9)	Journal of the American Chemical Society 2014 , 136, 9953.
15	(8)	R.; Peon, J. The Journal of Physical Chemistry A 2011 , 115, 577(b)
10		Crespo-Hernández, C. E.; Burdzinski, G.; Arce, R. The Journal of
17		<i>Physical Chemistry A</i> 2008 , <i>112</i> , 6313(c) Vogt, R. A.; Reichardt, C.;
10		Crespo-Hernandez, C. E. The Journal of Physical Chemistry A 2013 117 6580
20	(9)	Galland, M.; Le Bahers, T.; Banyasz, A.; Lascoux, N.; Duperray, A.;
20		Grichine, A.; Tripier, R.; Guyot, Y.; Maynadier, M.; Nguyen, C.;
27		Gary-Bobo, M.; Andraud, C.; Monnereau, C.; Maury, O. <i>Chemistry</i>
23		– A European Journal 2019 , 25, 9026.
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42 42		
45 11		
44 45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		

PAPER

1

60

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 20xx

Nitration of the benzothioxanthene: towards a new class of dyes with versatile photophyscial propertie

José María Andrés Castán,^{†+} Laura Abad Galán,^{±+} Shi Li,[‡] Clément Dalinot,[†] Pablo Simón Marqués,[†] Magali Allain,[†] Chad Risko,^{‡*} Cyrille Monnereau,[±] Olivier Maury,^{±*} Philippe Blanchard,[†] Clément Cabanetos^{†*}.

CNRS UMR 6200, MOLTECH-Anjou, University of Angers, 2 Bd Lavoisier, 49045 Angers, France
Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, KY 40506, USA

[±] Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, F-69342 Lyon, France.

