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Design, System, Application Statement

 Traditionally, researchers need reference values in order to detect 
oxide states in data. However, this technique can automatically 
detect oxide states without the use of reference values. This offers 
the possibility of detecting oxide states for new materials that do not 
have reference values available for use.
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Oxidation state of materials are characterized by the X-ray absorption near edge struc-
ture(XANES) region om X-ray absorption spectroscopy(XAS). However, the challenge in identify-
ing oxides states are strong depending on researchers judgment based on shift change between
measured XAS and reference spectra data. Here, automatic oxidation threshold recognition is
performed using machine learning and experimental XAS spectra. In particular, workflow from
experimental data collection, data preprocessing and prediction using machine learning are pro-
posed. 10 descriptors for recognizing the oxide state in XAS spectra is discovered. More im-
portantly, oxide state of unknown experimental XAS spectra is identified using trained machine.
Proposed approach thus allows for the machine learning to automatically recognize the oxida-
tion threshold of a given XAS spectra without the presence of reference data, leading to the fast
analysis of XAS spectra.

Introduction
X-ray absorption spectroscopy (XAS) is a technique commonly
used for characterizing materials due to its selectivity of the tar-
get element and its ability to be applied towards a material in any
state such as amorphous, and liquid phase1–5 In particular, the
X-ray absorption near edge structure(XANES) region within XAS
spectra is key towards understanding properties of target mate-
rials since it contains the information of bond states and coordi-
nation around the target element.6,7 In general, the XANES re-
gion is typically analyzed through comparison between spectra
of the target samples and of reference spectra, either of which
can be spectra obtained from experiment or derived from theo-
retical simulations. Identification of whether materials are oxide
or not can be evaluated by comparing the measure XANES peak
with reference peak of non-oxide of its material. The challenge in
evaluating XANES peak is that the degree of shift from reference
XANES peak whether materials are oxide or non oxide are based
on human judgment. In other words, there is no solid threshold
for deciding oxide or non oxide. This becomes quite problematic
for truly characterizing XANES peaks.

Within such circumstance, there have been severals attempts
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to apply materials informatics for analyzing and understanding
the XAFS spectra, in general. In particular, the matching algo-
rithm is reported based on XAS spectra by using FEFF calculation
spectra database, but the method is still dependent on the qual-
ity of the calculated results.8,9 THere are cases where three di-
mensional structures for metal nanoparticles can be identified by
using machine learning10,11. Yet despite the techniques chosen,
all analysis of XAS spectra is still dependent on the availability
of reference spectra and of the judgment of the researcher. With-
out the existence of reference spectra, it is virtually impossible for
researchers to judge oxidation states, for example.

Here, automatic oxidation threshold recognition from experi-
mental XANES spectra is proposed using machine learning and
data preprocesing of XANES spectra. In particular, the descrip-
tors that affect the changes in XAFS peaks of metal nanoparticles
are sought after. By determining the descriptors, it then becomes
achievable to employ machine learning which can then learn the
hidden trends in XANES specta, thereby leading towards the dis-
tinction between oxide and nonoxide states without the presence
of reference spectra. The proposed approach therefore establishes
a way for a machine learning to automatically detect oxidation
thresholds within XAFS spectra without the presence of reference
data.

Method

The proposed approach contains several steps where the work-
flow is organized and shown in Figure 1. The first step is to col-
lect the experimental XAS spectra and then preprocessed into a
format that is readable by a machine learning algorithm. Once
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the data is preprocessed, preprocessed data is trained using ma-
chine learning where the machine learns the hidden trends in
multi-dimensional space. Upon learning the trends, the trained
machine is then used in order to predict whether the XAS spectra
is of an oxide or a non-oxide. Note that during the prediction
process, the target spectra is acquired outside trained data set
therefore, prediction of oxide state in unknown XAS spectra is
performed.

Fig. 1 Work-flow of Automatic oxidation threshold recognition. (a) Collec-
tion of experimental XAS spectra, (b) XAS spectra data preprocessing,
(c) Train machine learning with preprocessed data and prediction of ox-
ide state. Note that learned XAS data (a) is not included in XAS spectra
data for automatic oxidation recognition (c).

