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Aqueous humor metabolite profile of pseudoexfoliation glaucoma 
is distinctive
Ciara Myer, a,b Leila Abdelrahman, a,b Santanu Banerjee, a,b,c Ram B. Khattri,d Matthew E. Merritt,d 
Anna K. Junk,a,b,e Richard K. Lee,a,b and Sanjoy K. Bhattacharya a,b*

Pseudoexfoliation (PEX) is a known cause of secondary open angle glaucoma. PEX glaucoma is associated with structural and 
metabolic changes in the eye. Despite similarities, PEX and primary open angle glaucoma (POAG) may have differences in 
the composition of metabolites. We analyzed the metabolites of the aqueous humor (AH) of PEX subjects sequentially first 
using nuclear magnetic resonance (1H NMR: HSQC and TOCSY), and subsequently with liquid chromatography tandem mass 
spectrometry (LC-MS/MS) implementing isotopic ratio outlier analysis (IROA) quantification. The findings were compared 
with previous results for POAG and control subjects analyzed using identical sequential steps. We found significant 
differences in metabolites between the three conditions. Principle component analysis (PCA) and partial least squares 
discriminant analysis (PLS-DA) indicated clear grouping based on the metabolomes of the three conditions. We used machine 
learning algorithms and a percentage set of the data to train, and utilized a different or larger dataset to test whether a 
trained model can correctly classify the test dataset as PEX, POAG or control. Three different algorithms: linear support 
vector machines (SVM), deep learning, and a neural network were used for prediction. They all accurately classified the test 
datasets based on the AH metabolome of the sample. We next compared the AH metabolome with known AH and TM 
proteomes and genomes in order to understand metabolic pathways that may contribute to alterations in the AH 
metabolome in PEX. We found potential protein/gene pathways associated with observed significant metabolite changes in 
PEX. 

Introduction
Pseudoexfoliation (PEX) is an age-related systemic 

syndrome. It is characterized by generalized fibrotic aberration 
of extracellular matrix. It is associated with the presence of  PEX 
fluffy materials with ocular manifestation and glaucoma1,2. PEX 
is also associated with cardiovascular and cerebrovascular 
morbidity1. Although PEX has obvious ocular manifestations 
such as fluffy deposits on the crystalline lens and glaucoma, the 
underlying disease is systemic and can affect multiple organ 
systems (ESI†). Furthermore, PEX is not restricted to geographic 
boundaries and hence is of worldwide significance. Despite 
ocular effects and glaucoma, the material deposit is systemic. 

The presence of pseudoexfoliation material identified by 
clinical examination at the slit lamp results in the diagnosis of 
PEX. It is thus a form of open angle glaucoma with a known 
etiology. Large aggregates of dandruff-like floating clumps of 
proteinaceous material circulate in the anterior chamber. The 
deposit material is evident on a slit lamp exam as a layer of 
white material on the lens capsule (LC) often giving a bull’s eye-
like configuration were the pupil excursion has mechanically 
rubbed of the deposits. Formation of this abnormal material in 

the anterior segment of the PEX eye results in several clinical 
and surgical ocular conditions including secondary open angle 
glaucoma, angle narrowing, an increased iris vascular leak, and 
zonular dehiscence associated with increased risk of lens 
nucleus prolapse during cataract surgery1. PEX material is 
believed to cause intraocular pressure (IOP) elevation by 
obstructing the trabecular meshwork and subsequently 
restricting the aqueous humor (AH) outflow, ultimately 
resulting in optic nerve damage. The source of the PEX material 
is not entirely certain and the molecular identity of the PEX 
material is not completely known. The fibrillar protein 
aggregates have been hypothesized to originate from the cells 
of the iris, the lens, and the ciliary epithelium by various 
groups1,3.  

PEX has a genetic predisposition. Inheritance of PEX has 
been found to be an autosomal dominant trait. However, 
mutations associated with PEX also result in late onset and 
incomplete penetrance4. Incomplete penetrance, the widely 
used term in genetics5, refers here a situation where a known 
gene mutation demonstrate varied degree of disease severity in 
different individuals. Thus, like several other late onset, 
progressive and complex ocular diseases, PEX is clinically and 
genetically heterogeneous. PEX has been associated with a 
maternal6,7 as well as a paternal transmission8. In addition, it 
has been associated with transmission in two-generation 
families, higher concordance rates in monozygous twins, 
familial aggregation of patients, increased risk in relatives, loss 
of heterozygosity support and genetic predisposition6,9. The 
development of PEX occurs not at the same rate and time 
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bilaterally, thus it presents asymmetric involvement. Regional 
clustering observed in PEX patients also suggests genetic 
predisposition as well as potential involvement of climatic 
factors10-12. 

