
Deep learning for molecular design - a review of the state of
the art

Journal: Molecular Systems Design & Engineering

Manuscript ID ME-REV-03-2019-000039.R2

Article Type: Review Article

Date Submitted by the
Author: 17-May-2019

Complete List of Authors: Elton, Daniel; University of Maryland at College Park, Mechanical
Engineering
Boukouvalas, Zois; University of Maryland at College Park, Mechanical
Engineering
Fuge, Mark; University of Maryland at College Park, Mechanical
Engineering
Chung, Peter; University of Maryland at College Park, Mechanical
Engineering

Molecular Systems Design & Engineering

In this review we discuss the use of deep learning techniques to perform to molecular
generation and optimization, a new field which has proved to be a fertile area for development
in the past three years.
The broad categories of techniques which we discuss are recursive neural networks, variational
autoencoders, generative adversarial networks, and reinforcement learning. These techniques
can be used for generating a diverse set of leads for high throughput screening. The latent
spaces of generative models can be used for optimization of molecules when coupled with a
property predicting module. Alternatively, a pure reinforcement learning approach to
optimization can be taken. The majority of work so far has been focused on drug design but
there are nnumerous other application areas are now appearing in the literature such as metal
organic frameworks, organic LEDs, organic solar cells, and energetic materials. While currently
genetic algorithms can often compete with deep learning based methods for molecular
optimization, the field is rapidly developing and there are many avenues open for improvement.
The current literature points to a future where deep generative modeling techniques will find
utility not just for generating and optimizing molecules but also for materials and nanoscale
systems.

Page 1 of 23 Molecular Systems Design & Engineering

Journal Name

Deep learning for molecular design—a review of the
state of the art

Daniel C. Elton,a† Zois Boukouvalas,ab Mark D. Fuge,a and Peter W. Chunga

In the space of only a few years, deep generative modeling has revolutionized how we think of
artificial creativity, yielding autonomous systems which produce original images, music, and text.
Inspired by these successes, researchers are now applying deep generative modeling techniques
to the generation and optimization of molecules—in our review we found 45 papers on the sub-
ject published in the past two years. These works point to a future where such systems will be
used to generate lead molecules, greatly reducing resources spent downstream synthesizing and
characterizing bad leads in the lab. In this review we survey the increasingly complex landscape
of models and representation schemes that have been proposed. The four classes of techniques
we describe are recursive neural networks, autoencoders, generative adversarial networks, and
reinforcement learning. After first discussing some of the mathematical fundamentals of each
technique, we draw high level connections and comparisons with other techniques and expose
the pros and cons of each. Several important high level themes emerge as a result of this work,
including the shift away from the SMILES string representation of molecules towards more so-
phisticated representations such as graph grammars and 3D representations, the importance of
reward function design, the need for better standards for benchmarking and testing, and the ben-
efits of adversarial training and reinforcement learning over maximum likelihood based training.

The average cost to bring a new drug to market is now well over
one billion USD,1 with an average time from discovery to mar-
ket of 13 years.2 Outside of pharmaceuticals the average time
from discovery to commercial production can be even longer, for
instance for energetic molecules it is 25 years.3 A critical first
step in molecular discovery is generating a pool of candidates for
computational study or synthesis and characterization. This is a
daunting task because the space of possible molecules is enor-
mous—the number of potential drug-like compounds has been
estimated to be between 1023 and 1060,4 while the number of all
compounds that have been synthesized is on the order of 108.
Heuristics, such as Lipinski’s “rule of five” for pharmaceuticals5

can help narrow the space of possibilities, but the task remains
daunting. High throughput screening (HTS)6 and high through-
put virtual screening (HTVS)7 techniques have made larger parts
of chemical space accessible to computational and experimental
study. Machine learning has been shown to be capable of yielding
rapid and accurate property predictions for many properties of in-

a Department of Mechanical Engineering, University of Maryland, College Park,
Maryland, 20740, United States of America. E-mail:daniel.elton@nih.gov
b Department of Mathematics and Statistics, American University, Washington, D.C.,
20016, United States of America.
† Present address: National Institutes of Health Clinical Center, Bethesda, Maryland,
United States of America.

terest and is being integrated into screening pipelines, since it is
orders of magnitude faster than traditional computational chem-
istry methods.8 Techniques for the interpretation and “inversion”
of a machine learning model can illuminate structure-property
relations that have been learned by the model which can in turn
be used to guide the design of new lead molecules.9,10 However
even with these new techniques bad leads still waste limited su-
percomputer and laboratory resources, so minimizing the number
of bad leads generated at the start of the pipeline remains a key
priority. The focus of this review is on the use of deep learning
techniques for the targeted generation of molecules and guided
exploration of chemical space. We note that machine learning
(and more broadly artificial intelligence) is having an impact on
accelerating other parts of the chemical discovery pipeline as well,
via machine learning accelerated ab-initio simulation,8 machine
learning based reaction prediction,11,12 deep learning based syn-
thesis planning,13 and the development of high-throughput “self-
driving” robotic laboratories.14,15

Deep neural networks, which are often defined as networks
with more than three layers, have been around for many decades
but until recently were difficult to train and fell behind other
techniques for classification and regression. By most accounts,
the deep learning revolution in machine learning began in 2012,
when deep neural network based models began to win several

Journal Name, [year], [vol.],1–21 | 1

Page 2 of 23Molecular Systems Design & Engineering

different competitions for the first time. First came a demonstra-
tion by Cireşan et al. of how deep neural networks could achieve
near-human performance on the task of handwritten digit clas-
sification.16 Next came groundbreaking work by Krizhevsky et
al. which showed how deep convolutional networks achieved su-
perior performance on the 2010 ImageNet image classification
challenge.17 Finally, around the same time in 2012, a multi-
task neural network developed by Dahl et al. won the “Merck
Molecular Activity Challenge" to predict the molecular activities
of molecules at 15 different sites in the body, beating out more
traditional machine learning approaches such as boosted deci-
sion trees.18 One of the key technical advances published that
year and used by both Krizhevsky et al. and Dahl et al. was a
novel regularization trick called “dropout”.19 Another important
technical advance was the efficient implementation of neural net-
work training on graphics processing units (GPUs). By 2015 bet-
ter hardware, deeper networks, and a variety of further technical
advances had reduced error rates on the ImageNet challenge by
a factor of 3 compared to the Krizhevsky’s 2012 result.20

In addition to the tasks of classification and regression, deep
neural networks began to be used for generation of images, audio,
and text, giving birth to the field of “deep generative modeling”.
Two key technical advances in deep generative modeling were the
variational autoencoder (Kimga et al., 201321) and generative
adversarial networks (Goodfellow et al. 201422). The first work
demonstrating deep generative modeling of molecules was the
“molecular autoencoder” work of Gómez-Bombarelli et al. which
appeared on the arXiv in October 2016 and was published in ACS
Central Science in 2018.23 Since then, there has been an explosion
of advancements in deep generative modeling of molecules using
several different deep learning architectures and many variations
thereof, as shown in table 2. In addition to new architectures,
new representation schemes, many of which are graph based,
have been introduced as alternatives to the SMILES representa-
tion used by Gómez-Bombarelli et al. The growing complexity of
the landscape of architectures and representations and the lack
of agreement upon standards for benchmarking and comparing
different approaches has prompted us to write this review.

While much of the work so far has focused on deep generative
modeling for drug molecules,24 there are many other application
domains which are benefiting from the application of deep learn-
ing to lead generation and screening, such as organic light emit-
ting diodes,25 organic solar cells,26 energetic materials,10,27 elec-
trochromic devices,28 polymers,29 polypeptides,30–32 and metal
organic frameworks.33,34

Our review touches on four major issues we have observed in
the field. The first is the importance and opportunities for im-
provement by using different molecular representations. Recent
efforts have begun to depart from the use of Simplified Molecular-
Input Line-Entry System (SMILES) strings towards representa-
tions that are “closer to the chemical structure” and offer im-
proved chemical accuracy, such as graph grammar based meth-
ods. The second issue is architecture selection. We discuss the
pros and cons underlying different choices of model architecture
and present some of their key mathematical details to better il-
luminate how different approaches relate to each other. This

leads us to highlight the advantages of adversarial training and
reinforcement learning over maximum likelihood based training.
We also touch on techniques for molecular optimization using
generative models, which has grown in popularity recently. The
third major issue is the approaches for quantitatively evaluating
different approaches for molecular generation and optimization.
Fourth, and finally, we discuss is reward function design, which
is crucial for the practical application of methods which use rein-
forcement learning. We contribute by offering novel overview of
how to engineer reward function to generate a set of leads which
is chemically stable, diverse, novel, has good properties, and is
synthesizable.

There are reasons to be skeptical about whether today’s deep
generative models can outperform traditional computational ap-
proaches to lead generation and optimization. Traditional ap-
proaches are fundamentally combinatorial in nature and involve
mixing scaffolds, functional groups, and fragments known to be
relevant to the problem at hand (for a review, see Pirard et al.35).
A naive combinatorial approach to molecular generation leads
to most molecules being unstable or impossible to synthesize, so
details about chemical bonding generally must be incorporated.
One approach is to have an algorithm perform virtual chemical
reactions, either from a list of known reactions, or using ab initio
methods for reaction prediction.36 Another popular approach is
to use genetic algorithms with custom transformation rules which
are known to maintain chemical stability.37 One of the latest
genetic algorithm based approaches (“Grammatical Evolution”)
can match the performance of the deep learning approaches for
molecular optimization under some metrics.38 Deep generative
modeling of molecules has made rapid progress in just a few years
and there are reasons to expect this progress to continue, not just
with better hardware and data, but due to new architectures and
approaches. For instance, generative adversarial networks and
deep reinforcement learning (which may be combined or used
separately) have both seen technical advancements recently.

Contents

1 Molecular representation 3
1.1 Representations of 3D geometry 3
1.2 Representations of molecular graphs 4

1.2.1 SMILES and string-based representations . 4
1.2.2 Image-based representations 4
1.2.3 Tensor representations 5
1.2.4 Other graph-based representations 5

2 Deep learning architectures 5
2.1 Recurrent neural networks (RNNs) 5

2.1.1 Optimization with RNNs using reinforce-
ment learning 7

2.2 Autoencoders . 9
2.2.1 Variational autoencoders (VAEs) 9
2.2.2 Adversarial autoencoders (AAEs) 10
2.2.3 Supervised VAEs/AAEs for property predic-

tion & optimization 10
2.3 Generative adversarial networks (GANs) 11

2 | 1–21Journal Name, [year], [vol.],

Page 3 of 23 Molecular Systems Design & Engineering

2.3.1 The perfect discriminator problem and
training instabilities 12

3 Metrics and reward functions 13
3.1 Metrics for scoring generative models 13
3.2 Reward function design 14

3.2.1 Diversity & novelty 14
3.2.2 Stability and synthesizability 15
3.2.3 Rewards for good properties 15

4 Prospective and future directions 16

1 Molecular representation
The molecular representation refers to the digital encoding used
for each molecule that serves as input for training the deep learn-
ing model. A representation scheme must capture essential struc-
tural information about each molecule. Creating an appropriate
representation from a molecular structure is called featurization.
Two important properties that are desirable (but not required)
for representations are uniqueness and invertibility. Uniqueness
means that each molecular structure is associated with a sin-
gle representation. Invertibility means that each representation
is associated with a single molecule (a one-to-one mapping).
Most representations used for molecular generation are invert-
ible, but many are non-unique. There are many reasons for non-
uniqueness, including the representation not being invariant to
the underlying physical symmetries of rotation, translation, and
permutation of atomic indexes.

Another factor one should consider when choosing a represen-
tation is the whether it is a character sequence or tensor. Some
methods only work with sequences, while others only work with
tensor. Sequences may be converted into tensors using one-hot
encoding. Another choice is whether to use a representation
based on the 3D coordinates of the molecule or a representation
based on the 2D connectivity graph. Molecules are fundamen-
tally three dimensional quantum mechanical objects, typically vi-
sualized as consisting of nuclei with well-defined p ositions sur-
rounded by many electrons which are described by a complex-
valued wavefunction. Fundamentally, all properties of a molecule
can be predicted using quantum mechanics given only the rela-
tive coordinates of the nuclei and the type and ionization state
of each atom. Equilibrium coordinates can be determined from
the 2D graph via energy minimization. This point may explain
the success of machine learning based property prediction at pre-
dicting high level properties from 2D graphs, as opposed to 3D
structures.8,27,39 In so much as properties are related to equilib-
rium structure, machine learning infers this from the 2D graph.
In this section, we review both 3D and 2D representation schemes
that have been developed recently.

1.1 Representations of 3D geometry
Trying to implement machine learning directly with nuclear co-
ordinates introduces a number of issues. The main issue is that
coordinates are not invariant to molecular translation, rotation,
and permutation of atomic indexing. While machine learning di-
rectly on coordinates is possible, it is much better to remove in-

Table 1 Different representation schemes

method unique? invertible?

3D

raw voxels 7 3
smoothed voxels 7 3

tensor field networks 7 7

2D
gr

ap
h

SMILES 7 3
canonical SMILES 3 3

InChI 3 3
MACCS keys 3 7

tensors 7 3
Chemception images 3 3

fingerprinting 3 7

variances to create a more compact representation (by removing
degrees of freedom) and develop a scheme to obtain a unique
representation for each molecule. One approach that uses 3D co-
ordinates uses a 3D grid of voxels and specifies the nuclear charge
contained within each voxel, thus creating a consistent represen-
tation. Nuclear charge (i.e. atom type) is typically specified by a
one-hot vector of dimension equal to the number of atom types in
the dataset. This scheme leads to a very high dimensional sparse
representation, since the vast majority of voxels will not contain
a nuclear charge. While sparse representations are considered
desirable in some contexts, here sparsity leads to very large train-
ing datasets. This issue can be mitigated via spatial smoothing
(blurring) by placing spherical Gaussians or a set of decaying con-
centric waves around each atomic nuclei.40 Alternatively, the van
der Waals radius may be used.41 Amidi et al. use this type of
approach for predictive modeling with 3D convolutional neural
networks (CNNs),42 while Kuzminykh et al. and Skalic et al. use
this approach with a CNN-based autoencoder for generative mod-
eling.40,41

Besides high dimensionality and sparsity, another issue with 3D
voxelized representations is they do not capture invariances to
translation, rotation, and reflection, which are hard for present-
day deep learning based architectures to learn. Capturing such
invariances is important for property prediction, since properties
are invariant to such transformations. It is also important for cre-
ating compact representations of molecules for generative mod-
eling. One way to deal with such issues is to always align the
molecular structure along a principal axis as determined by prin-
ciple component analysis to ensure a unique orientation.40,42 Ap-
proaches which generate feature vectors from 3D coordinates that
are invariant to translation and rotation are wavelet transform in-
variants,43 solid harmonic wavelet scattering transforms,44 and
tensor field networks.45 All of these methods incur a loss of infor-
mation about 3D structure and are not easy to invert, so their util-
ity for generative modeling may be limited (deep learning models
learn to generate these representations, but if they cannot be un-
ambiguously related to a 3D structure they are not very useful).
Despite their issues with invertibility, tensor field networks have
been suggested to have utility for generative modeling since it
was shown they can accurately predict the location of missing
atoms in molecules where one atom was removed.45 We expect
future work on 3D may proceed in the direction of developing in-
vertible representations that are based on the internal (relative)
coordinates of the molecule.

