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Design, System, Application Statement for:

Surface composition and ordering of binary nanoparticle mixtures in spherical 

confinement

Thomas E. Gartner III, Christian M. Heil, Arthi Jayaraman

Nanomaterials that exhibit structural color (color arising from periodic spatial variations in 

refractive index) are a promising platform for optical device applications due to their robust and 

tunable optical characteristics. There is a growing body of work leveraging nanoparticle assembly 

to fabricate optical nanomaterials with controlled structural color, yet a comprehensive 

understanding of the link between processing conditions, particle assembly/ordering, and color 

response is incomplete. In this work, we utilize molecular dynamics simulations of a binary 

mixture of synthetic melanin and silica nanoparticles in spherical confinement to mimic the 

emulsion assembly of optically-active spherical “supraballs”. We investigate how design 

parameters such as particle chemistry, particle size, particle mixture composition, assembly 

timescale, and supraball size control the spatial distribution of nanoparticles on the supraball 

surface and within the supraball. These structural characteristics control the optical response of the 

material, with supraball surface composition correlating to color, and nanoparticle ordering 

correlating to the presence/absence of iridescence. Our results inform the design of structurally-

colored nanomaterials by revealing the design and processing parameters required to form precise 

supraball architectures. Additionally, this work increases fundamental knowledge of nanoparticle 

assembly near curved surfaces which may provide insight into other processes including spray 

drying and porous materials fabrication. 
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Abstract:

We use coarse-grained Langevin dynamics simulations in shrinking spherical confinement to 

probe the fabrication of spherical “supraballs” via the emulsion assembly of binary nanoparticle 

mixtures. We examine a binary mixture of silica and synthetic melanin nanoparticles and discuss 

the structure and composition of the resulting supraballs particularly in the context of optical 

nanomaterials applications. Our results demonstrate how particle chemistry, particle size, particle 

mixture composition, assembly timescale, and supraball size cooperate/compete to control the 

spatial distribution of particles on the surface and within the supraball. We find strong enrichment 

of melanin particles at the supraball surface, with the degree of enrichment decreasing with 

increasing melanin/silica size ratio. We observe appreciable crystalline ordering only in systems 

where the particles are of similar size, and we note that particle size dispersity, finite assembly 

timescale, and curvature of the supraball surface all serve to suppress particle ordering. We also 

report routes toward some interesting hierarchical structures such as core-shell supraballs. These 

findings provide design rules for the development of optical materials for structural color 

applications, and they also increase our fundamental understanding of nanoparticle organization 

near curved surfaces and may find relevance for processes such as spray drying and porous 

materials fabrication. 
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Introduction:

Leveraging surfaces/interfaces to direct the assembly of nanoparticles is a long-standing technique 

to create functional nanomaterials for applications including optical and energy-producing devices, 

nanoporous materials, and drug delivery.1-3 The presence of a surface or an interface can alter the  

particle-particle interactions4 and can serve to nucleate/direct particle organization, allowing for 

the tunable assembly of nanoparticles to form nanocrystals, flat films and coatings, or 3-

dimensional assemblies.5-11 In particular, there is a growing body of work using emulsion droplets 

to create m-scale spherical “supraparticles” or “supraballs” composed of assembled nm-scale 

nanoparticles.7, 12, 13 These supraballs have attracted significant recent attention as optical 

materials14-18 exhibiting structural color (color arising from periodic spatial variations in refractive 

index).19 Structural colors are superior to absorption-based colors as they are robust to degradation 

and can be tuned by merely adjusting the spatial length-scale of the variation in refractive index. 

Thus, structurally-colored supraparticles are attractive materials to act as colorants/additives in 

technological display, sensing, or high-performance coating applications. However, many such 

materials are iridescent due to the high degree of nanoparticle ordering within the supraballs, 

somewhat limiting their applicability in wide-angle display and some sensing applications.17 

Recently, a reverse emulsion assembly technique was used to create tunable structurally-

colored materials from synthetic core-shell nanoparticles comprised of melanin core and silica 

outer shell.17 Melanin is an attractive material for structural color and advanced coating 

applications due to its high refractive index, UV-resistance, and advantageous thermal and 

electrical conductivity properties.20 These melanin-silica core-shell particles were initially 

suspended in the aqueous phase of a water-in-octanol emulsion.17 Due to the solubility of water in 

octanol, the emulsion droplets decreased in size over time as the water diffused into the octanol 
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phase, eventually forming weakly-ordered spherical nanoparticle assemblies (supraballs). As a 

result, the supraballs exhibited non-iridescent colors, which were easily tunable through the 

thickness of the silica shell. This same process was also applied to mixtures of silica particles (SPs) 

and synthetic melanin particles (SMPs).21 Interestingly, in a mixture of SPs and SMPs, SMPs were 

strongly enriched at the water-octanol interface, completely covering the surface of the supraball 

even when the overall mixture was SP-rich. Our coarse-grained (CG) Langevin dynamics 

simulations showed that this phenomenon was due to differing contact angles of the SPs and SMPs 

at the water-octanol interface.21 The SMPs extended further into the octanol phase due to their 

slightly higher hydrophobicity than the SPs, and as the emulsion droplets shrank, the SMPs 

excluded the SPs from the interface and forced the SPs back into the interior of the emulsion 

droplet, creating an SMP-dominated surface layer. This approach presents an intriguing platform 

to potentially create complex hierarchical structures such as core-shell supraballs or 

micro/nanoporous assemblies. Thus, there is a need for design rules to better understand the 

structures formed in binary nanoparticle mixtures under shrinking spherical confinement and to 

map the phenomena that control the development of surface composition and ordering in these 

assemblies. 