PEX occurs in all geographic regions worldwide with varying 
prevalence rates13. One of the early epidemiologic studies 
found a lack of influence of climate on the occurrence of PEX 
syndrome4. Recent studies suggest that climatic factors affect 
PEX12,14. Greater time spent outdoors during the summer up to 
age 2415 or over a lifetime16 has been found independently 
associated with greater risk of incident PEX. Thus, outdoor 
climatic factors are considered an independent risk for the 
development of PEX. Increased incidence of cataracts suggests 
involvement of ultraviolet light16. 

There is reduced protection from ultraviolet light due to 
reduced levels of ascorbic acid in the AH of PEX. Metabolites 
such as homocysteine, folic acid vitamin B12, and many other 
metabolites are possibly associated with glaucoma17-21. 
However, these individual studies of metabolites have often 
produced conflicting results22. Several proteomic studies and 
genomic studies on PEX have been reported 23-25 . Proteomic 
studies have shown elevated level of vitamin D binding protein. 
Increased vitamin D and vitamin D binding protein are known to 
correlate with elevated sunlight exposure. In contrast to several 
proteomic and genomic studies, high throughput investigations 
of metabolite profiles of PEX tissue and fluids are lacking, 
despite individual studies of selected metabolites. AH 
metabolites changes may potentially herald the transition from 
normal to pathologic state. Metabolomic analysis of AH in PEX 
and comparison with control normal AH will provide insight into 
the pathophysiologic metabolic changes in the anterior 
chamber.

Results

Metabolite Identification

We identified a total of 298 metabolites in pseudoexfoliation 
(PEX) glaucoma, primary open angle glaucoma (POAG) and non-

glaucomatous controls using both one-dimensional (1D) 1H 
NMR and isotopic ratio outlier analysis (IROA) (Fig. 1). The 
metabolites with their corresponding chemical shifts are shown 
in Figures S2 a-c and Figures S3-S5 (ESI†). 1D 1H NMR identified 
metabolites were verified further with the 2D NMR spectra: 
HSQC and TOCSY shown in Figure S6-S8 (ESI†). Within the total 
number of metabolites identified there were 125 unique PEX, 
63 unique POAG and 100 common metabolites. IROA identified 
a total of 125 and 63 metabolites in PEX and POAG respectively 
and 72 metabolites in common between the groups. 1H NMR 
identified a total of 37 metabolites that were common among 
all AH groups (Fig. 1). A comparison of the resonances for a few 
metabolites for control (Normal), POAG and PEX samples is 
shown in Figure S3-S5 (ESI†).  

Fig. 1 A summary of the number of metabolites identified in control, 
pseudoexfoliation (PEX) and primary open angle (POAG) glaucoma samples. The 
combined metabolites identified using 1H NMR and isotopic ratio outlier (IROA) mass 
spectrometric analysis have been presented. Bar plots indicate the intersections of 
the different metabolites discovered for the control, POAG and PEX glaucoma. 
Summary of all metabolites have been presented. Significant metabolites are those 
which have shown a p value ≤0.05.

Fig.  2 The significant metabolites found in control, PEX and POAG using NMR or IROA methods as indicated. (a) IROA significant metabolites for control versus PEX. (b) 1H NMR 
significant metabolites for control versus PEX. (c)  IROA significant metabolites for PEX versus POAG. (d) 1H NMR significant metabolites for PEX versus POAG. 
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Comparison of PEX AH metabolites with POAG AH and Control AH

There were 11 significant metabolites identified when 
comparing PEX to controls including L-arginine, L-lysine, L-
glutamine, L-tyrosine, 2,4-diacetamido-2,4,6-trideoxy-beta-l-
altrose, N(6)-acetonyllysine, 1-aminocyclopropane-1-
carboxylate, L-histidine, C6H9N4O3P, C6H13NO9, and 5 
hydroxypentanoate (Fig. 2a). Only 2 metabolites (propylene 
glycol, creatine) were found to be significant between PEX and 
controls using 1H NMR spectroscopy (Fig. 2b). There were five 
amino acids (L-arginine, L-lysine, L-tyrosine, L-glutamine, L-
histidine) that showed varying levels when comparing PEX, 
POAG, and control (Fig. 2). The amino acid levels were greater 
in POAG compared to PEX in IROA (Fig. 2c), and higher in 
controls compared to PEX (Fig. 2a). 1H NMR analysis revealed 
that 2-Hydroxybutyrate, 3-methyl-2-oxovalerate, propylene 
glycol, 3-hydroxy isovalerate, pyruvate, and choline had lower 
abundance in PEX compared to POAG (Fig. 2d).