Journal Name, [year], [vol.],1–21 | 3

Page 4 of 23Molecular Systems Design & Engineering

1.2 Representations of molecular graphs

1.2.1 SMILES and string-based representations

Most generative modeling so far has not been done with coordi-
nates but instead has worked with molecular graphs. A molecule
can be considered as an undirected graph G with a set of edges E

and set of vertices V . The obvious disadvantage of such graphs is
that information about bond lengths and 3D conformation is lost.
For some properties one may wish to predict, the specific details
of a molecule’s 3D conformations may be important. For instance,
when packing in a crystal or binding to a receptor, molecules will
find the most energetically favorable conformation, and details of
geometry often have a big effect. Despite this, graph represen-
tations have been remarkably successful for a variety of gener-
ative modeling and property prediction tasks. If a 3D structure
is desired from a graph representation, molecular graphs can be
embedded in 3D using distance geometry methods (for instance
as implemented in the OpenBabel toolkit46,47). After coordinate
embedding, the most energetically favorable conformation of the
molecule can be obtained by doing energy minimization with
classical forcefields or quantum mechanical simulation.

There are several ways to represent graphs for machine learn-
ing. The most popular way is the SMILES string representation.48

SMILES strings are a non-unique representation which encode
the molecular graph into a sequence of ASCII characters using
a depth-first graph traversal. SMILES are typically first converted
into a one-hot based representation. Generative models then pro-
duce a categorical distribution for each element, often with a soft-
max function, which is sampled. Since standard multinomial sam-
pling procedures are non-differentiable, sampling can be avoided
during training or a Gumbel-softmax can be used.49,50

Many deep generative modeling techniques have been devel-
oped specifically for sequence generation, most notably Recurrent
Neural Networks (RNNs), which can be used for SMILES gener-
ation. The non-uniqueness of SMILES arises from a fundamental
ambiguity about which atom to start the SMILES string construc-
tion on, which means that every molecule with N heavy (non-
hydrogen) atoms can have at least N equivalent SMILES string
representations. There is additional non-uniqueness due to differ-
ent conventions on whether to include charge information in res-
onance structures such as nitro groups and azides. The MolVS51

or RDKit52 cheminformatics packages can be used to standardize
SMILES, putting them in a canonical form. However, Bjerrum et
al. have pointed out that the latent representations obtained from
canonical SMILES may be less useful because they become more
related to specific grammar rules of canonical SMILES rather than
the chemical structure of the underlying molecule.53 This is con-
sidered an issue for interpretation and optimization since it is bet-
ter if latent spaces encode underlying chemical properties and
capture notions of chemical similarity rather than SMILES syn-
tax rules. Bjerrum et al. have suggested SMILES enumeration
(training on all SMILES representations of each molecule), rather
than using canonical SMILES, as a better solution to the non-
uniqueness issue.53,54 An approach similar to SMILES enumer-
ation is used in computer vision applications to obtain rotational
invariance—image datasets are often “augmented” by including

many rotated versions of each image. Another approach to obtain
better latent representations explored by Bjerrum et al. is to in-
put both enumerated SMILES and Chemception-like image arrays
(discussed below) into a single “heteroencoder” framework.53

In addition to SMILES strings, Gómez-Bombarelli et al. have
tried InChI strings55 with their variational autoencoder, but
found they led to inferior performance in terms of the decoding
rate and the subjective appearance of the molecules generated.
Interestingly, Winter et al. show that more physically meaningful
latent spaces can be obtained by training a variational autoen-
coder to translate between InChI to SMILES.56 There is an intu-
itive explanation for this—the model must learn to extract the un-
derlying chemical structures which are encoded in different ways
by the two representations.

SMILES based methods often struggle to achieve a high per-
centage of valid SMILES. As a possible solution to this, Kusner et
al. proposed decomposing SMILES into a sequence of rules from
a context free grammar (CFG).57 The rules of the context-free
grammar impose constraints based on the grammar of SMILES
strings.58 Because the construction of SMILES remains probabilis-
tic, the rate of valid SMILES generation remains below 100%,
even when CFGs are employed and additional semantic con-
straints are added on top.58 Despite the issues inherent with us-
ing SMILES, we expect it will continue to a popular representa-
tion since most datasets store molecular graphs using SMILES as
the native format, and since architectures developed for sequence
generation (i.e. for natural language or music) can be readily
adopted. Looking longer term, we expect a shift towards meth-
ods which work directly with the graph and construct molecules
according to elementary operations which maintain chemical va-
lence rules.

Li et al. have developed a conditional graph generation pro-
cedure which obtains a very high rate of valid chemical graphs
(91%) but lower negative log likelihood scores compared to a tra-
ditional SMILES based RNN model.59 Another more recent work
by Li et al. uses a deep neural network to decide on graph genera-
tion steps (append, connect, or terminate).60 Efficient algorithms
for graph and tree enumeration have been previously developed
in a more pure computer science context. Recent work has looked
at how such techniques can be used for molecular graph genera-
tion,61 and likely will have utility for deep generative models as
well.

1.2.2 Image-based representations

Most small molecules are easily represented as 2D images (with
some notable exceptions like cubane). Inspired by the success
of Google’s Inception-ResNet deep convolutional neural network
(CNN) architecture for image recognition, Goh et al. developed
“Chemception”, a deep CNN which predicts molecular properties
using custom-generated images of the molecular graph.62 The
Chemception framework takes a SMILES string in and produces
an 80x80 greyscale image which is actually an array of integers,
where empty space is ‘0’, bonds are ‘2’ and atoms are represented
by their atomic number.62 Bjerrum et al. extend this idea, pro-
ducing “images” with five color channels which encode a variety
of molecular features, some which have been compressed to few

4 | 1–21Journal Name, [year], [vol.],

Page 5 of 23 Molecular Systems Design & Engineering

dimensions using PCA.53

1.2.3 Tensor representations

Another approach to storing the molecular graph is to store the
vertex type (atom type), edge type (bond type), and connectiv-
ity information in multidimensional arrays (tensors). In the ap-
proach used by de Cao & Kipf,50,63 each atom is a vertex vi ∈ V

which may be represented by a one-hot vector xi ∈ {0,1}|A | which
indicates the atom type, out of |A | possible atom types. Each
bond is represented by an edge (vi,v j) which is associated with
a one-hot vector yi ∈ {0,1}Y representing the type of bond out of
Y possible bond types. The vertex and edge information can be
stored in a vertex feature matrix X = [x1, . . . ,xN]

T ∈ RN×|A | and
an adjacency tensor A ∈ RN×N×Y where Ai j ∈ RY . Simonovsky et
al.64 use a similar approach—they take a vertex feature matrix
X and concatenate the adjacency tensor A with a traditional ad-
jacency matrix where connections are indicated by a ‘1’. As with
SMILES, adjacency matrices suffer from non-uniqueness—for a
molecule with N atoms, there are N! equivalent adjacency matri-
ces representing the same molecular graph, each corresponding
to a different re-ordering of the atoms/nodes. This makes it chal-
lenging to compute objective functions, which require checking if
two adjacency matrix representations correspond to the same un-
derlying graph (the “graph isomorphism ” problem, which takes
N4 operations in the worse case). Simonovsky et al. use an ap-
proximate graph matching algorithm to do this, but it is still com-
putationally expensive.

1.2.4 Other graph-based representations

Another approach is to train an RNN or reinforcement learning
agent to operate directly on the molecular graph, adding new
atoms and bonds in each action step from a list of predefined pos-
sible actions. This approach is taken with the graph convolutional
policy network65 and in recent work using pure deep reinforce-
ment learning to generate molecules.66 Because these methods
work directly on molecular graphs with rules which ensure that
basic atom valence is satisfied, they generate 100% chemically
valid molecules.

Finally, when limited to small datasets one may elect to do
generative modeling with compact feature vectors based on fin-
gerprinting methods or descriptors. There are many choices
(Coulomb matrices, bag of bonds, sum over bonds, descriptor
sets, graph convolutional fingerprints, etc.) which we have pre-
viously tested for regression,27,67 but they are generally not in-
vertible unless a very large database with a look-up table has
been constructed. (In this context, by invertible we mean the
complete molecular graph can be reconstructed without loss.)
As an example of how it may be done, Kadurin et al. use 166
bit Molecular ACCess System (MACCS) keys68 for molecular rep-
resentation with adversarial autoencoders.69,70 In MACCS keys,
also called MACCS fingerprints, each bit is associated with a spe-
cific structural pattern or question about structure. To associate
molecules to MACCS keys one must search for molecules with
similar or identical MACCS keys in a large chemical database.
Fortunately several large online chemical databases have appli-
cation programming interfaces (APIs) which allow for MACCS-

based queries, for instance PubChem, which contains 72 million
compounds.

2 Deep learning architectures
In this section we summarize the mathematical foundations of
several popular deep learning architectures and expose some of
their pros and cons. A basic familiarity with machine learning
concepts is assumed.

2.1 Recurrent neural networks (RNNs)

We discuss recurrent neural network sequence models first be-
cause they are fundamental to molecular generation—most VAE
and GAN implementations include an RNN for sequence gener-
ation. In what follows, a sequence of length T will be denoted
as S1:T = (s1, · · · ,sT),st ∈ V , where V is the set of tokens, also
called the vocabulary. For the purpose of this section we assume
the sequences in question are SMILES strings, as they are by far
the most widely used. As discussed previously in the context of
SMILES the “tokens” are the different characters which are used
to specify atom types, bond types, parentheses, and the start and
stop points of rings. The first step in sequence modeling is typ-
ically one-hot encoding of the sequence’s tokens, in which each
token is represented as a unique N dimensional vector where one
element is 1 and the rest are 0 (where N is the number of tokens
in the vocabulary).

Recurrent neural networks (RNNs) are the most popular mod-
els for sequence modeling and generation. We will not go
into detail of their architecture, since it is well described else-
where.120,121 An important detail to note however is that the
type of RNN unit that is typically used for generating molecules
is either the long short term memory (LSTM) unit,122 or a newer
more computationally efficient variant called the gated recurrent
unit (GRU).123 Both LSTMs and GRUs contain a memory cell
which alleviates the exploding and vanishing gradient problems
that can occur when training RNNs to predict long-term depen-
dencies.122,123

Sequence models are often trained to predict just a single miss-
ing token in a sequence, as trying to predict more than one to-
ken leads to a combinatorial explosion of possibilities. Any ma-
chine learning model trained to predict the next character in an
input sequence can be run in “generative mode" or “autoregres-
sive mode" by concatenating the predicted token to the input
sequence and feeding the new sequence back into the model.
However, this type of autoregressive generation scheme typically
fails because the model was trained to predict on the data dis-
tribution and not its own generative distribution, and therefore
each prediction contains at least a small error. As the network is
run recursively, these errors rapidly compound, leading to rapid
degradation in the quality of the generated sequences. This prob-
lem is known as “exposure bias”.124 The Data as Demonstrator
(DaD) algorithm tries to solve the problem of exposure bias by
running a model recursively during training and comparing the
output to the training data during training.125 DaD was extended
to sequence generation with RNNs by Bengio et al., who called
the method “scheduled sampling".126 While research continues

Journal Name, [year], [vol.],1–21 | 5

Page 6 of 23Molecular Systems Design & Engineering

Table 2 For works that trained models separately on multiple datasets we report only the largest dataset used. Several of these datasets are
described in table 3, which lists the major publicly available datasets. Other datasets are “HCEP”, the Harvard Clean Energy Project dataset of lead
molecules for organic photovoltaic, “PSC”, a dataset of monomer repeat units for polymer solar cells, “MCF-7”, a database of anti-cancer molecules,
and “L1000”, a database of molecules and gene expression profiles.
Acronyms used are: AAE = adversarial autoencoder, ANC = adversarial neural computer, ATNC = adversarial threshold neural computer, BMI =
Bayesian model inversion, CAAE = constrained AAE, CCM-AAE = Constant-curvature Riemannian manifold AAE, CFG = context free grammar, CVAE
= constrained VAE, ECC = edge-conditioned graph convolutions, 71GAN = generative adversarial network, GCPN = graph convolutional policy
network, GVAE = grammar VAE, JT-VAE = junction tree VAE, MHG = molecular hypergraph grammar, RG = reduced graph, RNN = recurrent neural
network, sGAN = stacked GAN, SD-VAE = syntax-directed VAE, SSVAE = semi-supervised VAE, VAE = variational autoencoder
∗ filtered to isolate likely bioactive compounds.

architecture representation Ntrain dataset(s) citation(s)
RNN SMILES 1,611,889 ZINC Bjerrum, 2017 72