Existing work on the assembly of nanoparticles directed by a moving interface has mostly 

focused on drying flat films.11, 22-37 Through simulations, theory, and experiments, it has been well 

established that in mixtures of small and large particles, depending on the particle size ratio, 

particle concentration, and evaporation speed, surface segregation can occur via a mechanism 

termed “auto-stratification”. Under certain conditions, either the smaller or the larger particles can 

localize at the drying interface and subsequently form a small- or large-particle enriched layer at 

the film surface due to the variation in diffusion rates between the two species and the interplay 
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between particle diffusion and interfacial motion.38 Recent work has shown that this general idea 

holds under spherical confinement as well, exhibiting similar phenomenon in mixtures of small 

and large colloids in drying spherical water droplets supported on superhydrophobic surfaces.39 

However, only a handful of studies have explored the effect of varying particle chemistries, and in 

general, the processes of nanoparticle organization/ordering in spherical confinement is less 

widely understood.13 Furthermore, while systems that exhibit auto-stratification are relevant to the 

present work due to the ready analogies between evaporative drying and the emulsion assembly 

process, the surface segregation observed in the emulsion assembly of SP-SMP mixtures21 

proceeds by a fundamentally different mechanism driven by the strong particle-interface 

interactions, rather than the diffusiophoresis phenomena implicated in the auto-stratification 

literature.29, 40 As described in detail in Ref. 21, strong particle-interface interactions can result in 

this interface-driven surface segregation in regimes (i.e., moderate assembly timescales and 

particle size ratios) that would not necessarily produce auto-stratification. 

In this work, we perform CG Langevin dynamics simulations of a binary mixture of 

melanin and silica nanoparticles in shrinking spherical confinement with strongly attractive 

particle-interface interactions. We explore a large parameter space of varying particle size, mixture 

composition, assembly time (i.e., interfacial velocity), and supraball size (i.e., interfacial 

curvature), to map how these parameters affect the particle assembly. In the context of optical 

applications, the structure and composition of the supraballs in the outermost layers are believed 

to dominate the optical properties,18, 41 so we characterize the surface composition and near-surface 

structure of these materials under varying process conditions to develop design rules for binary 

particle emulsion assembly. We find, in accordance with our prior computational and experimental 

work,21 that SMPs are strongly enriched at the supraball surface for moderate SMP/SP size ratios, 
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but as the size ratios increase, this enrichment is suppressed. Furthermore, we note a tunability in 

the assembled structure as supraball size changes, from core-shell supraballs in smaller droplets to 

bulk-like mixtures in large droplets. Appreciable ordering/crystallinity of the particles only occurs 

when all particles are close to the same size, and we also map the effects of particle size dispersity 

and interfacial curvature in suppressing crystallinity. Lastly, we present a detailed step-by-step 

view of the assembly process and describe how the surface composition and near-surface structure 

develops as the assembly proceeds. These results provide design rules to build precisely tunable 

supraparticle assemblies as well as give fundamental insight into the process of particle assembly 

and ordering in shrinking spherical confinement with strongly attractive particle-interface 

interactions. The results discussed herein also have potential relevance to other important industrial 

processes such as spray drying or other nanomaterials applications such as porous materials 

fabrication, drug delivery, etc. 

Methods:

Model:

To model the formation of supraballs over experimentally-relevant time and length scales, we use 

a coarse-grained (CG) approach that was validated in our recent work through direct comparison 

with experiments.21 In the CG model, the SMP and SP nanoparticles are modeled as spherical 

particles with average diameter DSMP and DSP respectively. We incorporate particle size dispersity 

by modelling each particle type as 11 discrete groups of differing diameters (Di). We select the 

relative population in each group based on a Gaussian distribution, with standard deviation 6% of 

the average particle diameter. The largest/smallest particles in the size distribution are three 

standard deviations above/below the average particle diameter. To evaluate the impact of particle 

size dispersity on our results, we also run several monodisperse systems with all particles having 
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an identical diameter, and we clearly identify all monodisperse systems in the results section. We 

set the characteristic mass m = 1.0 based on the mass of a DM = 220 nm SMP calculated using its 

volume and mass density, and we scale all other particle mases by (Di/2)3 as well as include the 

mass density difference between SP (~2.3 g/cm3) and SMP (~1.3 g/cm3).21 The characteristic 

length σ is 1.0 nm for all systems. The particles interact through the colloid Lennard-Jones (cLJ) 

potential42 with Hamaker constants (ASMP-SMP = 0.25 , ASP-SP = 0.25 ,  ASMP-SP = 0.175 ) as 

defined in our previous work.21 The cLJ potential possess a short range attraction with strength set 

by the Hamaker constant and a hard core repulsion for pairwise distances less than the diameter of 

the particle(s).21 The characteristic energy ε is set to 1.0 kbT so that the reduced temperature T* = 

1.0 represents room temperature (298 K).

To mimic the water-octanol interface, the particles interact with a spherical wall 

representing the interface through an attractive harmonic potential. This potential is similar to the 

fluid-fluid interface potential used in Ref. 11, but with a slightly modified form to allow for 

attractive particle-interface interactions; this potential models the change in interfacial energy 

when particles adsorb to a liquid-liquid interface based on Young’s equation for surface tension.5, 

43 

(1)𝑈𝑖,𝑤(𝑟) = { 𝜖𝑖,𝑤

(𝐷𝑖
2 ― 𝑟0)

2[(𝑅 ― 𝑟)2 ― 2𝑟0(𝑅 ― 𝑟) + 𝑟2
0 ― (𝐷𝑖

2 ― 𝑟0)2],    𝑟 > 𝑅 ―
𝐷𝑖

2

0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

In Equation 1, r is the radial location of a particle (with the center of the emulsion droplet defined 

as the origin), R is the radius of the emulsion droplet, and r0 defines the particle-interface contact 

angle via θi = arccos(2r0/Di). The relative well depth of the particle-interface attraction retains the 

same ratio between SMP and SP (1:2) as our prior work21 and are set at i,w = 500  and i,w = 1000 

 for the 220 nm SMP and 220 nm SP, respectively. The i,w scales proportionally to (Di/2)2 for 
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other sized particles.3, 5 The location of the attractive harmonic potential minimum (given by r = 

R - r0) is adjusted to account for the different contact angles for SMP (θSMP = 100°) and SP (θSP = 

80°). The range of the potential is set to a distance of Di/2 towards the interior of the emulsion 

droplet, so the particles only feel the potential as they begin to touch the interface.