Statistical Analysis

The identified metabolites were subjected to principle 
Component analysis (PCA), partial least square-discriminant 
(PLS-DA) and variable importance in projection (VIP) score 
analysis. PCA and PLS-DA distinguished PEX metabolites from 
control and PEX from POAG metabolites (Fig. 3). The VIP score 
presented several important metabolites that showed 
differential levels in PEX compared to control (Fig. 3c). Similarly, 
VIP scores presented several important metabolites that 
showed differential levels in PEX compared to POAG (Fig. 3e). 
The VIP score also presented several important metabolites 
used to classify samples as either POAG or PEX (Fig. 3f). It is 
noteworthy that certain significantly abundant (p < 0.05) 
metabolites like L-tyrosine and N6-Acetonyllysine also had the 
highest VIP scores in both experiments. The PLS-DA Q2 score for 
the PEX versus control experiments was 0.95 for the first 

principal component and was 0.94 for the second principal 
component. For comparison of PEX and control, the PLS-DA Q2 
score was 0.95 for the first principal component and 0.98 for the 
second principal component. These extremely high Q2 scores 
indicate that the model is highly predictive in classifying control, 
PEX, and POAG samples based on metabolites. Volcano plots 
were created to identify significant metabolites. They showed 
the presence of distinct finger-print regions of abundance for 
POAG, PEX, and control (Fig. 4). These plots confirm the 
accuracy of the PLS-DA model in classifying the conditions. Heat 
maps were constructed to compare the metabolites of control 

Fig.  3 The statistical analysis of metabolites in control, PEX and POAG AH samples. (a,d) The principal component analysis (PCA), (b,e) partial least squares discriminant analysis 
(PLS-DA)  and (c,f) variable importance in projection (VIP) scores for the combined 1H NMR and IROA data. A two-component analysis (PC1 versus PC2) was determined for PEX 
versus control and POAG versus PEX. Control, POAG and PEX are indicated by N, X and G respectively. All determinations were made using MetaboAnalyst 4.0 web-based tools.

Fig.  4 Volcano plots comparing the significance of the metabolites found (log10p) vs the 
log2Fold Change. (a) Control versus PEX experiments. (b) POAG versus PEX experiments.  
Metabolites in green had a significant difference in expression (p<0.05) and a magnitude 
log2 Fold Change greater than 1. Metabolites in orange did not have a significant 
difference in expression but did have a magnitude log2Fold Change greater than 1. 
Metabolites in red only had a significant difference in expression. Black metabolites 
neither had a significant difference in expression nor a magnitude log2Fold Change 
greater than 1. Metabolites in green are labeled.

Page 3 of 12 Molecular Omics



Research Article Molecular Omics

Mol. Omics This journal is © The Royal Society of Chemistry 2019

versus PEX (Fig. 5a) and POAG versus PEX (Fig. 5b). Clustering of 
certain over abundant and under abundant metabolites 
mapped to either control, POAG, or PEX. 

Predictive Power of Metabolite Datasets

We tested whether metabolomic profiles of control, POAG and 
PEX can be used to classify and distinguish the conditions (Fig. 
6). We used machine learning to create an enhanced neural 
network, support vector machine (SVM) and deep learning 
algorithm. The enhanced neural network showed that training 
on only 10% of the whole patient samples, while testing on the 
remaining 90% (or 100-x% where x is the training set percent; x 
represents the combination of samples from whole metabolites 
of individual patients) of the samples, can lead to greater than 
90% accuracy in classifying PEX and control samples (Fig. 6a) or 
PEX and POAG samples (Fig. 6b). Deep learning was next best 
for either classification. We found the SVM algorithm to be 
unpredictable in predicting either group (Fig. 6a, b) as its output 
did not show a linear relationship with the input dataset. 