RNN SMILES 541,555 ChEMBL∗ Gupta, 2017 73

RNN SMILES 350,419 DRD2 Oliverona, 2017 74

RNN SMILES 1,400,000 ChEMBL Segler, 2017 75

RNN SMILES 250,000 ZINC Yang, 2017 76

RNN SMILES 200,000 ZINC Cherti, 2017 77

RNN SMILES 1,735,442 ChEMBL Neil, 2018 78

RNN SMILES 1,500,000 ChEMBL Popova, 2018 79

RNN SMILES 13,000 PubChemQC Sumita, 2018 80

RNN SMILES 541,555 ChEMBL∗ Merk, 2018 81

RNN SMILES 541,555 ChEMBL∗ Merk, 2018 82

RNN SMILES 509,000 ChEMBL Ertl, 2018 83

RNN SMILES 1,000,000 GDB-13 Arús-Pous, 2018 84

RNN SMILES 163,000 ZINC Zheng, 2019 85

RNN RG+SMILES 798,243 ChEMBL Pogány, 2018 86

RNN graph operations 130,830 ChEMBL Li, 2018 59

VAE SMILES 249,000 ZINC/QM9 Gómez-Bombarelli, 2016 23

VAE SMILES 1,200,000 ChEMBL Blaschke, 2018 87

VAE SMILES 500,000 ZINC Lim, 2018 88

VAE SMILES 300,000 ZINC Kang, 2018 89

VAE SMILES 190,000 ZINC Harel, 2018 90

VAE SMILES 1,211,352 ChEMBL23 Sattarov, 2019 91

GVAE CFG (SMILES) 200,000 ZINC Kusner, 2017 92

GVAE CFG (custom) 3,989 PSC Jørgensen, 2018 26,93

SD-VAE CFG (custom) 250,000 ZINC Dai, 2018 58

JT-VAE graph operations 250,000 ZINC Jin, 2018 94

JT-VAE graph operations 250,000 ZINC Jin, 2019 95

CVAE graph 250,000 ZINC/CEPDB Liu, 2018 96

MHG-VAE graph (MHG) 220,011 ZINC Kajino, 2018 97

VAE graph 72,000,000 ZINC+PubChem Winter, 2018 98

VAE graph 10,000 ZINC/QM9 Samanta, 2018 99

VAE graph (tensors) 10,000 ZINC Samanta, 2018 100

VAE graph (tensors) 250,000 ZINC/QM9 Simonovsky, 2018 64

CVAE graph (tensors) 250,000 ZINC Ma, 2018 101

VAE 3D wave transform 4,8000,000 ZINC Kuzminkykh, 2018 40

CVAE 3D density 192,813,983 ZINC Skalic, 2019 41

VAE+RL MPNN+graph ops 133,885 QM9 Kearns, 2019 102

GAN SMILES 5,000 GBD-17 Guimaraes, 2017 103

GAN (ANC) SMILES 15,000 ZINC/CHEMDIV Putin, 2018 104

GAN (ATNC) SMILES 15,000 ZINC/CHEMDIV Putin, 2018 105

GAN graph (tensors) 133,885 QM9 De Cao, 2018 50,63

GAN MACCS (166bit) 6,252 MCF-7 Kadurin, 2017 70

sGAN MACCS (166bit) 20,000 L1000 Méndez-Lucio, 2017 106

CycleGAN graph operations 250,000 ZINC Maziarka, 2019 107

AAE MACCS (166bit) 6,252 MCF-7 Kadurin, 2017 69

AAE SMILES 15,000 HCEP Sanchez-Lengeling, 2017 108

CCM-AAE graph (tensors) 133,885 QM9 Grattarola, 2018 109

BMI SMILES 16,674 PubChem Ikebata, 2017 110

CAAE SMILES 1,800,000 ZINC Polykovskiy, 2018 111

GCPN graph 250,000 ZINC You, 2018 65

pure RL graph n/a n/a Zhou, 2018 66

pure RL fragments n/a n/a Ståhl, 2019 112

6 | 1–21Journal Name, [year], [vol.],

Page 7 of 23 Molecular Systems Design & Engineering

Fig. 1 Bird’s eye views of three popular frameworks for generative modeling using SMILES strings, with possible variations shown with dashed lines

in this direction, issues have been raised about the lack of a firm
mathematical foundation for such techniques, with some suggest-
ing they do not properly approximate maximum likelihood.127

Better generative models can be obtained by training using
maximum likelihood maximization on the sequence space rather
than next-character prediction. In maximum likelihood training a
model πθ parametrized by θ is trained with the following differ-
entiable loss:

LMLE =− ∑
s∈Z

T

∑
t=2

logπθ (st |S1:t−1) (1)

Here Z is the set of training sequences which are assumed to each
be of length T . This expression is proportional to the negative
cross entropy of the model distribution and the training data dis-
tribution (maximizing likelihood is equivalent to minimizing cross
entropy). MLE training can be done with standard gradient de-
scent techniques and backpropagation through time to compute
the gradient of the loss. In practice though this type of training
fails to generate valid SMILES, likely because of strict long term
dependencies such as closing parentheses and rings. The “teacher
forcing” training procedure128 is an important ingredient which
was found to be necessary to include in the molecular autoen-
coder VAE to capture such long term dependencies—otherwise
the generation rate of valid SMILES was found to be near 0%.129

In teacher forcing, instead of sampling from the model’s character
distribution to get the next character, the right character is given
directly to the model during training.121

In the context of SMILES strings generation, to generate each
character the output layer usually gives probabilities pi for every

possible SMILES string token. When running in generative mode,
the typical method is to use a multinomial sampler to sample this
distribution, while in training mode one typically just chooses the
token with the highest probability. Using a multinomial sampler
captures the model’s true distribution, but because MLE training
tends to focus on optimizing the peaks of the distribution and
doesn’t always capture the tails of distributions well. So called
“thermal” rescaling can be used to sample further away from the
peaks of the distribution by rescaling the probabilities as:

pnew
i =

exp
(pi

T
)

∑i exp
(pi

T
) (2)

where T is a sampling temperature. Alternatively, if a softmax
layer is used to generate the final output of a neural network,
a temperature parameter can be built directly into it. Another
alternative is the “freezing function”:

pnew
i =

p
1
T
i

∑i p
1
T
i

(3)

Sampling at low T leads to the generation of molecules which
are only slight variations on molecules seen in the training data.
Generation at high T leads to greater diversity but also higher
probability of nonsensical results.

2.1.1 Optimization with RNNs using reinforcement learning

Neil et al introduced a simple method for repeated MLE which
biases generation towards molecules with good properties, which
they call HillClimb-MLE.78 Starting with a model that has been

Journal Name, [year], [vol.],1–21 | 7

Page 8 of 23Molecular Systems Design & Engineering

Table 3 Some publicly available datasets. ∗also contains numerous conformers for each molecule, for a total of 4,855 structures

dataset description N URL / citation
GDB-13 Combinatorially generated library. 977,468,314 http://gdb.unibe.ch/downloads/113

ZINC15 Commercially available compounds. >750,000,000 http://zinc15.docking.org114

GDB-17 Combinatorially generated library. 50,000,000 http://gdb.unibe.ch/downloads/115

eMolecules Commercially available compounds. 18,000,000 https://reaxys.emolecules.com/
SureChEMBL Compounds obtained from chemical patents. 17,000,000 https://www.surechembl.org/search/
PubChemQC Compounds from PubChem with property data

from quantum chemistry (DFT) calculations.
3,981,230 http://pubchemqc.riken.jp/116

ChEMBL A curated database of bioactive molecules. 2,000,000 https://www.ebi.ac.uk/chembl/
SuperNatural A curated database of natural products. 2,000,000 http://bioinformatics.charite.de/supernatural/

QM9 Stable small CHONHF organic molecules taken
from GDB-17 with properties calculated from ab
initio density functional theory.

133,885 http://quantum-
machine.org/datasets/117

BNPAH B, N-substituted polycyclic aromatic hydrocarbons
with properties calculated from ab initio density
functional theory.

33,000 https://moldis.tifrh.res.in/datasets.html118

DrugBank FDA drugs and other drugs available internation-
ally.

10,500 https://www.drugbank.ca/

Energetics Energetic molecules and simulation data collected
from public domain literature.

417 https://git.io/energeticmols27

HOPV15 Harvard Organic Photovoltaic Dataset 350∗ https://figshare.com/articles
/HOPV15_Dataset/1610063/4119

trained via MLE on the training data, they generate a large set
of SMILES sequences. They then calculate a reward function R(S)
for each sequence S generated and find the subset of N′ generated
molecules with the highest rewards. This subset is used to retrain
the model with MLE, and the process is repeated. Each time a
new subset of N′ generated molecules is determined, it is con-
catenated on the previous set, so the amount of data being used
for MLE grows with each iteration. As this process is repeated
the model begins to generate molecules which return higher and
higher values from R(S).

A more common technique is to use reinforcement learning after
MLE pretraining to fine tune the generator to produce molecules
with high reward. The problem of sequence generation can be
recast as a reinforcement learning problem with a discrete action
space. At each timestep time t, the current state of the “environ-
ment” is the sequence generated so far is (s0, · · · ,st) and the action
a is next token to be chosen, a = st+1. The goal of reinforcement
learning is to maximize the expected return GT for all possible
start states s0. The return function Gt = ∑

T
i=t Ri simply sums the

rewards over the length of time the agent is active, which is called
an episode. Mathematically the optimization problem reinforce-
ment learning tries to solve is expressed as:

max
θ

J(θ) = E[GT |s0,θ] (4)

where θ are the parameters of the model. In our case, one
episode corresponds to the generation of one molecule, there is
only one start state, (the ‘GO’ character) and Rt = 0 until the end-
of-sequence (‘EOS’) token is generated or the max string length is
reached. If T denotes the max length of the SMILES string then
only RT is non-zero and therefore Gt = RT for all t. The state tran-
sition is deterministic (i.e. pa

s,s′ = 1 for the next state S1:t+1 if the
current state is S1:t and the action a = st+1, while for other states

s′′, pa
s,s′′ = 0). Because of these simplifications, eqn. 4 assumes a

simple form:

J(θ) = RT

T

∑
t=0

πθ (at |st) (5)

Here the policy model πθ (a|s) gives the probability for choosing
the next action given the current state. In our case:

πθ (at |st) = πθ (st+1|S1:t) (6)

There are many reinforcement learning methods, but broadly
speaking they can be broken into value learning and policy learn-
ing methods. Most work so far has used variants of the REIN-
FORCE algorithm,130 a type of policy learning method which falls
into the class of policy gradient methods. It can be shown that for
a run of length T the gradient of J(θ) (eqn. 4) is:

∇J(θ) = E
[

Gt
∇θ πθ (at |y1:t−1)

πθ (at |y1:t−1)

]
(7)

Computing the exact expectation of Gt for all possible action se-
quences is impossible, so instead the Gt from a single run is used
before each gradient update. This is sometimes referred to as
a “Monte-Carlo” type approach. Fortunately, this process can be
parallelized by calculating multiple gradient updates on differ-
ent threads before applying them. Neil et al. recently tested sev-
eral newer reinforcement learning algorithms—Advantage Actor-
Critic (AAC) and Proximal Policy Optimization (PPO), where they
report superior performance over REINFORCE (PPO > AAC > RE-
INFORCE). Interestingly, they find Hillclimb-MLE is competitive
with and occasionally superior to PPO.78

Olivecrona et al. argue that policy learning methods are a more
natural choice for molecular optimization because they can start
with a pre-trained generative model, while value-function learn-
ing based methods cannot.74 Additionally, most policy learning

8 | 1–21Journal Name, [year], [vol.],

Page 9 of 23 Molecular Systems Design & Engineering

http://gdb.unibe.ch/downloads/
http://zinc15.docking.org
http://gdb.unibe.ch/downloads/
https://reaxys.emolecules.com/
https://www.surechembl.org/search/
http://pubchemqc.riken.jp/
https://www.ebi.ac.uk/chembl/
http://bioinformatics.charite.de/supernatural/
http://quantum-machine.org/datasets/
http://quantum-machine.org/datasets/
https://moldis.tifrh.res.in/datasets.html
https://www.drugbank.ca/
https://git.io/energeticmols
https://figshare.com/articles/HOPV15_Dataset/1610063/4
https://figshare.com/articles/HOPV15_Dataset/1610063/4

methods have been proven to lead to an optimal policy and the
resulting generative models are faster to sample.74 In contrast,
Zhou et al. argue that value function learning methods are su-
perior in part because policy gradient methods suffer from issues
with high variance in the gradient estimates during training.66

Empirically it has been found that using RL after MLE can cause
the generated model to “drift” too far, causing important informa-
tion about viable chemical structures learned during MLE to be
lost. This can take the form of highly unstable structures being
generated or invalid SMILES. One solution is to “augment” the
reward function with the likelihood:74,131

R′(S) = [σR(S)+ logPprior(S)− logPcurrent(S)]2 (8)

Other possibilities are explored by Olivecrona et al.74 Fundamen-
tally, whether “drift” during RL training becomes an issue depends
on the details of the reward function—if the reward function is
good, drift should be in a good direction. Recently Zhou et al.
sought approaches that circumvent MLE when training. In their
RL based approach for molecular optimization, they do not use
an RNN or any pre-trained generative model and instead use
pure RL training.66 The RL agent works directly on construct-
ing molecular graphs, taking actions such as atom/bond addition
and atom removal. The particular approach they use is deep-Q
learning, which incorporates several recent innovations that were
developed at DeepMind and elsewhere.132 Jaques et al. have also
explored the application of deep Q-learning and G-Learning to
molecular optimization.131 Reinforcement learning is a rapidly
developing field, and there remain many recent advancements
such as new attention mechanisms which have not yet been tested
in the domain of molecular optimization.