Simulation Method:

Particles are initially randomly placed inside a spherical region of radius up to ~13 μm to achieve 

an initial particle occupied volume fraction η = 0.03 to match experimental conditions.21 We 

investigate a range of final supraball radius (R) from 0.5 μm – 5.0 μm, which we control by 

adjusting the total number of particles in the system, ranging from ~64 to ~159,000 particles 

depending on the particular mixture, bulk volume fraction of SMP particles (SMP, B),  and desired 

R. We define the mixture composition, SMP, B, as the ratio of volume occupied by SMPs to the 

total volume occupied by all particles in the system, so 0.0  SMP, B  1.0 depending on the mixture 

composition. Most simulations have between ~20,000 and ~60,000 particles. We utilize implicit-

solvent Langevin dynamics, implemented in the LAMMPS software package,44 to mimic solvent 

effects on the motion of the colloidal particles as well as maintain system temperature. Our choice 

of an implicit-solvent approach significantly reduces the computational load relative to explicit-

solvent simulations, allowing us to explore larger systems than would be possible with other 

approaches, at the cost of neglecting hydrodynamic interactions. We discuss our justification for 

our implicit solvent approach, as well as potential impacts from neglecting hydrodynamic effects 

in the Discussion section below. 

We set the LAMMPS thermostat damping coefficient for 220 nm SMP particles to 148.7 

𝜏 with 𝜏 = 55 μs. We then scale the damping coefficient for all other sized SMP/SP particles based 

on that particle’s size and mass to ensure all particles experience the same effective implicit solvent 
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viscosity.45 We calculate the mapping between reduced simulation time τ and real units by equating 

the diffusion coefficient of a 220 nm SMP particle in simulations (obtained by fitting the long-

time behavior of the mean-squared displacement of a DSMP = 220 nm, η = 0.03 system under 

standard periodic boundary conditions) to that obtained by the Stokes-Einstein relation for a 220 

nm particle in water at ambient conditions. After a short energy minimization step to adjust any 

overlapping particles from the randomized initial configuration, we equilibrate the system with 

purely repulsive particle-wall interactions at T* = 2.0 for 106 𝜏. The system is then progressively 

cooled to T* = 1.0 over 1.5*104 𝜏 and equilibrated again for another 106 𝜏 at T* = 1.0 prior to 

shrinking the emulsion droplet. 

To model the moving water-octanol interface during the emulsion process, we reduce the 

radius of the spherical confinement over the course of the simulation. Experimental work with 

polymer and nanoparticle emulsions suggests that the radius of shrinking emulsion droplets can be 

empirically described by Equation 2.46-49 

(2)𝑅(𝑡) = (𝑅𝑜 ― 𝑅∞)(1 ―
𝑡
𝜏𝑠)

𝛼
+ 𝑅∞

where R(t) is the radius of the emulsion droplet at time t, Ro is the initial emulsion droplet radius, 

R is the final supraball radius, 𝜏S is the emulsion droplet assembly time, and α is a ‘curvature’ 

parameter which influences the time dependence of the wall location, with α = 1.0 representing a 

constant linear change in droplet radius over time. Cabral and coworkers have found a range in α 

values from 0.5 to ~4 for polymer and nanoparticle systems depending on the solvent(s) and initial 

suspension concentration used.46-49 The radius of the spherical confinement decreases (i.e., the 

interface moves) over a total simulation time 𝜏S to produce a desired Peclet number (Pe), which 

characterizes the relative rate of interfacial motion to particle diffusion (high Pe indicates fast 

interfacial motion and vanishing Pe indicates slow interfacial motion). For most simulations, we 
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linearly shrink the spherical wall (i.e., α = 1.0) at a constant velocity of 309.6 nm/s to produce 𝜏S 

= 30 s (Pe ~ 1.0 for a 220 nm particle, see Table 1 below) or 3096 nm/s for 𝜏S = 3 s (Pe ~ 10 for a 

220 nm particle) but also vary α for some tests to probe effect of non-linear interfacial motion (see 

Parameters Varied). We introduce the attractive interactions between particles and the interface 

when we begin the reduction in R(t) to mimic experimental emulsion assembly. Additionally, an 

α > 1.0 leads to very slow shrinking during initial stages of assembly which would be similar to 

allowing for particles to equilibrate onto the interface before significantly shrinking the droplet. 

The simulation proceeds with the emulsion droplet radius shrinking with a time step of 0.0025 𝜏 

if 220 nm SMP and 220 nm SP are used or 0.00125 𝜏 for all other systems until the assembled 

supraball is formed near η ~ 0.6 (varies based on the particular mixture and particle sizes). 

Configurations are sampled for analysis every 2.5*103 𝜏 during the shrinking process for 𝜏S = 30 s 

or 2.5*102 𝜏 for 𝜏S = 3 s. In Table 1 we list the diffusion coefficients (D*) and approximate Pe for 

the nanoparticles considered in this study.

Table 1: Diffusion coefficient (D*) and Peclet number (Pe) data for R ~ 3500 nm

PeSP PeSMP
Di (nm)

D*SP 

(nm2/)
D*SMP 

(nm2/) 𝜏S = 30 s 𝜏S = 3 s 𝜏S = 30 s 𝜏S = 3 s

130 182 ± 3 195 ± 1 0.6 6.0 0.6 6.0

220 114 ± 1 121 ± 1 1.0 10.0 1.0 10.0

660 38a 40a 3.1 31.0 2.9 29.0

aEstimated using Stokes-Einstein relationship to scale Di = 220 nm data 

Analyses:

Peclet (Pe) numbers are calculated based on , where v is the interfacial velocity 𝑃𝑒 =
(𝑅0 ― 𝑅∞) ∗ 𝑣

𝐷 ∗
𝑖

and  is the particle’s diffusion coefficient. The diffusion coefficient is determined by single-𝐷 ∗
𝑖

component mean-squared displacement (MSD) simulations at η = 0.03 for the 130 nm and 220 nm 
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particles (see ESI Figure S1 for the MSD plots). The diffusion coefficient for the 660 nm particles 

cannot be determined from MSD simulations at η = 0.03 because over the course of the simulation, 

the 660 nm particles aggregate due to the strong attractive interactions at large particle size (the 

well depth of the colloid Lennard-Jones (cLJ) potential scales with particle size). As such, the 

diffusion coefficient for the 660 nm particles is determined using an extrapolation from the 

respective 220 nm particle based on the Stokes-Einstein diffusion equation. We confirm the 

applicability of the Stokes-Einstein equation because the 130 nm and 220 nm particles (SMP and 

SP) match the scaling relation within ~5%. 

