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A pan-cancer analysis of progression mechanisms
and drug sensitivity in cancer cell lines

Julia L. Fleck,∗a‡ Ana B. Pavel,b,c‡ and Christos G. Cassandrasd

Biomarker discovery involves identifying genetic abnormalities within a tumor. However, one of
the main challenges in defining such therapeutic targets is accounting for the molecular hetero-
geneity of cancer. By integrating somatic mutation and gene expression data from hundreds of
heterogeneous cell lines from the Cancer Cell Line Encyclopedia (CCLE), we identify sequences
of genetic events that may help explain common patterns of oncogenesis across 22 tumor types,
and evaluate the general effect of late-stage mutations on drug sensitivity and resistance mecha-
nisms. Through gene enrichment analysis, we find several cancer-specific and immune pathways
that are significantly enriched in each of our three proposed phases of cancer progression. By
further analyzing the drug activity area associated with compounds that target the BRAF onco-
gene, a known predictor of drug sensitivity for several compounds used in cancer treatment, we
verify that the acquisition of new driver mutations interferes with the targeted drug mechanism,
meaning that cells without late-stage mutations generally respond better to drugs.

1 Introduction
Currently, the main thrust of cancer research is largely based on
the concept that causative mutations are responsible for driving
a tumor’s biological evolution and, as result, its clinical features
and response to treatment1. In this context, therapeutic decisions
must be guided by a tumor’s genomic characteristics and, to that
end, a number of recent massive-scale efforts have aimed at col-
lecting, organizing and making publicly available multiple data
types derived from genetic analysis of cancer cell lines or human
tumor samples2,3,4,5. Such data are typically collected at one
point in time and may aid in uncovering common cancer progres-
sion pathways, as well as in classifying cancer patients into groups
that will most likely benefit from a certain treatment approach.
When additional data types are available, such as solid tumor vol-
ume, mathematical models may be developed to forecast tumor
growth, evaluate drug efficacy and design rational scheduling of
anti-cancerous drugs6.

In spite of the fact that not all tumors of the same type of cancer
possess identical sets of genetic alterations, there seems to be at
least a subset of such abnormalities that are consistently verified
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across a set of tumors. This indicates that different patterns of
somatic mutation and gene expression changes may affect cancer
initiation and progression mechanisms in a similar manner. In an
effort to characterize biological processes and derive biomarkers
that indicate disease states or predict medical outcomes, several
studies have been conducted using existing cross-sectional data
sets. Single data type analyses have been performed using so-
matic mutation data for inferring the temporal order of genetic
alterations7 as well as for molecular subtyping8,9. Copy number
variation data and gene-expression levels have also been used in-
dependently for deriving causal models of cancer progression10

and for patient stratification11.

Due to the fact that one type of data alone may generate an
incomplete view of pathway activity, multivariate cancer subtyp-
ing has been extensively performed in an effort to uncover ge-
nomic instability patterns that could be exploited to inform treat-
ment strategies12,13,14,15,16,17,18,19,20. Although several ap-
proaches have emerged that correlate different types of cross-
sectional data with cancer prognosis, relatively fewer methods
have been proposed to simultaneously process multiple datasets
for biomarker discovery and infer cancer pathways. Moreover,
the temporal order of abnormal genomic events is commonly ex-
plored in broad time brackets, such as primary vs. metastatic
tissues21, and most attempts at reconstructing tumor progression
at the pathway level have thus far considered known, a priori
defined, pathways.

Novel approaches for simultaneously inferring cancer pathways
and the order of genetic mutation occurrence have recently been
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mutations target pathways, it has been suggested that the order 
in which mutations (and, more generally, different types of ge-
netic alteration) occur should be analyzed at the pathway level, 
not at the gene level. Considering that no information regard-
ing known pathway interactions is provided to our MILP model, 
and in light of recent observations that driver mutations tend to 
be mutually exclusive within pathways27, assumption (A1) im-
plies that each phase is driven by a mutation defining a "unit of 
time" of cancer progression, and should not be interpreted at the 
gene level, but at the pathway level. More importantly, the phases 
proposed by our algorithm do not identify with clinical staging, 
meaning that we are not, in fact, suggesting that only one muta-
tion occurs as a tumor progresses from one clinical stage to the 
next; our "unit of time" is actually defined by a mutation event, 
and each phase defines a set of equivalent mutations that may 
occur at the same time during the cancer progression of differ-
ent patients, explaining the increased heterogeneity observed in 
advanced clinical stages across different cancer types and even 
within each cancer type. We also note that our work focuses on 
driver mutations occurring on driver genes, and no attempt is 
made to temporally stratify passenger mutations.