To give a flavor of what applications have been demonstrated,
we will breifly present some representative works using RNNs.
Bjerrum & Threfal explore using an architecture consisting of 256
LSTM cells followed by a “time-distributed dense” output layer.72

Their network achieved a SMILES validity rates of 98% and the
property distributions for the properties tested matched the prop-
erty distributions found in the training data (some key proper-
ties they looked at were synthetic accessibility score, molecular
weight, LogP, and total polar surface area). Popova et al. have
shown how an RNN trained for generation can be further trained
with reinforcement learning to generate molecules targeted to-
wards a specific biological function - in their case they focused on
the decree to which molecules bind and inhibit the JAK2 enzyme,
for which much empirical data exists. They showed how their
system could be used to either maximize or minimize inhibition
with JAK2 and also independently discovered 793 commercially
available compounds found in the ZINC database.79 In a simi-
lar vein, Segler et al. fine tune an RNN to generate a “focused
library” of molecules which are likely to target the 5-HT2A recep-
tor.75 Finally, Olivecrona et al. show how a generative model can
be fine tuned to generate analogs of a particular drug (Celecoxib)
or molecules which bind to the type 2 dopamine receptor.74

2.2 Autoencoders

In 2006 Hinton and Salakhutdinov showed how advances in com-
puting power allowed for the training of a deep autoencoder
which was capable of beating other methods for document clas-
sification.133 The particular type of neural network they used
was a stack of restricted Boltzmann machines, an architecture
which would later be called a “deep Boltzmann machine".134

While deep Boltzmann machines are theoretically powerful, they
are computationally expensive to train and impractical for many
tasks. In 2013 Kingma et al. introduced the variational autoen-
coder (VAE),21 which was used in 2016 by Bombarelli et al.
to create the first machine learning based generative model for
molecules.23

2.2.1 Variational autoencoders (VAEs)

VAEs are derived mathematically from the theory of variational
inference and are only called autoencoders because the result-
ing architecture has the same high level structure as a classical
autoencoder. VAEs are fundamentally a latent variable model
p(x,z) = pθ (x|z)p(z) which consists of latent variables z drawn
from a pre-specified prior p(z) and passed into a decoder pθ (x|z)
parametrized by parameters θ . To apply maximum likelihood
learning to such a model we like to maximize the probability of
each observed datapoint p(x) =

∫
pθ (x|z)p(z)dz for all datapoints

in our training data. However for complicated models with many
parameters θ (like neural networks) this integral is intractable to
compute. The method of variational inference instead maximizes
a lower bound on log p(x):

log p(x)≥ Ez∼qφ (z|x)

[
log

pθ (x|z)p(z)
qφ (z|x)

]
(9)

where qφ (z|x) is an estimate of posterior distribution p(z|x) =
pθ (x|z)p(z)/p(x). The right hand side of eqn. 9 is called the “neg-
ative variational free energy” or “evidence lower bound” (ELBO)
and can be written as:

Lθ ,φ (x) = Ez∼qφ (z|x)[log pθ (x)]−DKL(qφ (z|x), pθ (z|x)) (10)

Here we encounter the Kullback-Leibler (KL) divergence:

DKL(q(z), p(z))≡
∫

q(z) log
q(z)
p(z)

dz (11)

After several manipulations, eqn. 10 can be written as

Lθ ,φ (x) = Ez∼qφ (z|x)[log p(z,x)]+H[qφ (z|x)]

= Ez∼qφ (z|x)[log pθ (x|z)]−DKL[qφ (z|x), p(z)]
(12)

where H is the (differentiable) entropy. The loss function for the
variational autoencoder for examples x in our training dataset Z

is:
Lθ ,φ = ∑

x∈Z
−Lθ ,φ (x) (13)

In a VAE, during training first qφ (z|x) (the encoder) generates
a z. Then the decoder pθ (x|z) model attempts to recover x. Train-
ing is done using backpropagation and the loss function (eqn.
13) which tries to maximize L (x,θ ,φ). This corresponds to max-

Journal Name, [year], [vol.],1–21 | 9

Page 10 of 23Molecular Systems Design & Engineering

Fig. 2 Different deep learning approaches visualized as graphical models. Figure adapted from Kang et al. 89 Solid lines represent explicit conditional
dependencies while dashed lines represent implicit conditional dependencies (arising from the relationship between X and Y inherent in the training
data) for which disentanglement may be desired. a.) regression (property prediction) b.) direct generative model c.) autoencoder d.) supervised
autoencoder, type 1 23 e.) supervised autoencoder, type 2 88,111 f.) supervised/semisupervised autoencoder, type 3 89

imizing the chance of reconstruction pθ (x|z) (the first term) but
also minimizing the KL-divergence between qφ (z|x) and the prior
distribution p(z). Typically the prior is chosen to be a set of inde-
pendent unit normal distributions and the encoder is assumed to
be a factorized multidimensional normal distribution:

p(z) = N (z,0, I)

qφ (z|x) = N (z,µ(x),diag(σ2(x))
(14)

The encoder qφ (z|x) is typically a neural network with pa-
rameters φ used to find the mean and variance functions in
N (z,µ(x),diag(σ2(x)). The resulting “Gaussian VAE” has the ad-
vantage that the KL-divergence can be computed analytically. The
parameters θ and φ in the decoder and encoder are all learned via
backpropagation. There are several important innovations which
have been developed to streamline backpropagation and training
which are described in detail elsewhere.21,121,135

There are several reasons that variational autoencoders per-
form better than classical autoencoders. Since the latent distri-
bution is probabilistic, this introduces noise which intuitively can
be seen as a type of regularization that forces the VAE to learn
more robust representations. Additionally, specifying that the la-
tent space must be a Gaussian leads to a much smoother latent
space which makes optimization much easier and also leads to
fewer “holes” in the distribution corresponding to invalid or bad
molecules. VAEs therefore are useful for interpolation between
points corresponding to molecules in the training data.

In the molecular autoencoder of Gómez-Bombarelli et al. each
SMILES x is converted to a one-hot representation and a con-
volutional neural network is used to find the parameters of the
Gaussian distribution qφ (z|x).23 The decoder in the molecular au-
toencoder is an RNN, but in contrast to pure RNN models, where
high rates of valid SMILES generation have been reported (94-
98 %),72,75,78 the molecular autoencoder generates far fewer
valid SMILES. The valid SMILES rate was found to vary greatly
between ≈ 75% for points near known molecules to only 4% for
randomly selected latent points.23 Kusner et al. report an aver-
age valid decoding rate of only 0.7% using a similar VAE archi-
tecture.57 These low decoding rates are not a fatal issue however
simply because a validity checker (such as found in RDKit) can
easily be used to throw out invalid SMILES during generation.
However, the low rate of validity suggests fundamental issues in
quality of the learned latent representation. As mentioned pre-

viously, higher rates of SMILES validity have been achieved by
representing SMILES in terms of rules from a context-free gram-
mar (CFG).57,58 Kusner et al. achieved somewhat higher rates of
SMILES generation using a CFG (7.2%, as described in the supple-
mentary information of Kusner et al.57). Further work by Dai et
al. added additional “semantic” constraints on top of a CFG yield-
ing a higher rate of valid SMILES (43.5%).58 Janz et al. recently
proposed using Bayesian active learning as a method of forcing
models to learn what makes a sequence valid, and incorporat-
ing this into RNNs in VAEs could lead to higher valid decoding
rates.136

2.2.2 Adversarial autoencoders (AAEs)

Adversarial autoencoders are similar to variational autoencoders,
but differ in the means by which they regularize the latent dis-
tribution by forcing it to conform to the prior p(z).137 Instead
of minimizing KL-divergence metric to enforce the generator to
output a latent distribution corresponding to a prespecified prior
(usually a normal distribution), they use adversarial training with
a discriminator D whose job is to distinguish the generator’s latent
distribution from the prior. The discriminator outputs a probabil-
ity p ∈ (0,1) which predicts the probability samples it sees are
from the prior. The objective of the discriminator is maximize the
following:

Ladv = Ex∼pd [logD((qΘ(z|x))]+Ex∼pz [log(1−D(z))] (15)

The overall objective function for the AAE to minimize can be
expressed as

Lθ ,φ = ∑
x∈Z
−Ex∼pd [log pθ (x|qφ (z|x))]−Ladv (16)

2.2.3 Supervised VAEs/AAEs for property prediction & opti-
mization

In supervised VAEs, target properties y for each molecule are in-
corporated into the generator in addition to the SMILES strings
or other molecular representation. Figure 2 shows several differ-
ent ways this can be done, representing the generative models as
graphical models. Everything we discuss in this section can also
be applied to AAEs,137 but we restrict our discussion to VAEs for
simplicity.

In the work by Gómez-Bombarelli et al. they attached a neu-
ral network (multilayer perceptron) to the latent layer and jointly
trained the neural network to predict property values y and the

10 | 1–21Journal Name, [year], [vol.],

Page 11 of 23 Molecular Systems Design & Engineering

VAE to minimize reconstruction loss. One unique property they
optimize after training such a system is the predicted HOMO-
LUMO gap, which is important for determining a molecule’s util-
ity in organic solar cells. The advantage of supervised VAEs is that
the generator learns a good latent representation both for prop-
erty prediction and reconstruction. With the property predictor
trained, it becomes possible to do property optimization in the la-
tent space, by either using Gaussian process optimization or gra-
dient ascent. Interestingly, in supervised VAEs a particular direc-
tion in the latent space always became correlated with the prop-
erty value y, while this was never observed in unsupervised VAEs.
When one desires to do optimization, Gómez-Bombarelli et al.
argue for using a Gaussian process model as the property predic-
tor instead of a neural network, because it generates a smoother
landscape.23 The specific procedure they used was to first train
a VAE using supervised training with a neural network property
predictor and then train a Gaussian process model separately us-
ing the latent space representations of the training molecules as
input. They then use the Gaussian process model for optimiza-
tion, and they showed it was superior to a genetic optimization
algorithm and random search in the latent space. Since that work,
several other researchers have used Gaussian process regression
to perform optimization in the latent space of a VAE.99,110,138

Two other types of supervised VAEs are shown in figure 2,
which we call “type 2” and “type 3”. Unlike the autoencoder
frame work discussed in the previous section, these two types
of autoencoder can be used for conditional generation. In “type
3” supervised VAEs the ELBO term in the objective function (eqn.
12) becomes:89

Ez∼qφ (z|x,y)[log pθ (x|y,z)]−DKL[qφ (z|x,y)||p(z,y)] (17)

Kang et al. assume that the property values have a Gaussian dis-
tribution. Type 3 VAEs are particularly useful when y is known
for only some of the training data (a semi-supervised setting).
In semi-supervised VAEs, the generator is tasked with predict y
and is trained on the molecules where y is known and makes a
best guess prediction for the rest. In effect, when y is not known,
it becomes just another latent variable and a different objective
function is used (for details, see Kang et al.89).

In Type 2 VAEs, property data y is embedded directly into the la-
tent space during training.88,111 Supervised and semi-supervised
VAEs can both be used for conditional sampling, and thus are
sometimes called “conditional VAEs”. In the traditional way of do-
ing conditional sampling, y is specified and then one samples from
the prior p(z). Then one samples from the generator pθ (x|y,z).
In the case of Type 1 and Type 2 VAEs, however, there is an is-
sue pointed out by Polykovskiy et al. which they call “entangle-
ment”.111 The issue is that when sampling we assumed that p(z)
is independent of p(y). However, the two distributions are ac-
tually “entangled” by the implicit relationship between x and y
which is in the training data (this is indicated by a dashed line
in figure 2). For consistency, one should be sampling from p(z|y).
Polykovskiy et al. developed two “disentanglement” approaches
to ameliorate this issue: learning p(z|y) and forcing all p(z|y) to
match p(z).111

When generating molecules with an RNN, we previously dis-
cussed sampling from the model’s distribution by simply running
the model and taking either the token with the maximum proba-
bility or using a multinomial sampler at each step of the sequence
generation. When sampling from the generator of a conditional
VAE, we wish to know what the model says is the likely molecule
given y and z, since we are interested in focusing on the molecules
the model predicts are most likely to be associated with a partic-
ular set of properties:

x̂ = argmax
x

pθ (x|y,z) (18)

Taking the most likely token at each step (the “greedy” method)
is only a rough approximation to x̂. Unfortunately, completing
the optimization in eqn. 18 is a computationally intractable prob-
lem because the space of sequences grows exponentially with
the length of the sequence. However, a variation on the greedy
method called “beam search” can be used to get an approxima-
tion of x̂.89,139 In brief, beam search keeps the top K most likely
(sub)sequences at each step of the generation.

2.3 Generative adversarial networks (GANs)

The key idea underlying GANs is to introduce a discriminator
network whose job is to distinguish whether the molecule it is
looking at was generated by the generative model or came from
the training data. In GAN training, the objective of the gen-
erative model becomes to try to fool the discriminator rather
than maximizing likelihood. There are theoretical arguments and
growing empirical evidence showing that GAN models can over-
come some of the well known weaknesses of maximum likelihood
based training. However, there are also many technical difficulties
which plague GAN training and getting GANs to work well typi-
cally requires careful hyperparameter tuning and implementation
of several non-obvious “tricks”.140 GANs are a rapidly evolving
research area, and given space limitations we can only touch on
several of the key developments here.

The original paper on GANs (Goodfellow et al 2014) intro-
duced the following objective function:22

min
G

max
D

V (D,G) =Ex∈pd(x)[logD(x)]

+Ez∈pz(z)[log(1−D(G(z))]

(19)

Here pd(x) is the data distribution. This form of the objective
function has a nice interpretation as a two person minimax game.
However, this objective function is rarely used in practice for a
few reasons. Firstly, as noted in the original paper, this objec-
tive function does not provide a very strong gradient signal when
training starts because then log(1−D(G(z)) saturates (goes to
negative infinity) and the numerical derivative becomes impos-
sible to calculate. Still, understanding this objective function can
help understand how generative modeling with GAN training can
be superior to maximum likelihood based generative modeling.
For a fixed G, the optimal discriminator is:

D∗G(x) =
pd(x)

pd(x)+ pθG(x)
(20)

Journal Name, [year], [vol.],1–21 | 11

Page 12 of 23Molecular Systems Design & Engineering

If we assume D = D∗G, then the objective function C (G) for the
generator can be expressed as:22

C (G) =− log(4)+2DJS(pd , pθG) (21)

Where DJS(pd , pθG) is the Jensen-Shannon divergence:

DJS(pd , pθG) =
1
2

DKL

(
pd

∣∣∣∣∣∣∣∣ pd + pθG

2

)

+
1
2

DKL

(
pθG

∣∣∣∣∣∣∣∣ pd + pθG

2

) (22)

Here DKL(p,q) is the Kullback-Leibler (KL) divergence. Maximiz-
ing the log-likelihood is equivalent to minimizing the forward
KL divergence DKL(pd , pθG).

135 To better understand what this
means, we can rewrite the equation for KL divergence (eqn. 11)
in a slightly different way:

DKL(pd , pθG) =
∫

pd(z)(log pd(z)− log pθG(z))dz (23)

This shows us that KL divergence captures the difference between
pd and pθG weighted by pd . Thus one of the weaknesses of
maximum likelihood is that pθG may have significant deviations
from pd when pd ≈ 0. To summarize, the forward KL divergence
(DKL(pd , pθG)) punishes models that underestimate the data dis-
tribution, while the reverse KL divergence (DKL(pθG , pd)) pun-
ishes models that overestimate the data distribution. Therefore
we see that eqn. 21, which contains both forward and backwards
KL terms, takes a more “balanced” approach than maximum like-
lihood, which only optimizes forward KL divergence. Optimiz-
ing reverse KL divergence directly requires knowing an explicit
distribution for pd , which usually is not available. In effect, the
discriminator component of the GAN works to learn pd , and thus
GANs provide a way of overcoming this issue.