The X-ray absorption spectroscopy(XAS) reference data is
collected from the Hokkaido University XAFS database and
the Center for Advanced Radiation Sources(CARS) XAFS spec-
tra library.12,13 23 K-edge X-ray absorption spectra are col-
lected of the following targets: oxides and pristine foil of sil-
ver(Ag), cobalt(Co), iron(Fe), molybdenum(Mo), palladium(Pd),

rhodium(Rh), titanium(Ti) and vanadium(V). The collected data
is then processed using “Athena”, a XAS data processing soft-
ware, in order to obtain normalized spectra.14 Please see the
supporting information for 23 XAS train data. The energy
of the spectra is decomposed into 9 components as shown
in Figure 2 where the normalized absorption (µ(E)) classified
into 0((E)0), 0.1((E)0.1), 0.2((E)0.2), 0.3((E)0.3), 0.4((E)0.4),
0.5((E)0.5), 0.6((E)0.6), 0.7((E)0.7), 0.8((E)0.8) and 0.9((E)0.9)
within the calibrated spectra. The lower energy is taken where
the pre-edge appears in the spectra(See Figure 2). The energy
shift difference(∆µ(E)x; x in the normalized absorption is defined
as the following equation (1) in order to standardize the energy
shift in all spectra:

∆µ(E)x = Ex −E0 (1)

where x is defined as 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and
0.9. Figure 2 illustrates the relationships of the energy shift dif-
ferences of the spectra, where measurements are taken between
starting point E0 and the curve of the particular spectra. These
measurements make the data, therefore, readable by a machine
learning algorithm.

Fig. 2 The scheme of definition of descriptors ∆µ(E)x(x= 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8 and 0.9) from XAS spectra. Blue represents ex-
perimental XAFS peaks while red represents peak measurements made
manually.

Scikit–learn is used for machine learning process.15 In partic-
ular, eight different supervised machine learning classification al-
gorithms are applied and evaluated during the search for an ap-
propriate machine learning algorithm and descriptors for oxide
states in XAS spectra: Logistic Regression, Support vector ma-
chine, Random forest, Extra–trees, Decision trees, Gausian naive
bayes, Multinomial naive bayes, Bernoulli naive bayes and k-
nearest neighbors.16–22 Cross validation is implemented for eval-
uating the accuracy of trained machine where train data set is
randomly split into 90% train data and 10% test. Average score
of 10 random 90% train data and 10% test is taken and evaluated.
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Results and discussions
The search for descriptors determining the oxides states within
XANES analysis is performed using machine learning techniques.
Machine learning reveals the following 10 descriptors that deter-
mine the oxidation threshold within XAFS spectra: ∆µ(E)x(x=
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9) and atom number of
target element. As can be seen in Table 1, these descriptors have
high cross validation scores which vary according to the machine
learning algorithm, where the support vector classifier is found to
return the highest average score of 83%. These descriptors are
seen to affect the XANES peaks that are often used when judging
if the target material is an oxide or non-oxide. As can be seen
in the analyzed XANES spectra listed within Supporting Informa-
tion, the differences in peaks can be attributed to the difference
in energy shift between oxide and nonoxide targets. In general,
the XANES peak in metal is shifted more dramatically towards a
higher ∆µ(E) region as can be seen in the analyzed XANES spec-
tra (see Supporting Information). This tendency has also been re-
ported in previous studies for cases such as Mn, Fe, and Cu.23–25

Thus, the listed descriptors has good agreement with how the en-
ergy shift has been traditionally understood; therefore, machine
learning can reproduce researcher judgment.

Table 1 The results of cross validation with 8 different classification algo-
rithms against oxide states in 2 classes(oxide or non-oxide).

Algorithm1 Average score
(%)

Median
(%)

Standard deviation

LR2 73 66 0.24
ETC3 18 70 66 0.27
DTC2 19 73 66 24
RFC3 17 73 66 0.24
SVC4 16 83 1 0.22
GNB2 20 50 33 0.3
MNB2 21 33 33 0.33
BNB2 21 73 66 0.2
KNN2 22 80 83 0.2

1 LR : Logistic Regression, ETC : Extra Trees Classifier, DTC :
Decision Tree Classifier, RFC : Random Forest Classifier, SVC
: Support Vector Classifier, GNB : Gaussian Naive Bayes, MNB
: Multinomial Naive Bayes, BNB : Bernoulli Naive Bayes, and
KNN : k-nearest neighbors.