Metabolite Interactor Protein Network

We combined the identified metabolites in this study with prior 
quantitative proteomics26 and genomics data27 towards 
building an integrated metabolite-protein-genome network 
that can provide important hubs of convergence of these 
biomolecules (Fig. 7). We used the difference in relative 
abundance levels of metabolites in PEX compared to control 
towards building this network. There were four prominent 
metabolite nodes included L-Tyrosine, L-Lysine, L-Histidine, and 
L-Arginine. These same nodes were also confirmed as significant 

Fig.  6 Classification of samples as control, POAG or PEX based on metabolite 
profiles using machine-learning. (a) The accuracy rates of the three different 
models explored machine learning algorithm as a function of percent data trained 
for the PEX versus control. (b) The accuracy rates of the three different explored 
machine learning algorithms as a function of percent data trained for the PEX 
versus POAG experiments. The high variability of the linear SVM could be due to 
the use of a linear kernel indicating the limitations of use of linear kernel in 
standard software setting. The X-axis shows the percentage of the data (10-100%) 
that was used for training. Combined refers to IROA plus 1H NMR identified 
metabolites. A hundred iterations of a percentage-split validation of each algorithm 
was performed and the average accuracy [Accuracy (%), output in Y-axis], along 
with the standard deviation, of each percent trained data was plotted. 
Classification/prediction for each test used 100 – x% of the whole patient samples, 
where x represents the percentage of data used for training.

Fig.  5 Heat maps of metabolites.1H NMR and IROA combined data were used to generate heat-maps. (a) 1H NMR and IROA significant (p < 0.05) and insignificant metabolites 
including unknowns for control versus PEX. (b) 1H NMR and IROA significant (p < 0.05) and insignificant metabolites including unknowns for the POAG versus PEX experiments. 
The x-axis represents class and the y-axis represents metabolites.
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metabolites in our experiments.  The prominent hubs of 
convergence bear potential to test specific hypotheses. L-
Arginine, related to NO generation and L-Tyrosine  metabolism 
are pertinent to IOP homeostasis and TM integrity 
respectively28,29 underscoring the importance of these nodes.  

Discussion

For more than two centuries AH was considered as a static 
fluid, something that people are born with30, experimental 
investigation within the last five decades showed AH as an 
active product of the ciliary body31-34 and helped evolve the 
concept of AH as a dynamic fluid. However, it is highly likely that 
the metabolites of the AH are contributed by several different 
tissues of the anterior segment such as the cornea, lens, ciliary 
body, iris and uveosclera35. Several metabolites have been 
proposed to be present in the AH in individual analysis, 36 but 
may not be supported by high throughput metabolomics. AH 
outflow is likely to generate local turbulence, create a gradient 
between generation and exit streams and thus have an effect 
on the metabolite concentration37,38.The local turbulence in the 
AH outflow could be due to the TM pulsatile motion39,40 as well 
as high hydraulic conductivity. The hydraulic conductivity of the 

aqueous humor pathway, is one of the highest of all filtration 
tissues (4000–9000 x 10-11 cm2 sec/g), including the renal 
filtration system41. 

We identified 298 metabolites using combined methods of 
NMR and IROA. Currently, there is no report on PEX 
metabolites. The control and POAG AH have previously been 
subjected to metabolite analysis by various methods. Previous 
reports have used only one analytical method (such as mass 
spectrometry or routine biochemical analysis) at a time. 
However, we present data generated by a non-destructive 1H 
NMR followed by a destructive IROA mass spectrometry, unlike 
most previous reports which utilized only destructive methods 
for metabolite identification. Many metabolites identified by 
our analysis are consistent with a recent spatial analysis using 
imaging mass spectrometry42. 

A comparison of non-amino acid, non-lipid metabolites 
showed asymmetric dimethyl arginine (ADMA) to be present in 
higher levels in PEX compared to control (Fig. 3d). This is 
corroborated by prior reports 43. Perhaps L-arginine is 
converted to ADMA in PEX. Compared to the POAG aqueous 
humor, 5-hydroxypentanoate was significantly higher in the PEX 
samples. This metabolite was also significantly elevated in PEX 
in comparison to the controls (Fig. 3d).

Fig.  7 Metabolite-protein-gene network of PEX as compared to control samples. Genes from the literature search are shown in dark blue. The input metabolites from this 
study are shown in dark red. Hubs in the network characterized by many edges surrounding a node indicate important sites for further future investigations. An interactive 
version of the network can be viewed by uploading the GRAPHML file into OmicsNet.ca or Cytoscape (ESI†).
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It is becoming increasingly evident that a single gene 
mutation may have different fates. Geneticist termed this as an 
incomplete penetrance. Investigations in isogenic organisms 
have expanded this understanding that a single mutation in a 
protein product derives different fates due to differences in 
interactions with other molecules, most commonly with 
metabolites44. Differential metabolites interacting with proteins 
have been shown in Fig. 7. In the future, detail and curated 
interaction maps will shed new light into protein-metabolite 
interactions in control versus disease states. 