As noted before, the GAN objective function given in eqn. 19,
however, does not provide a good gradient signal when training
first starts since typically pd and pθG have little overlap to begin
with. Empirically, this occurs because data distributions typically
lie on a low dimensional manifold in a high dimensional space,
and the location of this manifold is not known in advance. The
Wasserstein GAN (WGAN) is widely accepted to provide a better
metric for measuring the distance between pd and pθG than the
original GAN objective function and results in faster and more
stable training.141 The WGAN is based on the Wasserstein metric
(also called the “Earth mover’s distance") which can be informally
understood by imagining the two probability distributions pd and
pθG to be piles of dirt, and the distance between them to be the
number of buckets of dirt that need to be moved to transform one
to the other, times the sum of the distances each bucket must be
moved. Mathematically this is expressed as:

W (p,q) = inf
γ∈Π(p,q)

E(x,y)∈γ ||x− y|| (24)

Π(x,y) can be understood to be the optimal “transport plan” ex-
plaining how much probability mass is moved from x to y. An-
other feature of the WGAN is the introduction of a “Lipschitz con-
straint” which clamps the weights of the discriminator to lie in a

fixed interval. The Lipschitz constraint has been found to result
in a more reliable gradient signal for the generator and improve
training stability. Many other types of GAN objective function
have been developed which we do not have room to discuss here.
For a review of the major GAN objective functions and latest tech-
niques, see Kurach et al.142

Several papers have emerged so far applying GANs to molecu-
lar generation—Guimares et al. (ORGAN),103 Sánchez-Lengling
et al. (ORGANIC),108 De Cao & Kipf (MolGAN),50,63 and Putin
et al. (RANC, ATNC).104,105 The Objective-Reinforced GAN (OR-
GAN) of Guimares et al. uses the SMILES molecular representa-
tion and an RNN (LSTM) generator and a CNN discriminator.103

The architecture of the ORGAN is taken from the SeqGAN of Yu et
al.143 and uses a WGAN. In ORGAN, the GAN objective function is
modified by adding an additional “objective reinforcement” term
to the generator RNN’s reward function which biases the RNN to
produce molecules with a certain objective property or set of ob-
jective properties. Typically the objective function returns a value
R(S) ∈ [0,1]. The reward for a SMILES string S becomes a mixture
of two terms:

R(S) = λD(S)+(1−λ))R(S) (25)

where λ ∈ [0,1] is a tunable hyperparameter which sets the mix-
ing between rewards for fooling the discriminator and maximiz-
ing the objective function. The proof of concept of the ORGAN
was demonstrated by optimizing three quick-to-evaluate metrics
which can be computed with RDKit—druglikeliness, synthesiz-
ability, and solubility. Proof of concept applications of the ORGAN
have been demonstrated in two domains - firstly for drug design it
as shown how ORGAN can be used to mazimize Lapinksi’s rule of
five metric as well as the quantitative estimate of drug likeliness
metric. The second application for which ORGAN was demon-
strated is maximizing the power conversion efficiency (PCE) of
molecules for use in organic photovoltaics, where PCE is esti-
mated using a machine learning based predictor that was pre-
viously developed.108

2.3.1 The perfect discriminator problem and training insta-
bilities

GAN optimization is a saddle point optimization problem, and
such problems are known to be inherently unstable. If gradients
for one part of the optimization dominate, optimizers can run
or “spiral” away from the saddle point so that either the genera-
tor or the discriminator achieves a perfect score. The traditional
approach to avoiding the perfect discriminator problem, taken
by Guimares et al. and others, is to do additional MLE pretrain-
ing with the generator to strengthen it and then do m gradient
updates for the generator for every one gradient update for the
discriminator. In this method, m must be tuned to balance the
discriminator and generator training. A different, more dynamic
method for balancing the discriminator and generator was in-
vented by Kardurin et al. in their work on the DruGAN AAE.70

They introduce a hyperparameter 0.5 < p < 1 which sets the de-
sired “discriminator power”. Then, after each training step, if
the discriminator correctly labels samples from the generator with
probability less than p, the discriminator is trained, otherwise the

12 | 1–21Journal Name, [year], [vol.],

Page 13 of 23 Molecular Systems Design & Engineering

generator is trained. Clearly p should be larger than 0.5 since
the discriminator should do better than random chance in order
to challenge the generator to improve. Empirically, they found
p = 3/5 to be a good value.

Putin et al. show that the ORGANIC model108 with its de-
fault hyperparameters suffers from a perfect discriminator prob-
lem during training, leading to a plateauing of the generator’s
loss.104 To help solve these issues, Putin et al. implemented a
differentiable neural computer (DNC) as the generator.104 The
DNC (Graves et al, 2016)144 is an extension of the neural Tur-
ing machine (Graves et al 2014)145 that contains a differentiable
memory cell. A memory cell allows the generator to memorize
key SMILES motifs, which results in a much “stronger” genera-
tor. They found that the discriminator never achieves a perfect
score when training against a DNC. The strength of the DNC is
also shown by the fact that it has a higher rate of valid SMILES
generation vs. the ORGAN RNN generator (76% vs.
24%) and generates SMILES that are on average twice as long as
the SMILES generated by ORGAN. In a subsequent work, Putin
et al. also introduced the adversarial threshold neural computer,
another architecture with a DNC generator.105

Another issue with GANs is mode collapse, where the genera-
tor only generates a narrow range of samples. In the context of
molecules, an example might be a generator that only generates
molecules with carbon rings and less than 20 atoms.

3 Metrics and reward functions

A key issue in deep generative modeling research is how to quan-
titatively compare the performance of different generative mod-
els. More generally a decline in rigor in the field of deep learn-
ing as a whole has been noted by Sculley, Rahimi and others.146

While the recent growth in the number of researchers in the field
has obvious benefits, the increased competition that can result
from such rapid growth disincentivizes taking time for careful
tuning and rigorous evaluation of new methods with previous
ones. Published comparisons are often subtly biased towards
demonstrating superior performance for technically novel meth-
ods vs. older more conventional methods. A study by Lucic et
al. for instance found that in the field of generative adversarial
networks better hyperparameter tuning and training lead to most
recently proposed methods reaching very similar results.140,147

Similarly, Melis et al. found that with proper hyperparameter tun-
ing a conventional LSTM architecture could beat several more
recently proposed methods for natural language modeling.148

At the same time, there is a reproducibility crisis afflicting deep
learning—codes published side-by-side with papers often give dif-
ferent results than what was published,142 and in the field of rein-
forcement learning it has been found that codes which purport to
do the same thing will give different results.147 The fields of deep
learning and deep generative modeling are still young however,
and much work is currently underway on developing new stan-
dards and techniques for rigorously comparing different methods.
In this section we will discuss several of the recently proposed
metrics for comparing generative models and the closely related
topic of reward function design for molecular optimization.

3.1 Metrics for scoring generative models

Theis et al. discuss three separate approaches—log-likelihood, es-
timating the divergence metric between the training data distri-
bution p(x) and the model’s distribution q(x), and human rating
by visual inspection (also called the “visual Turing test”) .149,150

Interestingly, they show that these three methodologies measure
different things, so good performance under one does not imply
good performance under another.150

The “inception score” (IS) uses a third-party neural network
which has been trained in a supervised manner to do classifica-
tion.149 In the original IS, Google’s Inception network trained on
ImageNet was used as the third-party network. IS computes the
divergence between the distribution of classes predicted by the
third-party neural network on generated molecules with the dis-
tribution of classes predicted for the dataset used to train the neu-
ral network. The main weakness of IS is that much information
about the quality of images is lost by focusing only on classifica-
tion labels. The Fréchet Inception Distance (FID) builds off the
IS by comparing latent vectors obtained from a late-stage layer of
a third-party classification network instead of the predictions.151

Inspired by this, Preuer et al. created the Fréchet ChemNet Dis-
tance metric for evaluating models that generate molecules.152

Unfortunately, there is a lack of agreement on how to calculate
the FID—some report the score by comparing training data with
generated data, while others report the score comparing a hold
out test set with the generated data.142 Comparing with test data
gives a more useful metric which measures generalization ability,
and is advocated as a standard by Kurach et al.142

In the world of machine learning for molecular property pre-
diction, MoleculeNet provides a benchmark to compare the util-
ity of different regression modeling techniques across a wide
range of property prediction problems.153 Inspired by Molecu-
leNet, Polykovskiy and collaborators have introduced the MOlec-
ular SEtS (MOSES) package to make it easier to build and test
generative models.154 To compare the output of generative mod-
els, they provide functions to compute Fréchet ChemNet Distance,
internal diversity, as well as several metrics which are of gen-
eral importance for pharmaceuticals: molecular weight, logP, syn-
thetic accessibility score, and the quantitative estimation of drug-
likeness. In a similar vein, Benhenda et al. have released the Di-
versityNet benchmark, which was also (as the name suggests) in-
spired by MoleculeNet.155 Finally, another Python software pack-
age called GuacaMol has also been released which contains 5 gen-
eral purpose benchmarking methods and 20 “optimization spe-
cific” benchmarking methods for drug discovery.156 One unique
feature of GuacaMol is the ability to compute KL-divergences be-
tween the distributions from generated molecules and training
molecules for a variety of physio chemical descriptors.

Recently in the context of generative modeling of images with
GANs, Im et al. have shown significant pitfalls to using the Incep-
tion Distance metric.157 As an alternative, they suggest using the
same type of divergence metrics that are used during GAN train-
ing. This method has been explored recently to quantify gen-
eralization performance of GANS158 and could be of use to the
molecular modeling community.

Journal Name, [year], [vol.],1–21 | 13

Page 14 of 23Molecular Systems Design & Engineering

3.2 Reward function design

A good reward function is often important for molecular gener-
ation and essential for molecular optimization. The pioneering
molecular autoencoder work resulted in molecules which were
difficult to synthesize or contained highly labile (reactive or un-
stable) groups such as enamines, hemiaminals, and enol ethers
which would rapidly break apart in the body and thus were not
viable drugs.159 Since then, the development of better reward
functions has greatly helped to mitigate such issues, but low di-
versity and novelty remains an issue.160–162 After reviewing the
work that has been done so far on reward function design, we
conclude that good reward functions should lead to generated
molecules which meet the following desiderata:

1. Diversity—the set of molecules generated is diverse enough
to be interesting.

2. Novelty—the set of molecules does not simply reproduce
molecules in the training set.

3. Stability—the molecules are stable in the target environ-
ment and not highly reactive.

4. Synthesizability—the molecules can actually be synthe-
sized.

5. Non-triviality—the molecules are not degenerate or trivial
solutions to maximizing the reward function.

6. Good properties—the molecules have the properties de-
sired for the application at hand.

3.2.1 Diversity & novelty

A diversity metric is a key component of any reward function, es-
pecially when using a GAN, where it helps counter the issue of
mode collapse to a non-diverse subset. Given a molecular simi-
larity metric between two molecules T (x1,x2) ∈ [0,1] the diversity
of a generated set G can be defined quite simply as:

rdiversity = 1− 1
|G | ∑

(x1,x2)∈G×G

D(x1,x2) (26)

A popular metric is the Tanimoto similarity between two
extended-connectivity fingerprint bit vectors.154 Since the diver-
sity of a single molecule does not make sense, diversity rewards
are calculated on mini-batches during mini-batch stochastic gra-
dient descent training. Eqn. 26 is called “internal diversity”. An
alternative which compares the diversity of the generated set with
the diversity of the training data is the nearest neighbor similarity
(SNN) metric:154

rSSN =
1
|G | ∑

xG∈G
max
xD∈D

D(xG,xG) (27)

Of course, too much diversity can also be an issue. One option is
to use the following negative reward which biases the generator
towards matching the diversity of the training data:

Rdiversity mismatch =−
∣∣∣rgenerated

diversity − rtraining
diversity

∣∣∣ (28)

Another diversity measure that has been employed is unique-
ness, which aims to reduce the number of repeat molecules. The
uniqueness reward Runiqueness ∈ (0,1] is defined as:

Runiqueness =
|set(G)|
|G |

(29)

Where |set(G)| is the number of unique molecules in the gener-
ated batch G and |G | is the total number of molecules.

Novelty is just as important as diversity since a generator which
just generates the training dataset over and over is of no practi-
cal utility. Guimares et al. define the “soft novelty” for a single
molecule as:103

Rnovelty =

{
1 If x is not in the training set

0.3 If x is in the training set
(30)

When measuring the novelty of molecules generated post-
training to get an overall novelty measure for the model, it is
important to do so on a hold-out test set T . Then one can look
at how many molecules in a set of generated molecules G appear
in T and use a novelty reward such as:75

rnovel = 1− |G ∩T |
|T |

(31)

which gives the fraction of generated molecules not appear-
ing in the test set. The diversity of the generated molecules and
how they compare to the diversity of the training set can also
be visualized by generating fingerprint vectors (which typically
have dimensionalities of d > 100) and then projecting them into
two dimensions using dimensionality reduction techniques. The
resulting 2D point cloud can then be compared with the corre-
sponding points from the training set and/or a hold out test set.
There are many possible dimensionality reduction techniques to
choose from—Yoshikawa et al.161 use the ISOMAP method,163

Merk et al.81 use multidimensional scaling, and Selger et al.75

use t-SNE projection.164

Interpolation between training molecules may be a useful way
to generate molecules post-training which are novel, but not too
novel as to be unstable or outside the intended property manifold.
In the domain of image generation, GANs seem to excel at inter-
polation vs. VAEs, for reasons that are not yet fully understood.
For instance with GANs trained on natural images, interpolation
can be done between a z point corresponding to a frowning man
to a point z′ corresponding to a smiling woman, and all of the
intervening points result in images which make sense.165 Empir-
ically most real world high dimensional datasets are found to lie
on a low density manifold.166 Ideally, the dimensionality of the
latent space p(z) used in a GAN, VAE, or AAE will correspond to
the dimensionality of this manifold. If the dimensionality of p(z)
is higher than the intrinsic dimensionality of the data manifold,
then interpolation can end up going “off manifold” into so-called
“dead zones”. For high dimensional latent spaces with a Gaussian
prior, most points will lie on a thin spherical shell. In such cases
it has been found empirically that better results can be found by
doing spherical linear interpolation or slerp.167 The equation for

14 | 1–21Journal Name, [year], [vol.],

Page 15 of 23 Molecular Systems Design & Engineering

slerp interpolation between two vectors v1 and v2 is

slerp(v1,v2, t) =
sin((1− t)θ)

sin(θ)
q1 +

sin(tθ)
sin(θ)

q2 (32)

where θ = arccos(v1 · v2) and 0≤ t ≤ 1 is the interpolation param-
eter.