To quantify the volume fraction of SMP particles on the surface of the supraball compared 

to all surface particles (SMP, S), we use a Voronoi decomposition-50based method to identify 

particles on the surface of the supraball. We first define the analytical supraball radius Ra(t) to be 

the radial location of the particle farthest from the supraball center. Particles are defined to be “on 

the surface” if at least one of their Voronoi vertices is located at a radial distance greater than Ra(t). 

This calculation is performed for all η, where we define η as the occupied volume of all particles 

divided by the emulsion droplet volume. We calculate the emulsion droplet volume for each 

configuration by applying a convex hull51 analysis to a set of points defined by the outermost 

surface(s) of the particles (to correctly account for the particles’ pervaded volume). To determine 

the volume fraction of SMP particles in the interior of the supraball compared to all internal 

particles (SMP, I), we define the supraball interior to be all particles with radial location r < 

0.75*Ra(t).

To characterize supraball ordering, we identify crystalline domains by calculating a bond-

orientational order parameter q6m originally defined by Steinhardt et al.52 where “bonds” are 

defined based on particle pairs within a distance cut off of . Particles are identified as 1.4 ∗
(𝐷𝑖 + 𝐷𝑗)

2
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‘crystalline’ (i.e., highly ordered) if a particle has 7 or more bonds with each bond having d6(i,j) > 

0.6, with d6(i,j) given by53

(3)𝑑6(𝑖,𝑗) =
∑ +6

𝑚 = ―6𝑞6𝑚(𝑖)𝑞 ∗
6𝑚(𝑗)

(∑ +6
𝑚 = ―6|𝑞6𝑚(𝑖)|2)1/2(∑ +6

𝑚 = ―6|𝑞6𝑚(𝑗)|2)1/2

where i represents the particle being considered and j represents its jth neighbor. We then assign 

particle pairs to a single crystalline domain if they are both highly ordered and have a d6(i,j) > 0.8. 

Because our system includes particle size dispersity, we utilize a d6(i,j) cut off of 0.8 instead of 0.9 

as used by de Nijs et al.53 Slightly reducing the cut off improves the identification/mapping of 

discrete domains without affecting overall trends in the number fraction of particles that participate 

in a crystalline-like domain (ƒc). To identify crystalline ordering as a function of supraball layer, 

we determine the particles that are crystalline, use the previously described Voronoi decomposition 

approach to identify surface particles, and calculate the fraction of surface particles that are also 

crystalline. We then discard all of the particles identified as being on the surface and repeat this 

process to identify those in the supraball’s second layer, etc. 

We characterize particle jamming at the water-octanol interface by tracking the average 

magnitude of particle displacement on the emulsion droplet surface over a defined time period 

 throughout the assembly. We also deconstruct the total displacement of particles over ∆𝑡 = 2500 𝜏

 into “radial” and “surface tangent” components. For each particle on the emulsion surface, we ∆𝑡

denote its position at  and  as  and , respectively. Then, we determine the projection of 𝑡 𝑡 + ∆𝑡 𝑟1 𝑟2

 onto  as . The radial component of the particle displacement is then 𝑟2 𝑟1 𝑟2,𝑃𝑟𝑜𝑗𝑒𝑐𝑡 =
𝑟1 ∙ 𝑟2 
‖𝑟1‖2 𝑟1 𝑟1 ―

, and the surface tangent component can be found using the Pythagorean theorem since 𝑟2,𝑃𝑟𝑜𝑗𝑒𝑐𝑡

the total, radial, and surface tangent displacement vectors must form a right triangle.
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In all plots and tables, error bars shown are the standard deviation from three independent 

replicates (different particle initial configurations and velocities). Three replicates are chosen 

because the observed variability between trials is small, indicating that final supraball surface 

composition is not overly sensitive to the initial state for the parameter space explored herein. We 

prepare simulation snapshots using the Visual Molecular Dynamics software.54

Parameters Varied:

We explore a range of design parameters including particle chemistry, particle size, SMP, B, τS, R, 

and α. We investigate both single-component SMP supraballs and two-component SMP/SP 

mixtures. To determine particle size effects, we consider 130 nm, 220 nm, and 660 nm particles 

with the SP particle either the same size or smaller than the SMP particle because our previous 

work demonstrated that only systems with smaller SP particles resulted in supraball surfaces with 

SMP, S < 1.0.21 We choose the particle sizes such that the size ratios are 1.0 (220 nm + 220 nm), 

~1.7 (130 nm + 220 nm), 3.0 (220 nm + 660 nm), and ~5.1 (130 nm + 660 nm). To determine the 

impact of particle size dispersity, we consider both monodisperse and polydisperse systems. To 

investigate the impact of mixture composition we use SMP, B = 0.1, 0.2, 0.5, 0.8, 0.9, and 1.0. To 

understand the impact of interfacial velocity, we explore τS of 30 s and 3 s. We investigate a span 

of R from 0.5 μm – 5.0 μm. Finally, we analyze the impact of α by considering three values: 0.5, 

1.0, and 2.0. 

Results:

As discussed in our prior computational and experimental work,21 we observe several key steps in 

the assembly process as illustrated from left to right in Figure 1. During the early stages of the 

assembly, the particles are homogenously distributed throughout the emulsion droplet volume at 

low  (leftmost snapshot). As R(t) decreases, particles diffuse and adsorb to the water-octanol 
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interface due to the strongly favorable particle-interface interactions (2nd image). Particles continue 

to adsorb to the interface until they form a jammed surface-adsorbed layer (the jamming transition 

of the surface-adsorbed particles is quantified in ESI Figure S2) at the water-octanol interface with 

total surface area coverage ~0.84. At this state the majority of particles are localized at the interface 

while a few remaining particles diffuse freely within the bulk of the emulsion droplet (3rd image). 