The neural network analysis algorithm of RapidminerTM 
showed the best classification of AH into control, POAG and PXE 
categories even when training was done with as little as 10% of 
the total dataset. Our results using deep learning showed lack  
of predictability based on metabolite profiling compared to 
neuronal network (Fig. 6a,b). Deep learning, while it may have 
more hidden layers, is often prone to overfitting errors, and this 
may explain its decreased accuracy in classifying the conditions 
based on the metabolite abundance. Overfitting errors occur 
when a model has high training accuracy and can classify well 
on previously “seen” data, but when presented with new test 
data, the model has lower accuracy as it is not generalizable. 
The SVM model showed strange predictability, with varying 
accuracies at different percentages of data trained (Fig. 6a, b). 
The model’s lack of robustness may have been due to 
training/testing on bad splits. RapidMiner utilized the 
“automatic” split ratio algorithm whereby samples were 
randomly selected during each split, while maintaining the 
original PEX: control ratio or POAG: PEX ratio. Perhaps due to 
this, the SVM encountered bad splits that affected test 
accuracy. Overfitting may have also affected performance45. 
Strategies to avoid overfitting include feature selection, maybe 
using only significant (p <0.05) metabolites as our training 
features, and increasing the number of samples. 

Our generated metabolite interactor network indicates 
distinct relationships between distinct proteins identified 
previously in the PEX materials and their metabolites. For 
example, TGM2, which catalyzes the crosslinking of proteins by 
epsilon-gamma glutamyl lysine isopeptide bonds has been 
shown to be upregulated in PEX26. Higher levels of TGM2 are 
expected to be negatively correlated with glutamine levels, 
which has been confirmed in our analysis (Fig. 2c). PEX has also 
been shown to be associated with oxidative stress22. The 
downregulation of MGST1, a protein associated with oxidative 
stress protection, correlates with the lower tyrosine levels in 
PEX, which was confirmed in our studies (Fig. 2) and illustrated 
in our network (Fig. 7). Other proteins, while not directly 
associated with PEX, have been detected in the generated 
network. Many such proteins for example, NOS3, have been 
implicated to play a role in POAG.  NOS3 is involved in the 
conversion of L-arginine to generate nitric oxide46 and is likely 
to play a role both in POAG and PEX induced glaucoma. Prior 
literature has shown that signs of PEX syndrome, such as fibrils 
manifestation, often appear later in eyes that were diagnosed 
as having PEX induced glaucoma1. Future investigations will 
elucidate if a correlation of the metabolite concentration exists 
with expression levels of specific proteins. 

Environmental factors influence the metabolites. In human 
skin, 7-dehydrocholesterol is converted to vitamin D by the 
ultraviolet B (UVB) radiation from solar radiation47. Vitamin D 
and other metabolite changes have been found in the cornea 
subjected to UVB present in the solar light48-50. Vitamin D 
binding protein has been identified as a constitutive protein of 
the AH51, and at increased level in PEX AH by mass 
spectrometry52-54. Altered levels of vitamin D and vitamin D 
binding protein are consistent with the hypothesis that 
environmental factors, especially UV light, affect an eye pre-
disposed to PEX glaucoma12,14. Cold, heat and other 
environmental conditions also contribute to the metabolite 
composition in the AH. Eyes with glaucoma in general undergo 
tremendous diurnal fluctuation in intraocular pressure (IOP). 
The AH turnover and the alteration of the outflow facility has 
been recorded in glaucoma. The metabolite composition may 
vary due to the contribution of different tissues in the anterior 
eye segment for the AH. However, overall our results suggests 
that despite small variations due to different collection times 
and asynchrony with collection, machine-learning is able to 
correctly classify the groups as control, POAG and PEX even with 
as little as 10-20% of total samples or the data which has been 
generated using just 10-20 individuals in each group. The 
markers for glaucoma and PEX glaucoma in particular are useful 
predictors of susceptibility, rate of progression or efficacy of a 
given treatment55. With respect to PEX, the presentation of 
glaucoma and the deposit material is often asymmetric with the 
eye presenting the manifestation first.

The efficacy of bodily fluids, perspiration56 and serum 
metabolites57 have been recognized in identifying early stage 
damage or for accurate diagnosis of certain conditions utilizing 
machine-learning of metabolomics profiles. Targeted 
metabolites have been helpful in predicting difficult to predict 
entities including systemic and autoimmune diseases58.  Future 
use of machine learning and metabolomics profiles may enable 
classification of primary open angle glaucoma into thus far 
unrecognized subtypes. AH versus the blood metabolome can 
be evaluated to investigate whether both provide the same 
subtype classification with different accuracies. As noted, such 
profiles may enable the prediction of susceptibility, progression 
and drug efficacy. Prediction of subtype and efficacy may move 
us one step closer towards individualized medicine. Perhaps in 
the future complex stratification of glaucoma patients into 
different group and population-based targeting of susceptible 
or fast progression rate individuals will be also possible. The 
approaches for PEX described here is highly likely to be also 
applicable for systemic diseases as well. 