Another option for generating molecules close to training
molecules but not too close is to have a reward for being simi-
lar to the training data but not too similar. Olivecrona et al. use a
reward function Rs(S) ∈ [−1,1] of the form:74

Rs(S) = 1−2
min(Sim(S,T),k)

k
(33)

here S is the input SMILES and T is the target SMILES, and
Sim(S,T) ∈ [0,1] is similarity scoring function which computes
fingerprint-based similarity between the two molecules. k is a
tunable cutoff parameter which sets the maximum similarity ac-
cepted. This type of reward can be particularly useful for gen-
erating focused libraries of molecules very similar to a single
target molecule or a small set of “actives” which are known to
bind to a receptor. Note that most generative models can be run
so as to generate molecules close to a given molecule. For in-
stance, with RNNs, one can do “fragment growing”, which allows
molecular designers to explore molecules which share a prede-
fined scaffold.73 Similarly, with reinforcement learning one can
simply start the agent with a particular molecule and let it add or
remove bonds. Finally, with a VAE one can find the latent repre-
sentation for a given molecule and then inject a small amount of
Gaussian noise to generate “nearby” molecules.90

3.2.2 Stability and synthesizability

Enforcement of synthesizability has thus far mainly been done
using the synthetic accessibility (SA) score developed by Ertl &
Schuffenhauer,168 although other synthesizability scoring func-
tions exist.169,170 The model underlying the SA score was de-
signed and fit specifically to match scores from synthetic chemists
on a set of drug molecules, and therefore may be of limited ap-
plicability to other types of molecules. When using SA score as
a reward in their molecular autoencoder, Gómez-Bombarelli et
al. found that it still produced a large number of molecules with
unrealistically large carbon rings. Therefore, they added an addi-
tional “RingPenalty” term to penalize rings with more than six car-
bons. In the ORGANIC GAN code, Sánchez-Lengling et al. added
several penalty terms to the original SA score function, and also
developed an additional reward for chemical symmetry, based on
the observation that symmetric molecules are typically easier to
synthesize.108

For drug molecules, the use of scoring functions developed to
estimate how “drug-like” or “natural” a compound is can also help
improve the synthesizability, stability, and usefulness of the gener-
ated molecules.103 Examples of such functions include Lipinski’s
Rule of Five score,5 the natural product-likeness score,171 the
quantitative estimate of drug-likeness,172 and the Muegge met-
rics.173,174 Another option of particular utility to drug discovery
is to apply medicinal chemistry filters either during training or
post-training to tag unstable, toxic, or unsynthesizable molecules.

For drug molecules, catalogs of problematic functional groups to
avoid have been developed in order to limit the probability of un-
wanted side-effects.175 For energetic molecules and other niche
domains an analogous set of functional groups to avoid has yet to
be developed.

Many software packages exist for checking molecule’s stability
and syntheszability which may be integrated into training or as a
post-training filter. For example Popova et al. use the ChemAxon
structure checker software to do a validity check on the generated
molecules.79 Bjerrum et al. use the Wiley ChemPlanner software
post-training to find synthesis routes for 25-55% of the molecules
generated by their RNN.72 Finally, Sumita et al. check for pre-
viously discovered synthetic routes for their generated molecules
using a SciFinder literature search.80

It is worth mentioning that deep learning is now being used for
the prediction of chemical reactions11,12 and synthesis planning.
Segler et al. trained a deep reinforcement learning system on a
large set of reactions that have been published in organic chem-
istry and demonstrated a system that could predict chemical reac-
tions and plan synthetic routes at the level of expert chemists.13

3.2.3 Rewards for good properties

Because they are called often during training, reward functions
should be quick to compute, and therefore fast property estima-
tors are called for. Examples of property estimation functions
which are fast to evaluate are the estimated octanol-water par-
tition coefficient (LogP), and the quantitative measure of drug-
likeness (QED),172 both of which can be found in the open source
package RDKit.52

Since physics based prediction is usually very computationally
intensive, a popular approach is to train a property predicting ma-
chine learning model ahead of time. There is now an enormous
literature on deep learning for property prediction demonstrat-
ing success in multiple areas.8 Impressive results have been ob-
tained, such as systems which can predict molecular energies at
DFT accuracy,176 and highly accurate systems which can trans-
fer between many types of molecules.177 While the literature on
quantum property prediction is perhaps the most developed, suc-
cess has been seen in other areas, such as calculating high level
properties of energetic molecular crystals (such as sensitivity and
detonation velocity).10,27 Many predictive models are now pub-
lished for “off the shelf” use, for instance a collection of predictive
models for ADME (absorption, distribution, metabolism, and ex-
cretion) called “SwissADME” was recently published.

176?

It has also been demonstrated that traditional physics-based
simulations can be used—Sumita et al. optimize absorption wave-
length by converting SMILES strings into 3D structures using RD-
Kit and then calculating their UV-VIS absorption spectra on-the-fly
with time-dependent density functional theory (TD-DFT). Instead
of the obvious reward function −α|λ ∗−λ |, where λ ∗ is the target
wavelength, they used the following:80

R =


−α|λ ∗−λ |

1+α|λ ∗−λ | If DFT calculation successful

−1 If DFT calculation fails
(34)

Journal Name, [year], [vol.],1–21 | 15

Page 16 of 23Molecular Systems Design & Engineering

From the molecules generated by their RNN, Sumita et al. se-
lected six molecules for synthesis and found that 5/6 exhibited
the desired absorption profiles.80

A reward function which has been used by several different
researchers to generate drug molecules is:

J(S) = logP(S)−SA(S)−RingPenalty(S) (35)

Yang et al. add an additional penalty for generating invalid
SMILES which could be used more broadly:76

R(S) =


J(S)

1+|J(S)| for valid SMILES

−1.0 for invalid SMILES
(36)

In the context of training the ORGAN architecuture, Guimares
et al. found that rotating the reward function metric from epoch
to epoch had some advantages to using all metrics at once.103 In
other words, in one epoch the rewards may just be for diversity,
while in the next they would just be for synthesizability, and so
on. This idea could likely be explored further.

4 Prospective and future directions
In this review we have tried to summarize the current state of
the art for generative modeling of molecules using deep learn-
ing. The current literature is composed of a rich array of repre-
sentation strategies and model architectures. As in many areas
of generative modeling and deep learning, the present day work
is largely empirical in nature. As our mathematical understand-
ing of the landscape of generative models improves, so too will
our ability to select the best approaches to a particular problem.
There are many promising new techniques and architectures from
deep generative modeling and optimization more broadly which
are ripe to be transferred to the world of molecules. For exam-
ple, for sequence modeling the Maximum Likelihood Augmented
Discrete GAN (MaliGAN) has been shown to be superior to the
SeqGAN on which ORGAN is based.178 With RNNs, recently de-
veloped attention mechanisms and external memory cells offer a
possible avenue to improve SMILES string generation.179

It is worth noting that the latest genetic algorithm based meth-
ods can still compete with today’s deep learning based meth-
ods. Yoshikawa et al. developed a genetic algorithm which makes
edits to SMILES and uses population-based evolutionary selec-
tion to generate molecules with high binding affinity as calcu-
lated via docking (rDock).38 They compared their method with
three other deep-learning based methods (CVAE23, GVAE57, and
ChemTS76) for optimizing the “penalized log P score” (eqn. 35).
They found that with computer time fixed to eight hours, their
method performed better or comparable to the deep learning
methods. In a similar vein, Jensen found that a genetic algo-
rithm performed better than a SMILES based RNN+Bayesian op-
timization, the ChemTS RNN, and a CVAE with 100x lower com-
putational cost.180 It appears that genetic algorithms can explore
chemical space in a very efficient manner.

In our discussion of GANs we highlighted an important way
in which GANs are superior to maximum likelihood based meth-
ods—namely that they can avoid the “filling in” problem which

occurs with maximum likelihood where the model’s distribution
ends up non-zero where the data distribution is zero. Another
point is that the theorems on which the maximum likelihood
methodology is based only hold true in the limit of infinite sam-
ples.181 In general it appears that GANs can be trained with far
fewer samples than maximum likelihood based methods—this
can be seen by looking at the Ntrain values in table 2. In addi-
tion to their benefits, we also touched on several difficulties with
GANs—small starting gradient, training instabilities, the perfect
discriminator problem, and mode collapse. However, we also
cited possible remedies for each of these issues and we expect
more remedies to be developed in the future.

There are several major trends we have observed which present
day practitioners and those entering the field should be cognizant
of:

New representation methods SMILES based techniques are
quickly being replaced with techniques that work directly with
chemical graphs and three dimensional chemical structures. Di-
rectly working with chemical graphs, either by using chemistry-
preserving graph operations or tensor representations avoids the
problems aropssociated with requiring deep generative models to
learn SMILES syntax. At the same time, there is also growing
interest in generative models which can generate 3D equilibrium
structures, since in drug design and other specialized applications
the 3D geometry of molecules is important.

Better reward functions As mentioned earlier, reward func-
tion design is a critical component to molecular generation and
optimization. We expect future work will use more sophisticated
reward functions which combine multiple objectives into a sin-
gle reward function. Using multiple reward functions and multi-
objective reinforcement learning is also a promising approach.66

Pure reinforcement learning approaches The deep reinforce-
ment learning work of Zhou et al. demonstrated superior molec-
ular optimization performance when compared with the Junction
Tree VAE,94 ORGAN,103 and Graph Convolutional Policy Net-
work65 approaches when optimizing the logP and QED metrics.66

The work of Zhou et al. is notable as it is the first to take a pure
RL approach with no pretrained generator. We believe much fu-
ture work in molecular optimization will proceed in this direction
since many application areas have limited training data available.

Hierarchical modeling Hierarchical representation schemes
will allow for efficient g enerative m odeling o f l arge molecules
(such as proteins182,183) as well as complex systems such as poly-
mers, metal organic frameworks, and molecular crystals. Gen-
erative modeling techniques will also be useful not just for op-
timizing molecules but also optimizing the structures and sys-
tems in which they are embedded. GANs have recently been
applied to the generation of crystal structures184 and microstruc-
tures.185–187 Hierarchical GANs188 may be useful for the gener-
ation of many-molecule complexes or for the simultaneous op-
timization of both material and geometry in nanomaterials and
metamaterials.

Closing the loop After the synthesis and characterization of
new lead compounds the data obtained can be fed back to im-
prove the models used, a process called “closing the loop”. More
work is needed to develop workflows a nd m ethods t o interface

16 | 1–21Journal Name, [year], [vol.],

Page 17 of 23 Molecular Systems Design & Engineering

and integrate generative models into laboratory platforms to al-
low for rapid feedback and cycling. A key challenge is devel-
oping useful software and cyberinfrastructure for computational
screening and data management.189 The potential for efficiency
improvements via automated AI-assisted synthesis planning and
“self-driving” robotic laboratories is quite profound.14,15,190–192

Acknowledgements

Support for this work is gratefully acknowledged from the U.S.
Office of Naval Research under grant number N00014-17-1-2108
and from the Energetics Technology Center under project number
2044-001. Partial support is also acknowledged from the Center
for Engineering Concepts Development in the Department of Me-
chanical Engineering at the University of Maryland, College Park.
We thank Dr. Ruth M. Doherty, Dr. William Wilson, and Dr. Andrey
Gorlin for their input and for proofreading the manuscript.

References

1 J. A. DiMasi, H. G. Grabowski and R. W. Hansen, Journal of
Health Economics, 2016, 47, 20 – 33.

2 S. M. Paul, D. S. Mytelka, C. T. Dunwiddie, C. C. Persinger,
B. H. Munos, S. R. Lindborg and A. L. Schacht, Nature Re-
views Drug Discovery, 2010, 9, 203–214.

3 A. Homburg, Propellants, Explosives, Pyrotechnics, 2017, 42,
851–853.

4 P. G. Polishchuk, T. I. Madzhidov and A. Varnek, Journal of
Computer-Aided Molecular Design, 2013, 27, 675–679.

5 C. A. Lipinski, F. Lombardo, B. W. Dominy and P. J. Feeney,
Advanced Drug Delivery Reviews, 1997, 23, 3–25.

6 R. Macarron, M. N. Banks, D. Bojanic, D. J. Burns, D. A.
Cirovic, T. Garyantes, D. V. S. Green, R. P. Hertzberg, W. P.
Janzen, J. W. Paslay, U. Schopfer and G. S. Sittampalam,
Nature Reviews Drug Discovery, 2011, 10, 188–195.

7 E. O. Pyzer-Knapp, C. Suh, R. Gómez-Bombarelli,
J. Aguilera-Iparraguirre and A. Aspuru-Guzik, Annual Review
of Materials Research, 2015, 45, 195–216.

8 K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev and
A. Walsh, Nature, 2018, 559, 547–555.

9 P. Raccuglia, K. C. Elbert, P. D. F. Adler, C. Falk, M. B.
Wenny, A. Mollo, M. Zeller, S. A. Friedler, J. Schrier and A. J.
Norquist, Nature, 2016, 533, 73–76.

10 B. C. Barnes, D. C. Elton, Z. Boukouvalas, D. E. Taylor,
W. D. Mattson, M. D. Fuge and P. W. Chung, arXiv e-prints:
1807.06156, 2018.

11 D. Fooshee, A. Mood, E. Gutman, M. Tavakoli, G. Urban,
F. Liu, N. Huynh, D. V. Vranken and P. Baldi, Molecular Sys-
tems Design & Engineering, 2018, 3, 442–452.