As R(t) continues to decrease, particles are forced to desorb from the liquid-liquid interface due to 

the decreasing surface area of the emulsion droplet and increasing curvature of the spherical 

confinement; during this stage the particle concentration within the interior of the droplet 

progressively increases (4th image). Finally, at t = 𝜏S, the particles form the assembled supraball 

(rightmost image). The final surface and interior structure and composition of the supraball for a 

given binary particle mixture is a result of the interplay between these various processes, which 

we explore in detail in this work.

Figure 1: Simulation snapshots illustrating key stages of the emulsion assembly for a DSP = DSMP 
= 220 nm, SMP, B = 0.5 mixture. SPs are rendered in yellow, and SMPs are rendered in blue. The 
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upper row shows the entire emulsion droplet geometry, and the lower row shows a cross-section 
of the emulsion droplet. Snapshots are ordered chronologically from the initial configuration at 
t/𝜏S = 0.0 (left) to the assembled supraball at t/𝜏S = 1.0 (right). 

We first discuss the impact of interfacial curvature of the emulsion droplet/supraball (i.e., 

R) on the structure and composition at the surface and in the interior of the supraball. As described 

in the methods section, we quantify the composition of the surface of the supraball (SMP, S) and 

within the supraball interior (SMP, I) and characterize the degree of particle ordering by calculating 

the overall number fraction of particles that participate in a crystalline-like domain (ƒc). Within 

the context of optical materials, SMP, S should largely control the color of the resulting supraballs,21, 

55 while ƒc should correlate with the presence/absence of iridescence.18, 56 SMP, B differs from SMP, 

I because SMP, B incorporates all SMP particles regardless of their spatial position while SMP, I only 

includes SMPs defined to be localized in the supraball interior (see Methods section for SMP, I 

definition). In Figure 2a we plot SMP, S and SMP, I as a function of R for three representative 

SMP/SP mixtures: 1) particle diameters DSP = DSMP = 220 nm, mixture composition SMP, B = 0.5, 

2) DSP = DSMP = 220 nm, SMP, B = 0.1, 3) DSP = 130 nm, DSMP = 660 nm, SMP, B = 0.5. All systems 

in Figure 2 assemble over a time scale 𝜏S = 30 s, corresponding to a Pe ranging from 0.6 to 3.1 

depending on particle size. Thus, for the systems in Figure 2, the particle diffusion rate is 

comparable to the rate of interfacial motion. We present in detail the potential impacts of 

neglecting hydrodynamic interactions in the Discussion section below; briefly, we expect 

hydrodynamic interactions to become increasingly crucial as Pe increases. Given that the results 

reported in this section are at relatively low Pe, we argue that our results may be quantitively 

impacted by neglecting hydrodynamics, but we expect the qualitative trends to not be affected. 

We observe that the surface and interior composition of the supraballs at a given SMP, B can be 

tuned by adjusting R. Such tunability could be achieved experimentally by adjusting the 
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parameters of the vortex mixing or the flow rates in a microfluidic-type device to control the initial 

size of the emulsion droplets.46 At small R, the vast majority of the SMP particles are located on 

the surface (i.e., high SMP, S) and are absent in the supraball interior (i.e., low SMP, I); effectively 

the supraball exhibits a core-shell structure (ESI Figure S3). As R increases, SMP, I approaches 

SMP, B for all three systems examined. In Figure 2b, we observe crystalline ordering (i.e., a non-

zero ƒc) only for systems where the SPs and SMPs are the same size. Furthermore, crystallinity is 

suppressed at low R, due to the increased frustration of crystalline packing introduced by the 

surface curvature.13 The transition from low to high ƒc occurs when the R is approximately 20 

times the nanoparticle size; above this critical R, ƒc is only weakly dependent on R. For particles 

participating in a crystal domain, we calculate a global bond-orientational order parameter Q6  

0.57, indicating that most of the crystalline particles are participating in FCC-like ordering.52 That 

finding is in agreement with prior experimental and computational work on the emulsion assembly 

of similar systems that found FCC particle ordering in supraballs/supraparticles formed through 

emulsion assembly or simulation methods mimicking emulsion assembly.57-59 

To aid in the interpretation of the quantitative data in Figure 2a-b, in Figure 2c-e we show 

simulation snapshots of the assembled supraballs from these three mixtures for R = 3.5 μm 

(simulation snapshots for all systems in Figure 2 are shown in ESI Figure S3). The left and center 

images in Figure 2c-e show the SPs rendered in yellow and the SMPs rendered in blue, and the 

surface segregation of SMP particles is easily visible in 2c-d. The rightmost image shows particles 

colored by crystalline domain; this snapshot illustrates that most of the highly-ordered domains 

exist near the supraball surface, which we quantify in more detail below. 

After examining the above trends, we choose to perform all subsequent tests at R = 3.5 

μm as this choice represents a sufficiently large final radius to be representative of large supraballs, 
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while significantly reducing the computational resources required relative to the R = 5.0 μm 

systems. We generate the data in Figure 2 using an interface that moves at a constant rate (curvature 

parameter α = 1.0 in methods section Equation 2), but also tested non-linear changes in R(t) (α = 

0.5 and 2.0), which showed no effect on the trends in SMP, S, SMP, I and ƒc (ESI Figure S4). Thus, 

we select α = 1.0 for the rest of this study. 

Figure 2: Impact of altering R on (a) SMP, S (solid symbols and solid lines) and SMP, I (open 
symbols and dashed lines) and (b) ƒc. Black squares and the simulation snapshots in (c) are a DSP 
= DSMP = 220 nm, SMP, B = 0.5 mixture, red diamonds and the simulation snapshots in (d) are a 
DSP = DSMP = 220 nm, SMP, B = 0.1 mixture, and grey circles and the simulation snapshots in (e) 
are a DSP = 130 nm, DSMP = 660 nm, SMP, B = 0.5 mixture. Panels (c-e) show simulation snapshots 
of the full supraball at R = 3.5 μm on the left, supraball cross section in the middle, and particles 
colored by crystalline domain on the right (particles not participating in an ordered domain are 
rendered in transparent grey). For all cases, 𝜏S = 30 s.  
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Next, we explore how varying particle size, mixture composition, and assembly timescale 

affect the supraball characteristics. In Figure 3 we plot the impact of mixture composition (SMP, 

B) SMP/SP size ratio (DSMP/DSP) and time scale of assembly (𝜏S) on supraball composition and ƒc. 

