
Alloy Scattering of Phonons

Journal: Materials Horizons

Manuscript ID MH-COM-12-2019-001990.R1

Article Type: Focus

Date Submitted by the 
Author: 22-Mar-2020

Complete List of Authors: Gurunathan, Ramya; Northwestern University, Materials Science
Hanus, Riley; Northwestern University, Materials Science
Snyder, G.; Northwestern University, Materials Science

 

Materials Horizons



Alloy Scattering of Phonons

Ramya Gurunathan1, Riley Hanus1, and G. Jeffrey Snyder1*

1Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
*jeff.snyder@northwestern.edu

March 22, 2020

Abstract

Solid-solution alloy scattering of phonons is a demonstrated mechanism to reduce the lattice
thermal conductivity. The analytical model of Klemens works well both as a predictive tool for
engineering materials, particularly in the field of thermoelectrics, and as a benchmark for the
rapidly advancing theory of thermal transport in complex and defective materials. This com-
ment/review outlines the simple algorithm used to predict the thermal conductivity reduction
due to alloy scattering, as to avoid common misinterpretations, which have led to a large over-
estimation of mass fluctuation scattering. The Klemens model for vacancy scattering predicts a
nearly 10× larger scattering parameter than is typically assumed, yet this large effect has often
gone undetected due to a cancellation of errors. The Klemens description is generalizable for
use in ab initio calculations on complex materials with imperfections. The closeness of the ana-
lytic approximation to both experiment and theory reveals the simple phenomena that emerges
from the complexity and unexplored opportunities to reduce thermal conductivity.

Solid-solution Alloy Scattering in Engineering Materials
The use of solid-solution alloys and doped materials is ubiquitous in materials science, as the

electronic, optical, thermal, and structural properties of a material can be tailored through the
introduction of point defects such as impurities, vacancies, interstitial atoms or anti-site defects.
In many applications, such as thermoelectrics, thermal barrier coatings, and microelectronics, the
influence of these point defects, or solute atoms, on thermal conductivity must be understood and
controlled to engineer their properties1–3.

Typically, experimental trends of thermal conductivity versus point defect concentration are
modeled using the expression originally derived by Klemens4–7. These closed-form expressions that
simply use the mass and size of the defect are attractive because of their simplicity and utility for de-
termining the source of phonon scattering and thermal conductivity suppression in a solid solution.
By calculating the impact of an impurity from just its mass or size, one can uncover material design
strategies to optimize the thermal conductivity for a given technological application8–11. The alloy
scattering model has been used to identify the dominant phonon scattering mechanisms for sev-
eral alloy systems important to the field of thermoelectrics including PbTe PbSe2, Bi2Te3 Bi2Se3

7,
and Mg3Sb2 Mg3Bi212. While first-principles methods are essential to understanding the details
of phonon interactions13–16, the Klemens alloy scattering model describes the emergent phenom-
ena across material systems well, even given the ostensibly limiting approximations, and therefore
continues to be widely used15,17–19.
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Figure 1 Structure made up of masses M held together with springs of spring constant K. The harmonic
vibrations determined by M and K can be scattered either by impurities of different mass or with different
spring constant.

Klemens Model of Point-Defect Scattering
The thermal conductivity reduction caused by point defects can be understood as a result of the

perturbation of the kinetic energy (1
2 Mv2 for each atom) or potential energy (1

2 K∆r2 for each bond)
of the lattice (Figure 1). A mass difference on a defect site (∆M) perturbs the kinetic energy term,
while the potential energy term is perturbed by a force constant difference (∆K). This often arises
from a structural distortion (mechanical strain) caused by the defect that can be described by a
site radius difference (∆R) (see Figure 1). In several cases, mass difference is the dominant effect,
with the strain effect ignored, since large volume differences are often energetically unfavorable
for solid solution. Additionally, the magnitude of the strain scattering effect around a point defect
is not as easily estimated, as it should strictly be determined by structural distortions and changes
in bond strength around the defect site20. For simplicity, we start by introducing the equations for
only mass difference scattering, with analogous expressions for the force constant difference added
later.