2 Default setting is implemented.
3 Random states of 1000 and estimators of 3 are implemented.
4 RBF kernel is implemented.

The effect of descriptors is investigated using the RadViz visual-
izer26,27. RadViz visualization allows for multi-dimensional data
to be plotted within a two dimensional space where the data is
plotted based on its influence across all dimensions. Descriptors
∆µ(E)0.3, ∆µ(E)0.4, ∆µ(E)0.5, and ∆µ(E)0.9 within in radviz are
chosen by VizRank method where k-nearest neighbor classifica-
tion is implemented to find the descriptor combinations of the
highest score28. As seen in Figure 3, the energy shift differences
of ∆µ(E)0.4,∆µ(E)0.5 and ∆µ(E)0.9 appear to have a strong affin-
ity towards the oxide states. Figure 3 demonstrates the spectra
against multiple factors (in this case, ∆µ(E)0.3, ∆µ(E)0.4, ∆µ(E)0.5
and ∆µ(E)0.9) where those 4 descriptors classfied the oxides 0 and

1 which denote nonoxide and oxide states, respectively. In par-
ticular, spectra that are considered to be oxides appear to favor
∆µ(E)0.3 and ∆µ(E)0.4 while non-oxides appear to favor ∆µ(E)0.9.
From this, it can be concluded that ∆µ(E)0.3, ∆µ(E)0.4, ∆µ(E)0.5
and ∆µ(E)0.9 are strong indicators for determining the oxidation
state of the target spectra.

Fig. 3 The data analysis among descriptors by using RadViz Visu-
alizer. 26,27 Energy shift differences(∆µ(E)0.3, ∆µ(E)0.4, ∆µ(E)0.5 and
∆µ(E)0.9) has turned out to have strong relationship. Note that nonox-
ide and oxide states are denoted by 0 and 1, respectively.

Once the descriptors are determined, the inverse problem of
prediction of oxide state in unknown XANES spectra is performed.
Success with the inverse problem can lead to trained machines be-
coming proficient in determining the oxidation threshhold with-
out the presence of reference spectra. Here, 10 sets of XAS spectra
is collected from the SPring-8 Experimental Data Repository Sys-
tem Portal29. Cu, Nb, Zn, and Zr are chosen as the target atoms
in order to exclude the atoms that were present during the origi-
nal machine training phase. Then each of 10 XAS spectra is same
data preprocess as taken in Figure 2. The details of preprocessing
10 XAS data is collected in Supporting Information. Once data is
proprocessed, oxide state of those 10 XAS spectra is judged by the
trained machine. The results are evaluated by the accuracy score
as defined by the following equation (Equation 2):

Paccuracy =
Ncorrect

N all
(2)

where Paccuracy, Ncorrect and Nall are the accuracy score(%),
number of correct answers, and number of samples(in that case:
10), respectively.

Table 2 lists the predictions of various trained machines against
the new dataset of ten XAS spectra with true values, predicted
values, and corresponding accuracy scores are listed. Logistic re-
gression (LR) is seen to have an accuracy score of 80%, which is
considered accurate. Additionally, it is the only algorithm that can
successfully distinguish an oxide state from an unoxidated state.
In this case, the two instances where predicted values were not
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Table 2 The results of reverse problem by using trained machine against 10 XAS spectra.