Assumptions (A2)-(A4) are not present, in the form of con-
straints, in the assignment problem, but must be used in our MILP 
formulation, as explained next. Assumption (A2) may be under-
stood as a progression constraint. It enforces a linear progression 
of somatic mutations at the pathway level and, as shown in22, 
both exclusivity and progression constraints are necessary in or-
der for our linear programming formulation to generate correct 
partitions. Assumptions (A3) and (A4) connect the occurrence of 
somatic mutation events and changes in gene expression during 
cancer progression. More specifically, assumption (A3) reflects 
several underlying issues in cancer biology. For one, it accounts 
for the issue of molecular heterogeneity by considering that dis-
tinct mutational events may result in under/over expression of 
several genes that affect the cell’s state in a similar way. Moreover, 
it illustrates the fact that cancer progression is a multi faceted 
process involving both the accumulation of mutations as well as 
changes in gene expression. Finally, it points to a reinforcement 
mechanism whereby changes in gene expression may lead to the 
appearance of new mutations. Nevertheless, this assumption does 
not imply that driver mutations in driver genes are the only types 
of genetic abnormalities to influence the occurrence of expression 
changes in cancer-associated genes, and vice-versa.

Here we solved the MILP using CPLEX v12.6 with default pa-
rameters for a varying number of phases K such that K ∈ {2,3,4}. 
The most appropriate number of phases, for the CCLE dataset 
we consider, was then determined by assessing the MILP output 
based on its biological significance. Figures 1, 2  and 3  illustrate 
the distribution of mutation and expression genes assigned to 
each phase for K = 2, K = 3 and K = 4, respectively. Interest-
ingly, although the most appropriate value of K is expected to be 
dataset-specific, here the most meaningful partition of mutation 
and expression genes was obtained for K = 3, similarly to what 
was observed in The Cancer Genome Atlas (TCGA) breast can-
cer dataset23. Indeed, when running the MILP with two (Figure
1) or four (Figure 3) phases, most of the expression genes were

proposed, first u sing e xclusively s omatic m utation d ata22, and 
then by combining somatic mutation and gene expression data 
from cross-sectional measurements23. Although these methods 
are capable of identifying phases of cancer progression that cor-
roborate known interactions between genes in important cancer 
pathways, to the best of our knowledge, no analysis has yet lever-
aged such information in light of drug sensitivity and resistance 
mechanisms. In this paper, we search for common progression 
and drug sensitivity patterns across different types of cancer. We 
perform a pan-cancer analysis of cell line data in order to strat-
ify known oncogenes and tumor suppressors24,25 into a number 
of phases of cancer progression, and predict their effect on gene 
expression. We then investigate how these phases may help ex-
plain drug response data from the Cancer Cell Line Encyclopedia 
(CCLE) by evaluating the effect of late-stage mutations on drug 
resistance.

2 Results
The problem of partitioning somatic mutation and gene expres-
sion data into a temporal sequence of events may be formulated 
as a Mixed Integer Linear Program (MILP)23. The assumptions 
underling our MILP formulation are the following:

(A1) Exclusivity of driver mutations within each cancer progres-
sion phase. It has been shown that a typical tumor contains only 
about two to eight mutations in genes that promote tumorigen-
esis, the remaining mutations occurring in genes that confer no 
selective growth advantage24; hence we assume that each sample 
can only have one mutated gene in each phase.

(A2) Progression of mutation across subsequent phases. The no-
tion that cancer accumulates mutations over time is widely ac-
cepted22,26; hence, we assume that each sample must have one 
gene mutated in the previous phase in order to have a mutation 
in a subsequent phase.

(A3) Dependency relationship between mutated genes and genes 
with abnormal expression. Abnormal gene expression is due to 
driver gene mutations; if a sample has no mutated genes in a 
given phase, no changes in gene expression may occur in that 
phase.

(A4) The strength of the connection between expression and mu-
tation genes determines the assignment of abnormal expression 
genes to the corresponding phases. This means that each expres-
sion gene is assigned to a certain phase based on the strength of 
this gene’s connection to the mutations genes that belong to that 
phase.

Of note, our MILP formulation derives from the assignment 
problem, a well established linear programming formulation. In 
the assignment problem, there are n persons and n projects, and 
we wish to assign a different person to each project; this is re-
ferred to as the exclusivity constraint. In our model, we wish to 
assign n genes to K phases, where the exclusivity constraint is en-
forced across each sample, meaning that each sample can only 
have one mutated gene in each phase.