When DSMP/DSP is small, SMP, S is greater than SMP, B (Figure 3a), indicating an enrichment of 

SMP particles on the supraball surface as seen in our previous work.21 However, the degree of 

SMP enrichment at the surface decreases as DSMP/DSP increases; for DSMP/DSP = 5.1 (DSP = 130 

nm, DSMP = 660 nm), SMP, S approaches SMP, B. We attribute this behavior to differences in particle 

diffusion rates as DSMP/DSP increases (Table 1). The larger SMPs’ lower diffusion rate results in 

an SP-rich interface during the early stages of the assembly, as the smaller SPs can diffuse and 

adsorb to the interface more quickly. Thus, fewer SMPs are located at the interface when the 

interfacial layer reaches the jammed state, resulting in a decreased SMP, S in the final supraball. 

For small DSMP/DSP, decreasing 𝜏S results in a reduction in SMP, S; however, for DSMP/DSP = 5.1, 

the smaller 𝜏S increases SMP, S. We propose that this reversal is a result of the higher Pe at low 𝜏S 

(Table 1). As Pe increases, the effect of the different diffusion rates between small and large 

particles becomes less important, so more SMPs are incorporated into the water-octanol interface, 

increasing SMP, S. We anticipate that the impact of 𝜏S will become increasingly significant as 

DSMP/DSP increases beyond 5.1, as seen in thin-film evaporative assembly work.38 While SMP, S is 

strongly impacted by changing SMP, B, Figure 3b shows that SMP, I  SMP, B for all mixtures, due 

to R = 3.5 μm being large enough to accommodate the SMP enrichment at the supraball surface 

without significantly changing the interior composition. 
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Figure 3: Impact of altering particle mixture composition, SMP, B, on a) supraball surface 
composition, SMP, S, b) supraball interior composition, SMP, I, and c) fraction of crystallinity, ƒc. 
Black squares are DSP = DSMP = 220 nm (SMP/SP size ratio =1.0), red triangles are DSP =130 
nm, DSMP = 220 nm (SMP/SP size ratio =1.7), purple stars are DSP =220 nm, DSMP = 660 nm 
(SMP/SP size ratio =3.0), and grey circles are DSP =130 nm, DSMP = 660 nm (SMP/SP size ratio 
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=5.1). Dark filled symbols and solid lines are τS = 30 s and light filled symbols and dotted lines 
are τS = 3 s. All results are for R = 3.5 μm and α = 1.0.

In Figure 3c we show the ƒc as a function of DSMP/DSP, 𝜏S, and SMP, B. We find near-zero 

ƒc when DSMP/DSP is greater than 1.0 for any condition. This result is due to the asymmetric particle 

diameters frustrating the formation of crystalline domains, in agreement with experimental results 

that observed disordered supraballs at a DSMP/DSP as small as 1.25 and computational results that 

found that ordering significantly decreased as particle size asymmetry increased.18, 60 For the 

symmetric particle diameter case, Figure 3c illustrates that ƒc increases monotonically with 

increasing SMP, B. We can explain this result by noting that at the finite assembly timescales studied 

herein, highly-ordered domains largely only occur on the supraball surface and within the 

outermost 2-3 layers (Figure 2 snapshots). At low SMP, B, on the supraball surface there is 

insufficient SMP (low SMP, S) to form ordered domains because SMPs are relatively dispersed 

across the surface, and the SPs have a lower contact angle than SMPs, preventing the formation of 

inter-particle type crystalline domains. As SMP, B increases, the number of SMPs at/near the surface 

increases, enabling partial ordering on the supraball surface. Finally, at high SMP, B, the entire 

supraball surface becomes completely covered in SMP, and the higher SMP, B results in 

crystallinity expanding into the first and second layers below the supraball surface. Decreasing 𝜏S 

to 𝜏S = 3 s results in a slight reduction in ƒc, but all other trends remain the same. We note that 

significant changes in assembly mechanisms and or quantitative/qualitative results may be 

observed if 𝜏S was reduced even further than 3 s, as hydrodynamic interactions and/or auto-

stratification phenomena become increasingly important at high Pe (low 𝜏S). Other simulation 

work found that changing the particle bulk volume fraction had no effect on ordering; however, 

that work did not include difference in particle contact angle for the varying particle types.60 Thus, 
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we show that accounting for realistic differences in particle-interface contact angle not only is 

important in controlling supraball surface composition21 but also in ordering/crystallinity.

In the previous figures, we discuss the final supraball structure and composition, but it is 

also instructive to examine how they develop temporally during the assembly process. In Figure 4 

we show SMP, S, ƒc, and number of particles on the surface of the emulsion droplet (NS) as a 

function of time during the assembly (t/τS) for four representative systems: polydisperse and 

perfectly monodisperse pure-SMP (SMP, B = 1.0) and SMP-SP mixtures (SMP, B = 0.8) at τS = 30s. 

These systems allow us to separately examine the impact of chemical heterogeneity (pure SMP vs. 

SMP-SP mixture) and physical heterogeneity (particle size dispersity) in particles on the 

development of supraball structure. These key observations labeled with numbers are shown in 

Figure 4: During the initial period of assembly, the SMP and SP particles diffuse and adsorb to the 

interface, indicated by an increasing NS (marked as “1”) until it reaches a plateau. As the emulsion 

droplet shrinks (i.e., decreasing interfacial area), a jamming transition61 occurs (marked as “2”). 