In the future, a comparison of serum metabolites could be 
compared for the three distinct types of glaucoma and machine 
learning could be used to test the predictability into three 
groups accurately. They could also be compared with the AH 
metabolite profiles. Theoretically, it will be preferable to collect 
AH from both eyes of the patients that present monocular PEX 
and the binocular deposit formation delay. This could then be 
used for the prediction of the length of time for which the delay 
is observed and also perhaps for the disease severity. Due to the 
lack of sufficient treatment or medical reasons, paracentesis in 
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the unaffected PEX eye is unlikely to be permit on institutional 
review. However, availability of PEX animals models59 may 
enable rigorous testing of the AH, allow for collection of blood 
for comparison as well as machine-learning 
classification/prediction. A rigorous prediction capability will be 
a potential convincing argument for pilot test cases with human 
subjects. Serum metabolite-based diagnosis, prediction of 
susceptibility and severity in progression will be warranted 
modalities as tools in healthcare of potential disease subjects. 

Methods

Human Subjects and Chemicals

All materials were collected from human donors without 
identifiers under institutional review board exemption and 
approval. We acquired 31 pseudoexfoliation (PEX) 
glaucomatous aqueous humor (AH) samples (See Table S1, ESI†) 
from participants at the University of Miami Bascom Palmer Eye 
Institute (Miami, FL). The primary open angle glaucoma (POAG) 
(n=16) and non-glaucomatous controls (n=25) previously 
analyzed were collected from the Veterans Affairs Healthcare 
System (VA) (Miami, FL). AH samples were used for 1H-Nuclear 
Magnetic Resonance (NMR) and subsequent Isotopic Ratio 
Outlier Analysis (IROA). Deuterated water (D2O), and D6-4,4-
dimethyl-4-silapentane-1-sulfonic acid (DSS) were obtained 
from Cambridge Isotope Laboratories, MA, USA. Monobasic and 
dibasic sodium phosphates, ethylene diamine tetracetic acid 
(EDTA) and sodium azide (NaN3) were purchased from Sigma 
Aldrich, St Louis, MO, USA.

NMR Spectroscopy

The nuclear magnetic resonance (NMR) spectroscopy 
experiments were performed at the Southeast Center for 
Integrated Metabolomics (SECIM), University of Florida 
(Gainesville, FL). AH samples were centrifuged at 13,200 rpm for 
30 minutes at 4oC, without any extraction. Fifty µL NMR samples 
were prepared by using 45 µL of the resulting supernatant of 
humor sample with 5 µL of Chenomx standard (Chenomx, Inc., 
Alberta, Canada) in D2O, resulting in a final concentration of DSS 
of 0.5 mM. The sample was again centrifuged for 15 minutes at 
13,200 rpm at 4oC prior to loading the supernatant portion into 
1.7 mm NMR tube. A 14.1 T Bruker NMR system with Avance 
Neo console and 1.7 mm TCl CryoProbe (Bruker BioSpin 
Corporation, Billerica, MA) was used to collect all 1D and 2D 
NMR spectra. Most of the 1D 1H spectra were acquired with a 
first slice of NOESY pulse sequence60. For the spectra collected 
with the first slice of NOESY pulse sequence, 64 scans (nt) were 
collected along the 7142.9 Hz spectral width (sw) with 65536 
data points. A repetition time (Tr) of 5 s (1 s of relaxation delay 
(d1) and 4 s of acquisition time (at)) was used with a mixing time 
of 100 ms. 1D 1H spectra for a few samples were acquired using 
zgpurge gprefocus4 pulse sequence61 with the following 
parameters: “d1” of 2 s, “nt” of 256, sw of 9615.4 Hz, “at” of 
1.42 s and 65536 data points. For both types of experiments, 
pre-saturation of the water signal was obtained by low power 
radiation on resonance for water (during d1). Verification of the 