Assumption (A1) adapts the exclusivity constraint in the con-
text of cancer heterogeneity. This constraint reflects current ob-
servations that different individuals may harbor driver mutations 
in different genes within the same pathway24. Because driver
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grouped in only one phase. Clearly these results do not reflect a
gradual progression and hence lack biological significance.

Fig. 1 Distribution of mutation and expression genes for K = 2

Fig. 2 Distribution of mutation and expression genes for K = 3

Fig. 3 Distribution of mutation and expression genes for K = 4

Subsequent to defining the most meaningful partition of mu-
tation and expression genes, gene enrichment analysis was per-
formed using Enrichr28. Our results reveal several cancer-
specific and immune pathways that are significantly enriched
within each of the three phases of cancer progression. First, al-
though Phase 1 contains the smallest gene set among all phases
(21 genes vs. 113 and 165 genes in Phases 2 and 3, respec-
tively), these few genes were found to be significantly enriched
(FDR < 0.05) in 50 cancer-related pathways, including "Apopto-
sis" (FDR < 10−8), "PI3K-Akt signaling pathway" (FDR < 10−7)
and "MAPK signaling pathway" (FDR < 10−6), "mTOR signaling

pathway" (FDR < 10−4), "Wnt signaling pathway" (FDR < 10−4),
"RAS signaling pathway" (FDR < 10−4), "TNF signaling pathway"
(FDR = 0.0002), "Jak-STAT signaling pathway" (FDR = 0.0005),
"P53 signaling pathway" (FDR = 0.002), "Notch signaling path-
way" (FDR = 0.046), suggesting that alterations in these key sig-
naling pathways begin early on in oncogenesis. Interestingly,
these pathways continue to acquire important alterations during
cancer progression as they are also significantly enriched in both
Phases 2 and 3. Second, additional cancer pathways which are
not significant in Phase 1 achieve significance in Phases 2 and 3,
such as "VEGF signaling pathway" (FDR < 10−11), "Gap junction"
(FDR < 10−14) and "Inflammatory mediator regulation of TRP
channels" (FDR < 10−14). Our MILP-based stratification revealed
that while the "Apoptosis" pathway is significantly enriched in all
phases of cancer progression, different mutation mechanisms are
in play in each phase (Figure 4). Finally, mechanisms of "Pro-
liferation" pathway are particularly present in Phase 3, suggest-
ing that abnormal functioning of this process occurs later on in
oncogenesis. These results not only support the widely accepted
notion that a continuous accumulation of genomic alterations in
cancer signaling pathways occurs during cancer progression, but
also explain resistance mechanisms to specific inhibitors in later
phases of progression.

In order to further investigate sensitivity vs. resistance mecha-
nisms, we looked into the BRAF oncogene, a known predictor of
drug sensitivity for several compounds used in cancer treatment,
such as AZD6244, PD-0325901, PLX4720, RAF2652. The results
reported next represent an initial study focusing on only one pre-
dictor of drug sensitivity, and are intended to set the stage for an
extended analysis of other known predictors.

Our MILP stratified BRAF mutation in Phase 1, and this fact
may explain the heterogeneity of sensitive vs. resistant pheno-
types of cells that harbor such mutation2,29. To test this hy-
pothesis, we analyzed the drug activity area associated with the
aforementioned compounds, whose action mechanism involves
targeting BRAF mutant cells. The activity area is a measure of
cell growth inhibition relative to drug concentration2. In this
context, larger values of activity area for a given drug indicate
greater potency and efficacy. To verify whether our proposed 3
phase progression pattern may help explain drug response, cell
lines were categorized into three groups: G1 consisting of samples
with BRAF mutation in Phase 1 and few mutations (≤ 3, arbitrary
threshold) in genes that belong to Phase 2 or 3; G2 including sam-
ples with BRAF mutation in Phase 1, many mutations in Phase 2
(> 3), and few mutations in Phase 3 (≤ 3); G3 containing sam-
ples with BRAF mutation in Phase 1 and many mutations in both
Phase 2 and 3 (> 3 mutations in Phase 2 and > 3 mutations in
Phase 3). Of note, the threshold value of 3 was arbitrarily se-
lected in light of previous studies suggesting that a typical tumor
contains no more than eight driver gene mutations24. Moreover,
note that exceeding a threshold of 3 implies that (at least) more
than 1/3 of a given sample’s driver gene mutations have occurred
in a certain phase.