We locate the jamming transition by tracking the magnitude of displacement of surface-adsorbed 

particles over time; at the jamming transition the surface tangent component of particle 

displacement drops to zero, see ESI Figure S2. After the formation of the jammed surface layer, 

particles start to be forced away from the interface (3) and into the interior of the droplet, illustrated 

by a decrease in NS. At this point, ƒc (and SMP, S, in the case of the binary mixtures) begins to 

increase. For the systems with particle size dispersity, we observe a structural rearrangement 

resulting in a small hump in ƒc (4) as the emulsion droplet continues to shrink; interestingly, this 

rearrangement is absent in perfectly monodisperse systems. We believe that this rearrangement is 

caused by larger SMP particles forcing smaller SMP particles away from the interface because the 

particle-interface adsorption energy scales with particle radius squared,5 so the larger SMP 
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particles are more strongly bound to the interface than the smaller ones. During this stage, ƒc 

increases while NS continues to decrease, indicating a preference for non-crystalline particles to be 

removed from the interface (5). Eventually, the droplet curvature becomes significant enough to 

frustrate particle crystallinity on the surface, as illustrated with the peak in ƒc at (6), after which ƒc 

decreases for all systems. However, as the droplet approaches the assembled state near t/τS, the 

monodisperse systems experience an uptick in ƒc (7), whereas this behavior is not apparent in 

systems with particle size dispersity. The final uptick in ƒc for the monodisperse systems is a result 

of monodisperse particles more easily organizing into ordered structures, resulting in the 

propagation of crystallinity deeper into the final supraball and a higher ƒc (discussed in more detail 

in Figure 5 below). Decreasing τS from 30 s to 3 s has a small impact on the specific NS, SMP, S, 

and ƒc values for a given system as well as the relative temporal locations of the steps highlighted, 

but the key observations and the assembly pathway remain the same for the assembly timescales 

studied herein (ESI Figure S5). Thus, depending on the particle size(s), mixture composition, and 

the presence/absence of particle size dispersity, the interplay between these 7 key stages of 

assembly control the final composition and structure observed in the assembled supraballs. 
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Figure 4: Time evolution of the number of particles on the droplet surface (NS), SMP, S, and ƒc. 
Dark blue dashed line is a monodisperse DSMP = 220 nm system with ϕSMP, B = 1.0, light blue solid 
line is a DSMP = 220 nm system with 6% particle size dispersity and ϕSMP, B = 1.0, light green/olive 
dashed line is a monodisperse DSP = DSMP = 220 nm system with ϕSMP, B = 0.8, and dark green 
solid line is a DSP = DSMP = 220 nm system with 6% particle size dispersity and ϕSMP, B = 0.8. All 
data shown is for τS = 30 s, R = 3.5 μm, and α = 1.0.

To demonstrate the localization of particle ordering near the supraball surface, in Figure 5 

we plot the fraction of crystalline particles per layer in the outermost six layers of particles (we 
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describe our strategy for defining a ‘layer’ in the Methods section) as a function of ϕSMP, B for the 

DSP = DSMP = 220 nm case. As ϕSMP, B increases, the fraction of crystalline particles per layer also 

increases, similar to the trends in overall ƒc. In general, systems with non-negligible ƒc possess a 

similar degree of ordering in the outer two layers and a significant decrease in ordering in 

subsequent layers. These results match experimental work by Vogel et al. who found that particle 

ordering existed primarily near the supraball surface with a disordered region near the center.18 

For the monodisperse ϕSMP, B = 1.0 system (dashed blue diamonds), we observe ordering that 

propagates further into the interior of the supraball than the systems with particle size dispersity. 

We attribute the slight uptick in ƒc for the monodisperse systems near t/τS = 1.0 seen in Figure 4 

above to this additional ordering in the interior layers. This idea is supported by previous 

computational work by de Nijs et al. on one-component, monodisperse systems in spherical 

confinement in the limit of low Pe that showed crystallinity/ordering that began at the interface 

and then propagated toward the center of the supraball as η approached the close-packed limit;53 

however, recent work has shown that attractive particle-particle interactions can alter the 

crystallization mechanism.62 Overall, the monodisperse systems have higher levels of crystallinity 

than their polydisperse counterparts regardless of ϕSMP, B because the lack of size dispersity likely 

allows for easier particle incorporation into an ordered structure (ESI Figure S6a). 
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Figure 5: Fraction of crystalline particles within the outermost 6 layers in the supraball (1 
representing the surface layer). Dark blue diamonds are a monodisperse DSMP = 220 nm system 
with ϕSMP, B = 1.0, light blue squares are a DSMP = 220 nm system with 6% particle size dispersity, 
purple, green, black, brown, and orange squares are DSP = DSMP = 220 nm systems with 6% 
particle size dispersity and ϕSMP, B = 0.9, 0.8, 0.5, 0.2, and 0.1, respectively. All data shown is for 
τS = 30 s, R = 3.5 μm, and α = 1.0.

As 𝜏S changes from 30 s to 3 s (ESI Figure S6b), the fraction of crystallinity per layer 

decreases slightly, but the trends remain the same as the 𝜏S = 30 s results shown in Figure 5. 

Similarly, changing the particle-interface interactions from strongly attractive to purely repulsive 

(ESI Figure S7b) decreases the ƒc per layer somewhat but does not impact the qualitative trends 

described above. The ƒc per layer for monodisperse systems is more impacted by the interface-

particle interaction than for polydisperse systems. Previous work by de Nijs et al. also observed 

that changing the interface from attractive to repulsive did not have a major impact on the 

crystallinity observed in the limit of low Pe.53 Experimental work with drying colloidal suspension 

droplets containing particles experiencing a repulsive interface (in this case water-air) found that 

the resulting supraballs were still highly ordered, confirming that interface-particle interaction for 

polydisperse systems does not play a major role in particle ordering.63 
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Discussion:

Before concluding this paper, we include a brief discussion on the potential impact of our chosen 

simulation methodology on our results. There are two key physical phenomena that our implicit 

solvent Langevin dynamics method necessarily cannot capture: 1) hydrodynamic effects resulting 

from the flow of solvent molecules during the emulsion assembly and 2) the soft, deformable 

nature of the real liquid-liquid interface. The true impact of these phenomena can only be 

definitively explored with an explicit solvent approach; however even with the latest hardware, 

accessing the experimentally relevant length and timescales probed in this work would be 

prohibitively computationally expensive with explicit solvents. For example, an explicit solvent 

approach with the solvent represented as a CG bead with a 1 nm diameter would require up to 

~1013 solvent particles just to solvate the inside of the emulsion droplet. Furthermore, to explicitly 

model the liquid-liquid interface in the emulsion assembly process, additional solvent of a different 

chemistry would be required to surround the solvent molecules within the emulsion droplet; this 

would further increase the number of solvent particles required. Therefore, such an explicit solvent 

approach would need to handle size scales ranging from ~1 nm (solvent) to hundreds of nm 

(nanoparticles) to tens of microns (emulsion droplet), which is not feasible with any of the current 

computational techniques. Thus, to understand the potential implications of our chosen implicit 

solvent approach, we review the available literature on the explicit effects from solvent (e.g., 

hydrodynamics) in analogous systems. 