The Klemens analytic model predicts the ratio of the defective solid’s lattice thermal conduc-
tivity to that of the pure solid without defects (κL/κ0). This ratio is a function of the disorder
parameter u which depends on properties of the pure material: its lattice thermal conductivity
(κ0), elastic properties through its average speed of sound (vs)1, the average volume per atom (V ),
as well as a scattering parameter to capture the influence of point defects (Γ = ΓM +ΓK),

κL

κ0
=

tan−1u
u

, u2 =
(6π5V 2)1/3

2kBvs
κ0Γ. (1)

The ΓM parameter is simply the average mass variance in the system, 〈∆M2〉, relative to the average
mass squared, 〈M〉2 (Equation 3)9,21–23

ΓM =
〈∆M2〉
〈M〉2 . (2)

1Here, the speed of sound acts as a proxy for the Debye frequency. The equation: ωD = (6π2/V )1/3vs can be used
to interconvert between the two, where V is the average volume per atom and vs is the average speed of sound, or

vs =
(

1
3

[
1
v3

L
+ 2

v3
T

])−1/3
in terms of the transverse and longitudinal speeds of sound.

2
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The average mass and mass variance are most easily computed by considering each element (or
crystallographic site) separately9,21,22. Consider a generic compound with formula unit: A1c1A2c2A3c3 ...Ancn

(e.g. Mg2Sn), where An refers to the nth component (e.g. Mg, or Sn) and cn refers to the stoichiom-
etry of that component (e.g. 2 or 1). Each site Ancn(e.g. Sn) can be occupied by a set of atomic
species i, including the host atom (e.g. Sn) and any substitutional defects (e.g. Si) with species site
fraction ( fi,n) (e.g. 1− x and x in Sn1–xSix). Then, the average mass of the compound 〈M〉 is given
by the stoichiometry weighted average of each site average mass Mn

〈M〉= ∑n cnMn

∑n cn
, Mn = ∑

i
fi,nMi,n. (3)

Here, site averages are denoted by a bar while stoichiometric averages are denoted by angular
brackets (〈〉). For example, the average atomic mass for site 2 (the Sn/Si site) in Mg2Sn1–xSix is M2 =
(1−x)MSn+(x)MSi, while the atomic mass averaged over the full solid is 〈M〉= (2MMg+M2)/(1+2).

Similarly, the average mass variance of the compound 〈∆M2〉 is given by the stoichiometry
weighted average of the all site mass variances ∆M2

n

〈∆M2〉= ∑n cn∆M2
n

∑n cn
, ∆M2

n = ∑
i

fi,n(Mi,n−Mn)
2. (4)

For example, the average atomic mass variance for the Sn/Si site in Mg2Sn1–xSi is ∆M2
2 = (1−

x)(MSn −M2)
2 + x(MSi −M2)

2. Then, because the atomic mass variance averaged over this full
solid has no contribution from the Mg site due to lack of defects on this site, we simply have
〈∆M2〉= ∆M2

2/(1+2)
The Klemens model using mass difference alone (Γ = ΓM) quantitatively describes the κL trends

with alloy composition for several material systems3,10,13,24. The solid solution between Mg2Sn
and Mg2Si is a case in which the Klemens mass difference model works well, and is recreated here
to demonstrate use of these equations in a multiatomic system. For a given composition, the value
of κ0, V , and vs are taken to be the linear interpolation between the values for the end-member
species (Figure 2). Here, the inputs for Mg2Sn and Mg2Si are, respectively, V = 25.7 and 21.5 Å3

for the average volumes per atom, vs = 3160 and 6715 m/s for the average sound velocities, and a
scatteirng parameter of

ΓM =
((1− x)(MSn−M2)

2 + x(MSi−M2)
2)/3

((2MMg +M2)/3)2
. (5)

Using these inputs, the full κL versus composition trend shown in Figure 2 is calculated without
fitting parameters, and shows good correspondence with experimental measurements. As a result,
one can conclude that the contribution of the mass difference term in point defect scattering is
the dominant effect for this materials system and explains the experimental results without having
to invoke other scattering or lattice softening mechanisms. This result is consistent with the fact
that the cell volume of Mg2Sn(1–x)Six is fairly constant with changes in composition x, leading to
negligible mechanical strain contributions.

For vacancy scattering, the perturbation to lattice energy emerges from both the missing mass
and the missing bonds to its neighbors. Klemens suggests that the scattering parameter Γ for this
case can be modeled as a mass difference scattering with Mi,n−Mn =−Mvac−2〈M〉, where Mvac is
the mass of the vacant atom. This leads to a ∼10× stronger scattering parameter than a typical
point defect27. Indeed, vacancy scattering has been demonstrated to induce a large reduction in

3
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Figure 2 Lattice thermal conductivity for the full composition range of the solid solution between Mg2Sn
and Mg2Si. Red and black data points are experimental thermal conductivity measurements25,26, while the
blue U-curve is the prediction from the mass difference Klemens model and the dotted black line comes
from first principles T matrix scattering theory13. Finally, the κ0 curve interpolates linearly between the two
end-members. The fit helps identify mass-difference scattering as the dominant effect in this system, as it
explains the trend without needing to invoke other scattering or softening mechanisms.