12 P. Schwaller, T. Gaudin, D. Lányi, C. Bekas and T. Laino,
Chemical Science, 2018, 9, 6091–6098.

13 M. H. S. Segler, M. Preuss and M. P. Waller, Nature, 2018,
555, 604–610.

14 A. B. Henson, P. S. Gromski and L. Cronin, ACS Central Sci-
ence, 2018, 4, 793–804.

15 L. M. Roch, F. Häse, C. Kreisbeck, T. Tamayo-Mendoza,

L. P. E. Yunker, J. E. Hein and A. Aspuru-Guzik, Science
Robotics, 2018, 3, eaat5559.

16 D. Cireşan, U. Meier and J. Schmidhuber, 2012 IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2012, pp.
3642–3649.

17 A. Krizhevsky, I. Sutskever and G. E. Hinton, Advances in
Neural Information Processing Systems 25, Curran Associates,
Inc., 2012, pp. 1097–1105.

18 G. E. Dahl, N. Jaitly and R. Salakhutdinov, arXiv e-
prints:1406.1231, 2014.

19 G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever and
R. R. Salakhutdinov, arXiv e-prints: 1207.0580, 2012.

20 A. Krizhevsky, I. Sutskever and G. E. Hinton, Commun. ACM,
2017, 60, 84–90.

21 D. P. Kingma and M. Welling, arXiv e-prints: 1312.6114,
2013.

22 I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville and Y. Bengio, Advances in
Neural Information Processing Systems 27, Curran Associates,
Inc., 2014, pp. 2672–2680.

23 R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M.
Hernández-Lobato, B. Sánchez-Lengeling, D. Sheberla,
J. Aguilera-Iparraguirre, T. D. Hirzel, R. P. Adams and
A. Aspuru-Guzik, ACS Central Science, 2018, 4, 268–276.

24 E. J. Griffen, A. G. Dossetter, A. G. Leach and S. Montague,
Drug Discovery Today, 2018, 23, 1373–1384.

25 R. Gómez-Bombarelli, J. Aguilera-Iparraguirre, T. D. Hirzel,
D. Duvenaud, D. Maclaurin, M. A. Blood-Forsythe, H. S.
Chae, M. Einzinger, D.-G. Ha, T. Wu, G. Markopoulos,
S. Jeon, H. Kang, H. Miyazaki, M. Numata, S. Kim,
W. Huang, S. I. Hong, M. Baldo, R. P. Adams and A. Aspuru-
Guzik, Nature Materials, 2016, 15, 1120–1127.

26 P. B. Jørgensen, M. Mesta, S. Shil, J. M. G. Lastra, K. W.
Jacobsen, K. S. Thygesen and M. N. Schmidt, The Journal of
Chemical Physics, 2018, 148, 241735.

27 D. C. Elton, Z. Boukouvalas, M. S. Butrico, M. D. Fuge and
P. W. Chung, Scientific Reports, 2018, 8, year.

28 B. C. Rinderspacher and J. M. Elward, Molecular Systems De-
sign & Engineering, 2018, 3, 485–495.

29 H. Li, C. R. Collins, T. G. Ribelli, K. Matyjaszewski, G. J.
Gordon, T. Kowalewski and D. J. Yaron, Molecular Systems
Design & Engineering, 2018, 3, 496–508.

30 D. Nagarajan, T. Nagarajan, N. Roy, O. Kulkarni,
S. Ravichandran, M. Mishra, D. Chakravortty and N. Chan-
dra, Journal of Biological Chemistry, 2017, 293, 3492–3509.

31 A. T. Müller, J. A. Hiss and G. Schneider, Journal of Chemical
Information and Modeling, 2018, 58, 472–479.

32 F. Grisoni, C. S. Neuhaus, G. Gabernet, A. T. Müller, J. A. Hiss
and G. Schneider, ChemMedChem, 2018, 13, 1300–1302.

33 X. Shen, T. Zhang, S. Broderick and K. Rajan, Molecular Sys-
tems Design & Engineering, 2018, 3, 826–838.

34 Y. He, E. D. Cubuk, M. D. Allendorf and E. J. Reed, The Jour-
nal of Physical Chemistry Letters, 2018, 9, 4562–4569.

35 B. Pirard, Expert Opinion on Drug Discovery, 2011, 6, 225–

Journal Name, [year], [vol.],1–21 | 17

Page 18 of 23Molecular Systems Design & Engineering

231.
36 L.-P. Wang, A. Titov, R. McGibbon, F. Liu, V. S. Pande and

T. J. Martínez, Nature Chemistry, 2014, 6, 1044–1048.
37 J. Besnard, G. F. Ruda, V. Setola, K. Abecassis, R. M. Ro-

driguiz, X.-P. Huang, S. Norval, M. F. Sassano, A. I. Shin,
L. A. Webster, F. R. C. Simeons, L. Stojanovski, A. Prat, N. G.
Seidah, D. B. Constam, G. R. Bickerton, K. D. Read, W. C.
Wetsel, I. H. Gilbert, B. L. Roth and A. L. Hopkins, Nature,
2012, 492, 215–220.

38 N. Yoshikawa, K. Terayama, M. Sumita, T. Homma, K. Oono
and K. Tsuda, Chemistry Letters, 2018, 47, 1431–1434.

39 A. Daina, O. Michielin and V. Zoete, Scientific Reports, 2017,
7, 2717.

40 D. Kuzminykh, D. Polykovskiy, A. Kadurin, A. Zhebrak,
I. Baskov, S. Nikolenko, R. Shayakhmetov and A. Zha-
voronkov, Molecular Pharmaceutics, 2018.

41 M. Skalic, J. Jiménez Luna, D. Sabbadin and G. De Fabritiis,
Journal of Chemical Information and Modeling, 2019.

42 A. Amidi, S. Amidi, D. Vlachakis, V. Megalooikonomou,
N. Paragios and E. I. Zacharaki, PeerJ, 2018, 6, e4750.

43 M. Hirn, S. Mallat and N. Poilvert, Multiscale Modeling &
Simulation, 2017, 15, 827–863.

44 M. Eickenberg, G. Exarchakis, M. Hirn and S. Mallat, Ad-
vances in Neural Information Processing Systems 30, Curran
Associates, Inc., 2017, pp. 6540–6549.

45 N. Thomas, T. Smidt, S. Kearnes, L. Yang, L. Li, K. Kohlhoff
and P. Riley, Tensor field networks: Rotation- and translation-
equivariant neural networks for 3D point clouds, 2018.

46 N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vander-
meersch and G. R. Hutchison, Journal of Cheminformatics,
2011, 3, 33.

47 The Open Babel Package, http://www.openbabel.org.
48 D. Weininger, J. Chem. Inf. Comp. Sci., 1988, 28, year.
49 E. Jang, S. Gu and B. Poole, arXiv e-prints:1611.01144,

2016.
50 N. De Cao and T. Kipf, ICML 2018 workshop on Theoreti-

cal Foundations and Applications of Deep Generative Models,
2018.

51 M. Swain, MolVS, https://github.com/mcs07/MolVS.
52 G. Landrum, RDKit: Open-source cheminformatics, http://

www.rdkit.org.
53 E. Jannik Bjerrum and B. Sattarov, arXiv e-

prints:1806.09300, 2018.
54 E. Jannik Bjerrum, arXiv e-prints:1703.07076, 2017.
55 S. Heller, A. McNaught, S. Stein, D. Tchekhovskoi and I. Plet-

nev, Journal of Cheminformatics, 2013, 5, 7.
56 R. Winter, F. Montanari, F. Noé and D.-A. Clevert, Chemical

Science, 2019, 10, 1692–1701.
57 M. J. Kusner, B. Paige and J. M. Hernández-Lobato, arXiv

e-prints:1703.01925, 2017.
58 H. Dai, Y. Tian, B. Dai, S. Skiena and L. Song, arXiv e-

prints:1802.08786, 2018.
59 Y. Li, O. Vinyals, C. Dyer, R. Pascanu and P. Battaglia, arXiv

e-prints:1803.03324, 2018.

60 Y. Li, L. Zhang and Z. Liu, Journal of Cheminformatics, 2018,
10, year.

61 M. Suzuki, H. Nagamochi and T. Akutsu, Journal of Chemin-
formatics, 2014, 6, year.

62 G. B. Goh, C. Siegel, A. Vishnu, N. O. Hodas and N. Baker,
arXiv e-prints:1706.06689, 2017.

63 N. De Cao and T. Kipf, arXiv e-prints:1805.11973, 2018.
64 M. Simonovsky and N. Komodakis, arXiv e-

prints:1802.03480, 2018.
65 J. You, B. Liu, R. Ying, V. Pande and J. Leskovec, arXiv e-

prints: - 1806.02473, 2018.
66 Z. Zhou, S. Kearnes, L. Li, R. N. Zare and P. Riley, arXiv

e-prints:1810.08678, 2018.
67 Z. Boukouvalas, D. C. Elton, P. W. Chung and M. D. Fuge,

arXiv e-prints:: 1811.00628, 2018.
68 J. L. Durant, B. A. Leland, D. R. Henry and J. G. Nourse, Jour-

nal of Chemical Information and Computer Sciences, 2002,
42, 1273–1280.

69 A. Kadurin, A. Aliper, A. Kazennov, P. Mamoshina, Q. Van-
haelen, K. Khrabrov and A. Zhavoronkov, Oncotarget, 2016.

70 A. Kadurin, S. Nikolenko, K. Khrabrov, A. Aliper and A. Zha-
voronkov, Molecular Pharmaceutics, 2017, 14, 3098–3104.

71 M. Simonovsky and N. Komodakis, 2017 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017,
Honolulu, HI, USA, July 21-26, 2017, 2017, pp. 29–38.

72 E. Jannik Bjerrum and R. Threlfall, arXiv e-
prints:1705.04612, 2017.

73 A. Gupta, A. T. Müller, B. J. H. Huisman, J. A. Fuchs,
P. Schneider and G. Schneider, Molecular Informatics, 2017,
37, 1700111.

74 M. Olivecrona, T. Blaschke, O. Engkvist and H. Chen, Journal
of Cheminformatics, 2017, 9, 48.

75 M. H. S. Segler, T. Kogej, C. Tyrchan and M. P. Waller, ACS
Central Science, 2017, 4, 120–131.

76 X. Yang, J. Zhang, K. Yoshizoe, K. Terayama and K. Tsuda,
Science and Technology of Advanced Materials, 2017, 18,
972–976.

77 M. Cherti, B. Kégl and A. Kazakçı, International Confer-
ence on Learning Representations, workshop track, Toulon,
France, 2017.

78 D. Neil, M. Segler, L. Guasch, M. Ahmed, D. Plumbley,
M. Sellwood and N. Brown, International Conference on
Learning Representations, 2018.

79 M. Popova, O. Isayev and A. Tropsha, Science Advances, 2018,
4, eaap7885.

80 M. Sumita, X. Yang, S. Ishihara, R. Tamura and K. Tsuda,
ACS Central Science, 2018, 4, 1126–1133.

81 D. Merk, L. Friedrich, F. Grisoni and G. Schneider, Molecular
Informatics, 2018, 37, 1700153.

82 D. Merk, F. Grisoni, L. Friedrich and G. Schneider, Commu-
nications Chemistry, 2018, 1, year.

83 P. Ertl, R. Lewis, E. Martin and V. Polyakov, arXiv e-
prints:1712.07449, 2017.

84 J. Arús-Pous, T. Blaschke, S. Ulander, J.-L. Reymond,

18 | 1–21Journal Name, [year], [vol.],

Page 19 of 23 Molecular Systems Design & Engineering

http://www.openbabel.org
https://github.com/mcs07/MolVS
http://www.rdkit.org
http://www.rdkit.org

H. Chen and O. Engkvist, ChemRxiv preprint, 2018.
85 S. Zheng, X. Yan, Q. Gu, Y. Yang, Y. Du, Y. Lu and J. Xu,

Journal of Cheminformatics, 2019, 11, 5.
86 P. Pogány, N. Arad, S. Genway and S. D. Pickett, Journal of

Chemical Information and Modeling, 2018.
87 T. Blaschke, M. Olivecrona, O. Engkvist, J. Bajorath and

H. Chen, Molecular Informatics, 2017, 37, 1700123.
88 J. Lim, S. Ryu, J. W. Kim and W. Y. Kim, Journal of Chemin-

formatics, 2018, 10, year.
89 S. Kang and K. Cho, Journal of Chemical Information and

Modeling, 2018.
90 S. Harel and K. Radinsky, Molecular Pharmaceutics, 2018,

15, 4406–4416.
91 B. Sattarov, I. I. Baskin, D. Horvath, G. Marcou, E. J. Bjerrum

and A. Varnek, Journal of Chemical Information and Model-
ing, 2019.

92 M. J. Kusner, B. Paige and J. M. Hernández-Lobato, arXiv
e-prints:1703.01925, 2017.

93 P. B. Jørgensen, M. N. Schmidt and O. Winther, Molecular
Informatics, 2018, 37, 1700133.

94 W. Jin, R. Barzilay and T. S. Jaakkola, International Confer-
ence on Learning Representations, 2018.

95 W. Jin, K. Yang, R. Barzilay and T. Jaakkola, International
Conference on Learning Representations, 2019.

96 Q. Liu, M. Allamanis, M. Brockschmidt and A. L. Gaunt,
arXiv e-prints:1805.09076, 2018.

97 H. Kajino, arXiv e-prints:1803.03324, 2018.
98 R. Winter, F. Montanari, F. NoeÌĄ and D.-A. Clevert, Chem-

Rxiv preprint, 2018.
99 B. Samanta, A. De, N. Ganguly and M. Gomez-Rodriguez,

arXiv e-prints:1802.05283, 2018.
100 B. Samanta, A. De, G. Jana, P. K. Chattaraj, N. Ganguly and

M. Gomez-Rodriguez, arXiv e-prints:1802.05283, 2018.
101 T. Ma, J. Chen and C. Xiao, Advances in Neural Information

Processing Systems 32, 2018.
102 S. M. Kearnes, L. Li and P. Riley, arXiv e-prints:1904.08915,

2019.
103 G. Lima Guimaraes, B. Sanchez-Lengeling, C. Outeiral,

P. L. Cunha Farias and A. Aspuru-Guzik, arXiv e-
prints:1705.10843, 2017.

104 E. Putin, A. Asadulaev, Y. Ivanenkov, V. Aladinskiy,
B. Sanchez-Lengeling, A. Aspuru-Guzik and A. Zhavoronkov,
Journal of Chemical Information and Modeling, 2018, 58,
1194–1204.