In this context, the activity areas of cell lines were compared
across the three categories. As shown in Figures 5, 6 and 7, the
mean activity area decreases gradually from G1 to G3 for all four
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Fig. 4 MILP model identifies temporal relationships in "Evading Apoptosis" and "Proliferation" pathways. GOF: Gain of Function Mutation (in the
context of oncogenes); LOF: Loss of Function Mutation (in the context of tumor suppressors). Red indicates GOF/LOF mutation; Yellow indicates
expression changes; Blue indicates phosphorylation or other activation processes not included in the MILP model.

tested compounds, reaching significance between groups G1 and
G3 for PLX4720 (p− value = 0.01), AZD6244 (p− value = 0.02)
and PD-0325901 (p−value= 0.04). These results suggest that the
acquisition of new cancer driver mutations interferes with the tar-
geted drug mechanism, in our case BRAF mutation. This means
that cell lines harboring patterns of genomic alterations similar to
those verified in Phases 2 and 3 tend to have a decreased response
to targeted therapy.

We also compared our results with random assignments of mu-
tation genes. Using the same number of genes per phase, as de-
termined by our MILP, we shuffled them randomly across the 3
phases. As shown in Supplementary Figure 1, results no longer
show a gradual decrease in drug sensitivity with progression. This
provides significant evidence that the stratification obtained by
our model is meaningful and captures the sequence of molecu-
lar changes with cancer progression. Furthermore, we tested a
previous approach that applies an Integer Linear Program (ILP)
only to mutation data in order to define a temporal sequence of
events22. Similarly to our approach, the ILP also shows a sig-
nificant decrease in drug sensitivity with phase for all 3 drugs
(Supplementary Figure 2), producing a meaningful stratification
of mutations. Our MILP, however, proposes a configuration of
both expression changes and mutation events over time, main-
taining a meaningful stratification of mutation events and provid-
ing additional information about the relationships between gene
expression and mutations during cancer progression.

The above results lend themselves to an additional discus-
sion regarding the relationship between mutation and expression
genes across the proposed phases of cancer progression. First,
it is interesting to note that our MILP stratified expression gene
mTOR in Phase 1. The mTOR signaling pathway is known to reg-
ulate the cell cycle, including proliferation and cell survival. It
is also known that oncogene BRAF is situated upstream of the
mTOR pathway (KEGG Pathways in Cancer,30). Our MILP re-
sults, which place BRAF and mTOR in the mutation and expres-
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Fig. 5 Drug sensitivity across the 3 progression phases for compound
PLX4720. PLX4720 sensitivity significantly decreases in Phase 3
compared to Phase 1 (p− value = 0.01).
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Fig. 6 Drug sensitivity across the 3 progression phases for compound
AZD6244. AZD6244 sensitivity significantly decreases in Phase 3
compared to Phase 1 (p− value = 0.02).

sion gene sets, respectively, of Phase 1, are thus indicative of a
dependency relationship between mutations in gene BRAF and
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Fig. 7 Drug sensitivity across the 3 progression phases for compound
PD-0325901. PD-0325901 sensitivity significantly decreases in Phase 3
compared to Phase 1 (p− value = 0.04).

expression changes in gene mTOR in early stages of cancer.
Other interesting relationships between mutation and gene ex-

pression changes were identified in Phase 2. For example, RAS,
PTEN and EGFR are cancer drivers known to interact with the
PI3K/AKT signaling pathway (KEGG Pathways in Cancer). Inter-
estingly, AKT2 was stratified in the expression gene set of Phase
2, at the same time as RAS, PTEN and EGFR genes were assigned
to the mutation gene set of Phase 2. These findings, which are in
agreement with existing knowledge, also suggest that mutations
in RAS, PTEN and EGFR genes cause abnormal expression of gene
AKT2.

3 Methods
3.1 Mixed Integer Linear Program

The problem of partitioning somatic mutation and gene ex-
pression data into a temporal sequence of events is formu-
lated as a Mixed Integer Linear Program (MILP). Details of
the problem formulation are given elsewhere23, but a con-
densed description of the MILP modeling framework is included
here so as to make this paper as self-contained as possible.
A script implementing the MILP formulation is available at
https://github.com/anabrandusa/MILP, but we note that run-
ning it requires access to CPLEX, a commercial mathematical pro-
gramming solver. Alternatively, the code may be adapted so that
other solvers are used to process the MILP model. A simplifying
assumption is made by considering that mutations at different ge-
nomic loci within a given gene set have a similar effect on tumor
biology, similarly to previous works23,20.