metabolite assignments were done by collecting Heteronuclear 
Single Quantum Coherence (HSQC) and Total Correlated 
Spectroscopy (TOCSY) spectra for one of the AH sample (N4). 
For the HSQC experiment, “d1” of 1.5 s, “nt” of 64, “sw” of 
7211.5 Hz in f2-dimension and 24875.6 Hz in f1 dimension, and 
“at” of 0.3 s was used with GARP4 13C decoupling. The TOCSY 
experiment was collected with “d1” of 2 s, 16 scans, “sw” of 
7211.5 Hz in both dimensions, and “at” of 0.3 s. MestReNova 
14.0.1-23559 (Mestrelab Research, S.L., Santiago de 
Compostela, Spain) software was employed to process all NMR 
spectra. All 1H free induction decays were exponentially line-
broadened to 0.22 Hz, fourier transformed, phased, base-line 
corrected (Spline method) and calibrated to internal reference 
(DSS) resonance at 0.0 ppm. Integrated areas for the preferred 
metabolites were extracted after normalizing all spectra with 
respect to DSS signal. Concentrations for those selected 
metabolites were determined using the extracted integrated 
areas and utilized for further metabolomics analysis. The NMR 
raw data for the control and POAG samples was uploaded to 
Metabolomics Workbench under study ID ST001285.The raw 
data for the PEX samples was uploaded to the same database 
under study ID ST001284.

 Isotopic Ratio Outlier Analysis (IROA)

Following NMR spectroscopy, the 31 PEX samples were 
prepared for isotopic ratio outlier analysis (IROA). The 50 µL of 
aqueous humor (AH) was combined with 800 µL of precipitate 
solution (8:1:1 Acetonitrile: Methanol: Acetone). The 
metabolites were vortexed, incubated at 4 °C for 30 minutes, 
and subsequently incubated at -20 °C for 1 hour. Each AH 
sample was centrifuged at 20,000 x g for 10 minutes at 4 °C to 
form a pellet and 375 µL of supernatant was collected. The 
supernatant was dried in a speed vacuum for 20 minutes or until 
the sample was fully dry and stored at -20 °C until analysis by 
liquid chromatography tandem mass spectrometry (LC-
MS/MS). Prior to LC-MS/MS, the IROA internal standard (IROA-
IS, IROA technologies) (U-95% 13C) was reconstituted in 1.2 mL 
of LC-MS grade water with 0.1 % formic acid (FA). The samples 
were reconstituted in 25 µL of LC-MS grade water with 0.1 % FA 
and 10 µL was combined with 20 µL of IROA-IS. A long-term 
reference standard (LTRS) was reconstituted in 50 µL of LC-MS 
grade water with 0.1 % FA and subjected to LC-MS/MS as the 
first, last, and every 10th sample. Metabolite identification and 
relative quantification were performed using Clusterfinder 
Build 3.1.10 (IROA Technologies). Thermo raw files were 
converted into mzxml files before importation into the 
Clusterfinder software. The manufacturer protocols were 
followed to recognize IROA peak pairs and determine molecular 
formulas. Metabolites were identified by comparing retention 
time, molecular formula and molecular ion m/z with the Mass 
Spectrometry Metabolite Library of Standards (MSMLS, IROA 
technologies). Both, primary open angle (POAG) and control 
samples were analyzed utilizing the same methodology as 
previously described. To quantify metabolite abundance, the 
IROA C12:C13 ratio was used. These results were used in the 
subsequent bioinformatics analysis. The raw data in the form of 
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Thermo RAW files for each sample were uploaded to 
Metabolomics Workbench under study ID ST001278 for the 
control and POAG samples and study ID ST001277 for the PEX 
samples. The mwTAB files also include the mass to charge ratios 
and retention times of the metabolites found in each sample 
with their respective C12:C13 ratios in both positive and 
negative ion mode. 

High Performance Liquid Chromatography (HPLC) - Mass 
Spectrometry

Reversed-phase chromatographic separation utilized an Accela 
autosampler, an Accela 600 pump (Thermo) and an ACE Excel 2 
C18-PFP (100 × 2.1 mm, 2 μm) column. The solvents were LC-
MS grade water with 0.1 % formic acid (FA) and LC-MS grade 
acetonitrile with 0.1 % FA as solvent A and solvent B 
respectively. The flow rate was 350 μL/min and the injection 
volume was 5 μL. The column temperature and tray 
temperature were 40°C and 4°C respectively. The gradient was 
0-40% solvent B over 10 minutes, 40% solvent B over 10-12 
minutes, 60% solvent B over 12-14 minutes, 95% solvent B over 
14-20 minutes, 0% solvent B over 20-27 minutes, 0% solvent B 
was held for 27-30 minutes. The metabolites were analyzed 
using a Q Exactive Mass Spectrometer (Thermo) equipped with 
a heated electrospray ionization source (HESI) operating in both 
positive and negative ion modes. The HESI source operated at a 
spray voltage of 4 kV, a HESI vaporization temperature of 300 
°C, and a heated capillary temperature of 325 °C and 310°C for 
positive and negative ionization modes respectively. The sheath 
gas flow rate was 45 (negative mode) and 40 (positive mode). 
The auxiliary gas flow rate was 10 (negative mode) and 5 
(positive mode). The S-lens radio frequency (RF) level was set to 
30. Full scan was used with a mass range of 70-800 m/z with a 
resolution of 70,000, automatic gain control (AGC) target of 1 x 
106, and maximum injection time (IT) of 100 ms. Data-
dependent MS/MS used a loop count of 10, resolution of 
17,500, AGC target of 5 x 102, maximum IT of 50 ms, isolation 
window of 2 m/z, and collision energy of 30. 