105 E. Putin, A. Asadulaev, Q. Vanhaelen, Y. Ivanenkov, A. V.
Aladinskaya, A. Aliper and A. Zhavoronkov, Molecular Phar-
maceutics, 2018.

106 O. Méndez-Lucio, B. Baillif, D.-A. Clevert, D. Rouquié and
J. Wichard, ChemRxiv preprint, 2018.

107 L. Maziarka, A. Pocha, J. Kaczmarczyk, K. Rataj and M. War-
choł, Mol-CycleGAN - a generative model for molecular opti-
mization, 2019.

108 B. Sanchez-Lengeling, C. Outeiral, G. L. Guimaraes and
A. Aspuru-Guzik, ChemRxiv preprint, 2017.

109 D. Grattarola, L. Livi and C. Alippi, arXiv e-
prints:1812.04314, 2018.

110 H. Ikebata, K. Hongo, T. Isomura, R. Maezono and
R. Yoshida, Journal of Computer-Aided Molecular Design,
2017, 31, 379–391.

111 D. Polykovskiy, A. Zhebrak, D. Vetrov, Y. Ivanenkov, V. Al-
adinskiy, P. Mamoshina, M. Bozdaganyan, A. Aliper, A. Zha-
voronkov and A. Kadurin, Molecular Pharmaceutics, 2018.

112 N. S. hl, G. ran Falkman, A. Karlsson, G. Mathiason and J. B.
m, 2019.

113 L. C. Blum and J.-L. Reymond, Journal of the American Chem-
ical Society, 2009, 131, 8732–8733.

114 T. Sterling and J. J. Irwin, Journal of Chemical Information
and Modeling, 2015, 55, 2324–2337.

115 L. Ruddigkeit, R. van Deursen, L. C. Blum and J.-L. Rey-
mond, Journal of Chemical Information and Modeling, 2012,
52, 2864–2875.

116 M. Nakata and T. Shimazaki, Journal of Chemical Informa-
tion and Modeling, 2017, 57, 1300–1308.

117 R. Ramakrishnan, P. O. Dral, M. Rupp and O. A. von Lilien-
feld, Scientific Data, 2014, 1, year.

118 S. Chakraborty, P. Kayastha and R. Ramakrishnan, The Jour-
nal of Chemical Physics, 2019, 150, 114106.

119 S. A. Lopez, E. O. Pyzer-Knapp, G. N. Simm, T. Lutzow, K. Li,
L. R. Seress, J. Hachmann and A. Aspuru-Guzik, Scientific
Data, 2016, 3, 160086.

120 A. Géron, Hands-On Machine Learning with Scikit-Learn and
TensorFlow: Concepts, Tools, and Techniques to Build Intelli-
gent Systems, O’Reilly Media, Inc., 1st edn, 2017.

121 I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT
Press, 2016.

122 S. Hochreiter and J. Schmidhuber, Neural Computation,
1997, 9, 1735–1780.

123 K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk and Y. Bengio, Proceedings of the
2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2014, pp. 1724–1734.

124 M. Ranzato, S. Chopra, M. Auli and W. Zaremba, arXiv,
2015, abs/1511.06732, year.

125 A. Venkatraman, M. Hebert and J. A. Bagnell, Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence,
2015, pp. 3024–3030.

126 S. Bengio, O. Vinyals, N. Jaitly and N. Shazeer, Proceedings
of the 28th International Conference on Neural Information
Processing Systems - Volume 1, Cambridge, MA, USA, 2015,
pp. 1171–1179.

127 F. Huszár, arXiv e-prints:1511.05101, 2015.
128 R. J. Williams and D. Zipser, Neural Computation, 1989, 1,

270–280.
129 R. Gómez-Bombarelli, Broad Institute Models, Inference, & Al-

gorithms talk: “Deep learning chemical space”, 2017, https:
//www.youtube.com/watch?v=ieZhnnvjyWU.

130 R. J. Williams, Machine Learning, 1992, 8, 229–256.
131 N. Jaques, S. Gu, D. Bahdanau, J. M. HernÃąndez-Lobato,

Journal Name, [year], [vol.],1–21 | 19

Page 20 of 23Molecular Systems Design & Engineering

https://www.youtube.com/watch?v=ieZhnnvjyWU
https://www.youtube.com/watch?v=ieZhnnvjyWU

R. E. Turner and D. Eck, International Conference on Ma-
chine Learning, 2017.

132 V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg and D. Hassabis,
Nature, 2015, 518, 529–533.

133 G. Hinton and R. Salakhutdinov, Science, 2006, 313, 504 –
507.

134 R. Salakhutdinov and G. Hinton, Proceedings of the
Twelth International Conference on Artificial Intelligence
and Statistics, Hilton Clearwater Beach Resort, Clearwater
Beach, Florida USA, 2009, pp. 448–455.

135 P. Mehta, M. Bukov, C.-H. Wang, A. G. R. Day,
C. Richardson, C. K. Fisher and D. J. Schwab, arXiv e-
prints:1803.08823, 2018.

136 D. Janz, J. van der Westhuizen and J. M. Hernández-Lobato,
arXiv e-prints:1708.04465, 2017.

137 A. Makhzani, J. Shlens, N. Jaitly and I. Goodfellow, Interna-
tional Conference on Learning Representations, 2016.

138 R.-R. Griffiths and J. M. Hernández-Lobato, arXiv e-
prints:1709.05501, 2017.

139 I. Sutskever, O. Vinyals and Q. V. Le, arXiv e-prints:
1409.3215, 2014.

140 M. Lucic, K. Kurach, M. Michalski, S. Gelly and O. Bousquet,
arXiv e-prints:1711.10337, 2017.

141 M. Arjovsky, S. Chintala and L. Bottou, arXiv e-prints:
1701.07875, 2017.

142 K. Kurach, M. Lucic, X. Zhai, M. Michalski and S. Gelly, arXiv
e-prints:1807.04720, 2018.

143 L. Yu, W. Zhang, J. Wang and Y. Yu, Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence,
February 4-9, 2017, San Francisco, California, USA., 2017,
pp. 2852–2858.

144 A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Dani-
helka, A. Grabska-Barwińska, S. G. Colmenarejo, E. Grefen-
stette, T. Ramalho, J. Agapiou, A. P. Badia, K. M. Hermann,
Y. Zwols, G. Ostrovski, A. Cain, H. King, C. Summerfield,
P. Blunsom, K. Kavukcuoglu and D. Hassabis, Nature, 2016,
538, 471–476.

145 A. Graves, G. Wayne and I. Danihelka, arXiv e-prints:
1807.06156, 2014.

146 D. Sculley, J. Snoek, A. Wiltschko and A. Rahimi, Sixth In-
ternational Conference on Learning Representations - Work-
shop Track, 2018.

147 P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup
and D. Meger, Thirthy-Second AAAI Conference On Artificial
Intelligence, 2018.

148 G. Melis, C. Dyer and P. Blunsom, arXiv e-prints:1707.05589,
2017.

149 T. Salimans, I. J. Goodfellow, W. Zaremba, V. Cheung,
A. Radford and X. Chen, arXiv e-prints:1606.03498, 2016.

150 L. Theis, A. van den Oord and M. Bethge, International Con-
ference on Learning Representations, 2016.

151 M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler and
S. Hochreiter, GANs Trained by a Two Time-Scale Update Rule
Converge to a Local Nash Equilibrium, 2017.

152 K. Preuer, P. Renz, T. Unterthiner, S. Hochreiter and G. Klam-
bauer, Journal of Chemical Information and Modeling, 2018,
58, 1736–1741.

153 Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse,
A. S. Pappu, K. Leswing and V. Pande, Chemical Science,
2018, 9, 513–530.

154 D. Polykovskiy, A. Zhebrak, B. Sanchez-Lengeling, S. Golo-
vanov, O. Tatanov, S. Belyaev, R. Kurbanov, A. Arta-
monov, V. Aladinskiy, M. Veselov, A. Kadurin, S. Nikolenko,
A. Aspuru-Guzik and A. Zhavoronkov, arXiv e-prints::
arXiv:1811.12823, 2018.

155 M. Benhenda, E. J. Bjerrum, H. Yi and C. Zaveri, Authorea
preprint, 2018.

156 N. Brown, M. Fiscato, M. H. Segler and A. C. Vaucher, Jour-
nal of Chemical Information and Modeling, 2019.

157 D. J. Im, A. H. Ma, G. W. Taylor and K. Branson, Interna-
tional Conference on Learning Representations, 2018.

158 I. Gulrajani, C. Raffel and L. Metz, International Conference
on Learning Representations, 2019.

159 D. Lowe, Calculating A Few Too Many New Com-
pounds, 2016, http://blogs.sciencemag.

org/pipeline/archives/2016/11/08/

calculating-a-few-too-many-new-compounds.
160 M. Benhenda, arXiv e-prints:1703.01925, 2017.
161 N. Yoshikawa, K. Terayama, T. Honma, K. Oono and

K. Tsuda, arXiv e-prints:1804.02134, 2018.
162 J. Panteleev, H. Gao and L. Jia, Bioorganic & Medicinal Chem-

istry Letters, 2018, 28, 2807–2815.
163 J. B. Tenenbaum, Science, 2000, 290, 2319–2323.
164 L. van der Maaten and G. Hinton, Journal of Machine Learn-

ing Research, 2008, 9, 2579–2605.
165 A. Radford, L. Metz and S. Chintala, International Confer-

ence on Learning Representations, 2016.
166 P. Domingos, Commun. ACM, 2012, 55, 78–87.
167 T. White, arXiv e-prints:1609.04468, 2016.
168 P. Ertl and A. Schuffenhauer, Journal of Cheminformatics,

2009, 1, 8.
169 Y. Podolyan, M. A. Walters and G. Karypis, Journal of Chem-

ical Information and Modeling, 2010, 50, 979–991.
170 Y. Fukunishi, T. Kurosawa, Y. Mikami and H. Nakamura,

Journal of Chemical Information and Modeling, 2014, 54,
3259–3267.

171 P. Ertl, S. Roggo and A. Schuffenhauer, Journal of Chemical
Information and Modeling, 2008, 48, 68–74.

172 G. R. Bickerton, G. V. Paolini, J. Besnard, S. Muresan and
A. L. Hopkins, Nature Chemistry, 2012, 4, 90–98.

173 I. Muegge, S. L. Heald and D. Brittelli, Journal of Medicinal
Chemistry, 2001, 44, 1841–1846.

174 I. Muegge, Medicinal Research Reviews, 2003, 23, 302–321.
175 A. Kalgutkar, I. Gardner, R. Obach, C. Shaffer, E. Callegari,

K. Henne, A. Mutlib, D. Dalvie, J. Lee, Y. Nakai, J. O’Donnell,

20 | 1–21Journal Name, [year], [vol.],

Page 21 of 23 Molecular Systems Design & Engineering

http://blogs.sciencemag.org/pipeline/archives/2016/11/08/calculating-a-few-too-many-new-compounds
http://blogs.sciencemag.org/pipeline/archives/2016/11/08/calculating-a-few-too-many-new-compounds
http://blogs.sciencemag.org/pipeline/archives/2016/11/08/calculating-a-few-too-many-new-compounds

J. Boer and S. Harriman, Current Drug Metabolism, 2005, 6,
161–225.

176 F. A. Faber, L. Hutchison, B. Huang, J. Gilmer, S. S. Schoen-
holz, G. E. Dahl, O. Vinyals, S. Kearnes, P. F. Riley and O. A.
von Lilienfeld, Journal of Chemical Theory and Computation,
2017, 13, 5255–5264.

177 L. Cheng, M. Welborn, A. S. Christensen and T. F. Miller III,
The Journal of chemical physics, 2019, 150, 131103.

178 T. Che, Y. Li, R. Zhang, R. D. Hjelm, W. Li, Y. Song and
Y. Bengio, Maximum-Likelihood Augmented Discrete Genera-
tive Adversarial Networks, 2017.

179 C. Olah and S. Carter, Distill, 2016, 1, year.
180 J. H. Jensen, Chemical Science, 2019, 10, 3567–3572.
181 Z. Boukouvalas, arXiv e-prints: 1801.08600, 2018.
182 E. C. Alley, G. Khimulya, S. Biswas, M. AlQuraishi and G. M.

Church, bioRxiv e-prints:10.1101/589333v1, 2019.
183 N. Anand and P. Huang, Advances in Neural Information Pro-

cessing Systems 31, Curran Associates, Inc., 2018, pp. 7494–
7505.

184 A. Nouira, N. Sokolovska and J.-C. Crivello, arXiv e-prints:
1810.11203, 2018.

185 X. Li, Z. Yang, L. C. Brinson, A. Choudhary, A. Agrawal and

W. Chen, Volume 2B: 44th Design Automation Conference,
2018.

186 R. Singh, V. Shah, B. Pokuri, S. Sarkar, B. Ganapathysubra-
manian and C. Hegde, arXiv e-prints:1811.09669, 2018.

187 Z. Yang, X. Li, L. C. Brinson, A. N. Choudhary, W. Chen and
A. Agrawal, arXiv e-prints:1805.02791, 2018.

188 A. J. Chen, Wei and M. D. Fuge, ASME 2016 International
Design Engineering Technical Conferences and Computers
and Information in Engineering Conference, Quebec City,
Canada, 2018.

189 J. Hachmann, M. A. F. Afzal, M. Haghighatlari and Y. Pal,
Molecular Simulation, 2018, 44, 921–929.

190 S. K. Saikin, C. Kreisbeck, D. Sheberla, J. S. Becker and A.-G.
A., Expert Opinion on Drug Discovery, 2018, 14, 1–4.

191 P. S. Gromski, A. B. Henson, J. M. Granda and L. Cronin,
Nature Reviews Chemistry, 2019, 3, 119–128.

192 D. P. Tabor, L. M. Roch, S. K. Saikin, C. Kreisbeck, D. She-
berla, J. H. Montoya, S. Dwaraknath, M. Aykol, C. Ortiz,
H. Tribukait, C. Amador-Bedolla, C. J. Brabec, B. Maruyama,
K. A. Persson and A. Aspuru-Guzik, Nature Reviews Materials,
2018, 3, 5–20.

Journal Name, [year], [vol.],1–21 | 21

Page 22 of 23Molecular Systems Design & Engineering

We review a recent groundswell of work which uses deep learning techniques to
generate and optimize molecules.

Page 23 of 23 Molecular Systems Design & Engineering