One area where there has been progress in elucidating hydrodynamic effects is in 

evaporative assembly (in contrast to emulsion assembly which is the focus of this paper), albeit 

with some conflicting conclusions. Several studies focused on evaporative assembly suggest that 

neglecting hydrodynamics can strongly affect the regimes of particle concentration, size ratio, and 
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Pe where auto-stratification is observed in drying films.29, 40, 64 However, Tang et al. performed 

implicit and explicit solvent simulations of drying binary colloidal films, and in seeming conflict 

with other recent work, they found that both approaches produced comparable structures.32 To 

date, the body of work that demonstrated a significant hydrodynamic effect focused on either 

polymer-polymer mixtures64 or polymer-colloid mixtures with drastically different size scales for 

the two solutes,29 while the system explored in Tang et al.32 contains particles with less extreme 

size disparities. The variability in particle size-scales or some subtle difference between particle 

and polymer systems could be responsible for the conflicting results. Howard et al. investigated 

solvent effects in the evaporative film assembly of single-component colloidal crystals, and found 

that at high-Pe, the dynamics and mechanistic pathways of assembly were different between 

implicit and explicit solvent simulations but the final crystalline structures appeared similar.34 And 

in the context of spherical confinement, a recent study on evaporative colloidal assembly in 

spherical droplets found that implicit solvent simulations qualitatively agreed with experimental 

results, though the authors noted quantitative differences that they attribute to hydrodynamic 

effects and/or differences in droplet size scales between simulations and experiments.39

In light of the available literature in evaporative assembly, we believe that neglecting 

hydrodynamics may have a minor quantitative impact on our results but will not impact the 

qualitative trends or the key steps in the assembly pathway. Due to the fundamental differences 

between the assembly mechanism probed herein (driven by strongly attractive particle-interface 

interactions) and diffusiophoresis-based auto-stratification, we expect our results to be less 

sensitive to the treatment of hydrodynamic effects than the systems reviewed above. In contrast to 

a diffusiophoretic process, where surface segregation is a result of a careful balance of particle 

transport and interfacial motion throughout the course of the assembly process (often occurring at 
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Pe significantly higher than probed in this work), in our system, particle transport only plays a role 

in the very earliest stages of assembly when particles are diffusing and adsorbing to the liquid-

liquid interface. As seen from Figure 4, the most significant changes in surface composition and 

ordering all occur well after the formation of a jammed surface layer, where diffusive particle 

transport is negligible. Changes in particle motion during the early stages of assembly may affect 

the initial composition of the jammed surface layer, which could then propagate to change the final 

supraball surface composition. However, we expect this impact to be small due to the relatively 

low Pe, low particle concentration, moderate particle size ratio, and large droplet/particle size ratio 

during the initial stages of the assembly process. Furthermore, our prior work using the same 

implicit solvent simulation model and methodology demonstrated qualitative agreement with 

experimental trends as a function of particle size.21 We note that there have been some important 

methodological advances to incorporate hydrodynamics into analogous systems.35, 65-67 For 

example, recent Stokesian dynamics simulations explored equilibrium diffusion of a 

hydrodynamically interacting suspension in spherical confinement; they discovered that radial 

diffusion near the droplet surface decreased compared to unconfined diffusion, and this decrease 

was dependent on the particle concentration and size ratio of particles to the confined volume.65 

Adapting these schemes to the binary systems and/or to the shrinking spherical geometry probed 

herein is a promising future avenue of study that could help shed light on the impact of 

hydrodynamics in this system, however it will necessitate some compromise in particle sizes and 

simulation system sizes explored. Another potential option would be to apply the dissipative 

particle dynamics (DPD) thermostat as an alternative to the Langevin thermostat used in this work, 

which would incorporate hydrodynamic effects at an approximate level through the pairwise 

dissipative and random forces.68-70
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Conclusions:

In this work, we map the rich physics underlying the structures formed in the emulsion assembly 

of binary nanoparticle mixtures into spherical supraballs as a function of a large design space 

comprised of nanoparticle size, chemistry, mixture composition, assembly time, and emulsion 

droplet size. We focus on the regime of strongly attractive particle-interface interactions, where 

one particle type (SMP) extends further into the oil (majority) phase than the other (SP), with 

assembly occurring at moderate Pe (0.6 < Pe < 30). We show how the surface and interior 

composition of the supraball (important for coloration in optical applications) can be tuned by 

adjusting particle size, particle mixture composition, and supraball size. More complex 

arrangements such as core-shell supraballs can also be produced in the limit of small supraballs. 

We also discuss the phenomena that control particle ordering (i.e., iridescence) in these materials. 

Ordering only occurs in systems with symmetric particle sizes, largely near the supraball surface. 

A finite assembly time, particle size dispersity, and the curvature of the supraball surface all serve 

to suppress ordering, and we discuss regimes where ordering is and is not prevalent. We also 

present a detailed view of the key steps in the assembly process to understand how the development 

of surface structure and composition occurs over time. We envision that these results (focusing on 

particle localization/structure within the supraballs) could be subsequently combined with 

theoretical methods to calculate optical properties as a function of known spatial variations in 

refractive index (such as obtaining reflectance spectra via finite-difference time-domain (FDTD) 

simulations17, 71); such an approach would explicitly link the supraball assembly design space to 

structural color response. As such, this work provides design rules for the development of 

structurally-colored optical materials and also extrapolates more generally to the assembly of 
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binary particle mixtures in shrinking spherical confinement, with relevance to other important 

processes such as spray drying and porous materials fabrication. 
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