A phase of cancer progression is defined in terms of two sets
of genes: a set of mutation genes and a set of expression genes.
We also define a sample as the cancer patient (or cell line) from
which genetic data are collected. In this paper, we deal with two
types of genetic data: somatic mutation data and gene expression
data. The former is input to the MILP as an m×n binary mutation
matrix M, while the latter is input as an m× r expression matrix
E, where m is the number of samples in our database, n is the
number of mutation genes considered in our study, and r is the
number of expression genes considered in our study.

We further define the connectivity between mutation gene j and
expression gene h to be the product between the mutation status
of gene j and the expression level of gene h, compounded across
all samples. Hence, we construct an r×n real-valued connectivity
matrix C ≡ ET ·M. The value of entry Ch j of the connectivity ma-
trix can be interpreted as follows: values closer to zero indicate
that most samples exhibit small absolute values of expression lev-
els for gene h and/or have no mutation in gene j; conversely, the
further away the value of Ch j is from zero, the stronger is the con-
nectivity between expression gene h and mutation gene j across
the data set.

We thus formulate the problem of inferring a model of cancer
progression as the search for a partition of the n columns of ma-
trix M into K mutation phases and of the r columns of matrix E
into K expression phases. The value of K is externally selected,
depending on the desired number of phases, and reflects the level
of abstraction of the model. We note that, for the problem we
consider here, it is not reasonable to assume that a microscopic
model (large value of K) is necessarily superior to a macroscopic
model. Moreover, the most appropriate value of K will most likely
be dataset-specific. As a result, the number of phases is chosen so
as to yield the most biologically meaningful results.

3.2 Data

Our MILP formulation was applied to cell line data made available
through the Cancer Cell Line Encyclopedia (CCLE), a collection of
gene expression, chromosomal copy number, and massively par-
allel sequencing data from hundreds of human cancer cell lines.
The mutational status of >1,600 genes was assessed by targeted
massively parallel sequencing, followed by removal of variants
likely to constitute germline events2. For our analysis, we consid-
ered 629 cell lines that were profiled for both mutation and gene
expression data, including 22 tumor types.

Given that many somatic mutations are passengers (i.e., they
do not impact cancer progression), it is reasonable to narrow
down the >1,600 mutation gene set by selecting those genes that
are most likely drivers. The mutation gene subset we consider
in this paper consists of 89 known cancer driver genes previously
classified as oncogenes or tumor suppressor genes based on the
frequency of their mutations24.

Recall that two sets of genes are input to our MILP: genes that
present driver mutations and genes implicated in cancer develop-
ment. The former, whose selection was detailed above, constitute
matrix M. The latter, which make up matrix E, were chosen by
overlapping the KEGG Pathways in Cancer set from the Kyoto En-
cyclopedia of Genes and Genomes database (KEGG)31,32 with
our dataset. Based on this criterion, 210 genes were selected.

Although this paper focuses on cell line data, we remind the
reader that our approach is general and can be used to infer
the sequence of events from cell line as well as human cancer
datasets. In fact, we have previously applied it to The Cancer
Genome Atlas (TCGA) data and successfully identified phases of
cancer progression that corroborate known interactions between
genes in important breast cancer pathways23.
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of drugs, but also different, and most likely, case-specific dosages. 
Such findings may be incorporated into methodologies that eval-
uate the effect of combining different medications or timing ther-
apy periods on the overall effectiveness of the treatment33,34.

Our approach advances insights into a number of general 
mechanisms of drug resistance, but limitations exist in our study. 
For one, curated data on CCLE has been shown to provide rep-
resentative genetic proxies for primary tumors in many, but not 
all, cancer types2. Our study analyzed all cell lines from CCLE, 
including the ones exhibiting weaker genomic similarities with 
primary tumors. Hence, further analysis of molecular correlates 
of pharmacologic sensitivity in vivo would be useful in ascertain-
ing to what extent our results directly translate anticancer drug 
response mechanisms of human tumor samples. Additionally, in 
this study we assume that mutations at different genomic loci 
lead to similar effects on tumor biology and do not consider the 
effect of amino acid alterations and protein mutational rates. By 
extending our model to account for such features, as well as for 
additional data types, such as copy number alterations and non-
coding RNAs, a more robust tool would be generated for ana-
lyzing the relationship of cancer initiation and progression, and 
drug resistance mechanisms. Finally, our ongoing work includes 
performing experiments to test in vitro some of the temporal re-
lationships we have found, thus providing lab validation for our 
computational findings.
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