Statistical Analysis

Analyses were conducted using MetaboAnalyst 4.0, GraphPad 
Prism 8.2.1, Cytoscape 3.6.1 and MetScape 3.1.3. For the 
principal component analysis (PCA), partial least squares 
discriminant analysis (PLS-DA), and heat maps, the data was 
normalized against the metabolites of the control samples to 
find the fold change. The PEX metabolites were also normalized 
against the metabolites from the POAG samples. Mean fold 
changes and standard deviation were calculated, and 
significance was determined by a two-tailed, independent 
samples t-test. The samples were assumed to have equal 
variance, as the assumption of homogeneity of variances was 
used between the two sample groups. The normalized results 
were fed into Metaboanalyst and log2 transformed to ensure a 
normal distribution of metabolites (Chong et al, 2018). The 
significant metabolite log2 fold changes were plotted for PEX 
versus control and PEX versus POAG in GraphPad Prism. 
Significant differentially expressed proteins found in the PEX 

aqueous humor (AH), and the PEX material itself 26, were used 
with a list of genes associated with PEX 27 for pathway analysis. 
For the proteins and genes, Entrez ID numbers (corresponding 
to accession numbers in the UniProt database) were used. For 
the metabolites, the Kyoto encyclopedia of genes and genome 
or KEGG IDs (KEGG Compound Database) corresponding to 
compound names were used. The Entrez and KEGG IDs were fed 
into the MetsScape interaction network generator in Cytoscape 
to construct networks showing the protein-protein and protein-
metabolite interactions as done in a previously published study 
62. 

Machine Learning 

The RapidMinerTM 9.4 software was used to train computer 
algorithms with metabolomes of PEX and POAG to classify 
unknown metabolome profiles as each respective condition. 
Fig. S1 represents a workflow for data processing that was built 
to use split-validation model training and testing on various 
metabolome profiles (ESI†). The three RapidMiner algorithms 
examined were Support Vector Machine (SVM), an Improved 
Neural Network, and Deep Learning. SVMs with binary 
classification plotted the location of each point in a hyper-space 
(a multidimensional space). Using gradient descent, the 
algorithm then drew an optimized hyperplane maximizing the 
distinction between the two classes. This hyperplane was used 
for the training data set and was subsequently applied to the 
test set to predict the class of unknown samples based on their 
metabolite profiles. The neural networks optimized learning 
through feed-forward and back-propagation. A program we 
named “Gradient Training” was devised to set up a gradient of 
the percentage of data trained for each of the models, and the 
accuracy of classification as either PEX, Control, or POAG for 
each model was logged. One hundred iterations of this 
procedure were performed for each algorithm. The average 
accuracies, along with standard deviations, of correct 
classification for PEX versus control and POAG versus PEX 
samples were plotted in GraphPad Prism. For the “Gradient 
Training” program, an XML file is included in the supplemental 
information (ESI†). This XML file can be uploaded into 
RapidMinerTM and can be modified or tailored for specified 
analyses as needed. 

Conclusions

We identified a total of 235 metabolites in the PEX AH. Several 
of these has been found in previous individual analysis in the 
past. The machine-learning accurately classified AH into control, 
POAG and PEX groups based on the metabolite profiles. The 
metabolite profiles present opportunity for future prediction of 
susceptibility, rate of progression and drug efficacy.
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We identified 298 metabolites in pseudoexfoliation (PEX) glaucoma, primary open angle glaucoma (POAG) and non-

glaucomatous controls. Machine-learning can classify aqueous humor into the three distinct categories. The identification of 

the metabolite profile in PEX presents the opportunity for future predictions of susceptibility, rate of progression and drug 

efficacy. 
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