4
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thermal conductivity in several thermoelectric compounds,28–35 although the enhanced scattering
effect of vacancies is often overlooked. Recent data analysis suggests that the same mass difference
model describes interstitial defect scattering as well8,36,37.

The mass difference model captured in Equation 3 and 4 follows the recommendation originally
proposed by Berman et al, and is suggested here for its conceptual clarity. Several discussions,
including those of Klemens4,7,21,38,39, describe this model as being equivalent to a monatomic lattice
approximation, which involves a summation of the atoms in the unit cell into one large, vibraitng
mass. This alternate description of a compound has led to ambiguity in the meaning of the volume
V . A misinterpretation has resulted in some studies over-approximating the mass scattering effect
by a factor equal to the number of atoms in the unit cell. Typically, however, a cancellation of errors
due to an underestimation of the effect of vacancies allows the broader conclusions of the studies
about the importance of point defect scattering in a materials system to remain valid8,29–31,35.

As mentioned previously, the strain due to a defect that is larger or smaller than the host atom
perturbs the lattice energy through its potential energy term. Therefore, the force constant variance
(∆K2) is typically expressed through the average variance in atomic radius (∆R2) scaled by a fitting
parameter (ε). As before, the atomic radius variance on the nth site is defined from the atomic
radius of the ith species which may occupy that site, Ri,n, and the average atomic radius of the site,
Rn. Although there exist theoretical models40 or heuristical correlations20 for ε, it is considered
here as an adjustable parameter that typically varies between 1-500 in order to fit the experimental
data.

Γ =
〈∆M2〉
〈M〉2 + ε

〈∆R2〉
〈R〉2 〈∆R2〉=

〈
∑

i
fi(Ri,n−Rn)

2〉 (6)

Complex systems and the Tamura Model
The mass difference perturbation model used by Klemens works surprisingly well for even com-

plex systems with large unit cells. This suggests that the validity of the essential physics transcends
the stated assumptions, allowing the model to be applied towards complex, engineering materi-
als. For example, the Debye model or linear phonon dispersion is often assumed, which coarsens
over the complexities of real band structures. It can be shown that there is some cancellation of
band structure properties, particularly stemming from the density of states dependence of several
quantities in the model, which allows for this reduced sensitivity to band structure37.

The simple mass and volume perturbations can be generalized for materials with complex
phonon dispersions or even non-crystalline materials. Tamura defines a similar mass difference
perturbation parameter for each phonon eigenstate (ek(s)) that can be implemented in numerical
Boltzmann transport equation solvers for thermal conductivity13,15,18,19,23,41–45. In many thermal
conductivity solvers, the Tamura model is the standard treatment for isotope-phonon scattering in
pure compounds43,44. The mass difference parameter in the Tamura model (ΓT

M) is given as a sum
over all the s atom sites in a simulation, where i again labels the species that may occupy site s
including the host and impurity atoms

Γ
T
M = ∑

s
∑

i
fi,s(

Mi,s−Ms

Ms
)2|(ek(s) · ek′(s))|2. (7)

The description of scattering here is general enough that it could be used to describe the per-
turbation induced to any vibrational mode. Therefore, in addition to plane wave phonons, which
are only strictly defined in periodic crystals, the vibrational modes of amorphous solids, codified in

5
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the Allen and Feldman formalism as diffusons, locons, and propagons, are describable within the
same alloy scattering theory46–48.

A Place for Analytical Theory
The analytical alloy scattering model is a simple tool for predicting the thermal conductivity

of disordered materials. The success of alloy scattering models, even in complex, non-ideal sys-
tems demonstrates their widespread applicability. When applied correctly, it can identify potent
scattering effects and illuminate the route for optimally tailoring the thermal properties via defect
engineering8,32,36,49. Even the large thermal conductivity reduction induced by vacancies and in-
terstitial atoms appears to be well described within the simple model by including the effect of
removing or forming the nearest neighbor bonds. The study of thermal conductivity has benefited
from these simple, physics-based models for over 70 years, as they are easily implemented, eluci-
date underlying mechanisms, and can even help point to exotic physics when they fail to describe a
system. In the past, qualitative and quantitative comparison to analytical models in specific materi-
als systems has led to the identification of breakdowns in the Born approximation50, novel scatter-
ing cross-sections associated with impurity clusters or low-dimensional materials16, and proposed
phonon-trapping effects51. Their lasting relevance supports the argument for continued work on
analytical, physical expressions in emerging fields of materials science even as new techniques in
simulation and materials informatics become widespread.
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