Target atom Sample1 True value1,2 Predicted value
LR2,3 ETC2,3 DTC2,3 RFC2,3 SVC2,3 GNB2,3 MNB2,3 BNB2,3 KNN2,3

Cu
Cu-foil 0 0 1 1 1 1 1 1 1 1
CuO 1 0 1 1 1 1 1 1 1 1
Cu2O 1 1 1 1 1 1 0 1 1 1

Nb
Nb-foil 0 0 1 1 1 1 1 1 1 0
NbO 1 0 0 1 1 1 0 1 1 0
NbO2 1 1 0 1 1 1 0 1 1 0

Zn
Zn-foil 0 0 1 1 1 1 1 1 1 0
ZnO 1 1 1 1 1 1 1 1 1 0

Zr
Zr-foil 0 0 0 1 1 1 1 1 1 0
ZrO2 1 1 1 1 1 1 0 1 1 0

Accuracy score (%) 80 50 604 604 604 20 604 604 50
1 Sample spectra is collected from SPring-8 Experimental Data Repository System Portal29.
2 0 and 1 are indicated as “non-oxide” and “oxide” ,respectively.
3 LR : Logistic Regression, ETC : Extra Trees Classifier, DTC : Decision Tree Classifier, RFC : Random Forest Classifier, SVC : Support

Vector Classifier, GNB : Gaussian Naive Bayes, MNB : Multinomial Naive Bayes, BNB : Bernoulli Naive Bayes and KNN : k-nearest
neighbors.

4 Note that all predicted values are “1 (oxide)” so that it cannot adequately capture the data structure in its learning process, such as
over-fitting or inappropriate algorithm implementation.

accurate were cases where the oxide was weakly oxidated. This
demonstrates that while it may be difficult to determine the exact
threshold for cases with weak oxidation, the machine learning can
reliably predict the oxidation state of the XAS data with no refer-
ence data. More importantly, this proves that it is, indeed, possi-
ble for a machine learning to predict the oxide state of the spec-
tra of untrained XAS spectra once it learns from experimentally-
reported spectra without the presence of reference spectra. This
thereby expands researchers’ ability to determine oxidative states
of spectra without supplementary date where it was previously
impossible due to lack of reference spectra for researchers to use
for comparison.

It is also immediately recognizable that five of the eight al-
gorithms are unable to determine the difference in oxidation
state despite. Decision tree classifier(DFC),random forest clas-
sifier(RFC),support vector classifier (SVC) ,and Bernoulli Naive
Bayes(BNB) returned a value of 1 for all test cases; despite its
seemingly high cross validation score, these algorithms were un-
able to distinguish the oxidation states. k-nearest neighbors re-
turned a value of 1 for Cu cases, while other returned a value of 0.
Additionally, Multinomial Naive Bayes(MNB) returns a validation
score of 20%, the lowest of all eight algorithms, while extra tree
classifier(ETC) has an accuracy score of 50%, which is remark-
ably lower than the first round of reported cross validation scores
(as reported in Table 1). These issues could possibly be due to
overfitting data processing with the implemented algorithms due
to the size of the dataset although score in cross validation is rel-
atively high as shown in Table 130 Additionally, one can consider
that the learning algorithm is incomplete in its capture of the data
structure and therefore leading to errors in predicting the target
variable. These results, thus, can also act as an example where
initial cross validation scores do not properly evaluate the con-
tinued success of an algorithm when applied towards supervised
learning.

Conclusions
In conclusion, descriptors responsible for oxidation states within
oxides are determined by applying machine learning towards
data derived from XAS data. 23 sets of oxide and pristine sam-
ples of XAS spectra are collected and preprocessed for machine
learning applications. Various machine learning algorithms are
then explored in order to determine the descriptors responsible
for determining the oxide state. The following 10 descriptors are
thereby determined: ∆µ(E)x(x= 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8 and 0.9) and atom number of the target element where the
highest average cross validation score is 83 % for the support
vector classifier. The descriptors can be understood to be the en-
ergy shift in XANES spectra that differs according to the oxidation
state in certain X-ray absorption edge of the element. The inverse
problem is then explored using trained machines against a new
set of different XAS spectra in order to evaluate the machine’s
ability to recognize the oxidation threshhold of untrained spec-
tra where the logistic regression algorithm is found to be most
successful with a cross validation score of 80%. These results
therefore demonstrate that by employing machine learning, it be-
comes possible to determine the oxidation state of XAS spectra
without the use of reference data or spectra, thereby expediting
and expanding the scope of XANES analysis using XAS spectra.
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novič, M. Možina, M. Polajnar, M. Toplak, A. Starič, M. Štaj-
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