

MedChemComm

Recent advances in the genome mining of Aspergillus secondary metabolites (covering 2012-2018)

Journal:	MedChemComm
Manuscript ID	MD-REV-01-2019-000054.R1
Article Type:	Review Article
Date Submitted by the Author:	05-Apr-2019
Complete List of Authors:	Romsdahl, Jillian; University of Southern California, Department of Pharmacology and Pharmaceutical Sciences Wang, Clay; University of Southern California, Department of Pharmacology and Pharmaceutical Sciences

Recent advances in the genome mining of Aspergillus secondary metabolites (covering 2012-2018)

Jillian Romsdahl¹ and Clay C.C. Wang^{1,2}

¹ Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of

Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA.

² Department of Chemistry, Dornsife College of Letters, Arts, and Sciences, University of

Southern California, 3551 Trousdale Pkwy, Los Angeles, CA 90089, USA.

Corresponding author

Clay C.C. Wang School of Pharmacy University of Southern California 1985 Zonal Ave Rm 406A Los Angeles, CA, 90089-9121 Phone: (323) 442-1670 Email: clayw@usc.edu

Abstract

Secondary metabolites (SMs) produced by filamentous fungi possess diverse bioactivities that make them excellent drug candidates. Whole genome sequencing has revealed that fungi have the capacity to produce a far greater number of SMs than have been isolated, since many of the genes involved in SM biosynthesis are either silent or expressed at very low levels in standard laboratory conditions. There has been significant effort to activate SM biosynthetic genes and link them to their downstream products, as the SMs produced by these "cryptic" pathways offer a promising source for new drug discovery. Further, an understanding of the genes involved in SM biosynthesis facilitates product yield optimization of first-generation molecules and genetic engineering of second-generation analogs. This review covers advances made in genome mining SMs produced by *Aspergillus nidulans*, *Aspergillus fumigatus*, *Aspergillus niger*, and *Aspergillus terreus* in the past six years (2012-2018). Genetic identification and molecular characterization of SM biosynthetic gene clusters, along with proposed biosynthetic pathways, will be discussed in depth.

1. Introduction

Filamentous fungi, including those within the *Aspergillus* genus, are known to produce a vast array of secondary metabolites (SMs) that exhibit a broad range of biological activities. SMs are organic small molecules that confer selective advantage to the organism despite not being directly required for survival. In nature, SMs function as weapons to eliminate neighboring competition, chemical signals in microbial cell communication, agents of symbiosis and transportation, sexual hormones, or differentiation effectors.¹ However, SMs also possess various characteristics that make them great drug candidates, which has resulted in their extensive use in

the pharmaceutical industry. For example, they exhibit enormous structural and chemical diversity due to the enzymatic nature of their biosynthesis, in which the core backbone of the SM is often biosynthesized by either a polyketide synthase (PKS), which can be either non-reducing (NR-PKS) or highly-reducing (HR-PKS), a nonribosomal peptide synthetase (NRPS), a PKS-NRPS hybrid, a dimethylallyl tryptophan synthase (DMATS), or a terpene cyclase (TC). The carbon skeleton is then further diversified by various tailoring enzymes encoded by genes that are usually clustered in the genome with the SM core backbone gene.² Tailoring enzymes may include oxidoreductases, oxygenases, dehydrogenases, reductases, and transferases. This process facilitates many reactions that are not possible synthetically and therefore SMs often feature more chiral centers and increased steric complexity than synthetic molecules. Further, because SMs have evolved within a biological setting, they usually possess many favorable drug-like properties. SMs currently represent a significant source of antibacterial, antifungal, antiviral, antiparasitic, anti-infective, anticancer, and antidiabetic drugs.³ Notable examples include the antibiotic penicillin, the cholesterol-lowering statin lovastatin, the antitumor agent paclitaxel,⁴ and the immunosuppressant cyclosporine.⁵ Additionally, the majority of small-molecule drugs introduced between 1981 and 2010 were either SMs, SM derivatives, SM mimics, or possessed a SM pharmacophore, and approximately 49% of all anticancer drugs are SMs or were inspired by SMs.³

Genome sequencing of *Aspergillus* species has greatly illuminated the potential for further drug discovery within the *Aspergillus* genus, revealing that the number of predicted SM biosynthetic genes or gene clusters considerably exceeds the number of identified SMs. A primary reason for this is that the majority of genes involved in SM biosynthesis are either silent or expressed at very low levels in standard laboratory conditions.⁶ This is a logical phenomenon

given the natural functions of SMs, as laboratory culture conditions lack the life-threatening or competitive circumstances likely to trigger SM production. Expression of these genes sometimes requires exposure to a specific condition or stressful environment, and therefore culturing fungi in various conditions can result in the production of different SMs.⁷ Other times, genetic engineering techniques, such as heterologous expression or the use of inducible promoters, are required. Since the sequencing of the first *Aspergillus* genome in 2005,⁸ researchers have used bioinformatics to identify and characterize the SM biosynthetic gene clusters present in various species of *Aspergillus*.⁹ There have been considerable efforts to activate silent clusters and link them to their downstream products, as genome mining these "cryptic" pathways offer a promising source for new drug discovery.¹⁰ Further, linking known therapeutically-relevant SMs to their biosynthesis genes facilitates genetic manipulation efforts to optimize product yields of first-generation compounds and engineer second-generation compounds.

In 2012, a comprehensive review depicting the status *Aspergillus* SM research was published by J.F. Sanchez et al.¹¹ Building on this previous work, this review examines advances made in *Aspergillus* SM genome mining efforts since 2012. Specifically, it focuses on progress made within the species of *Aspergillus nidulans, Aspergillus fumigatus, Aspergillus niger*, and *Aspergillus terreus*, which are distinguished for their significant use in research, medicine, and biotechnology. The well-characterized fungus *A. nidulans* has been extensively used as a model organism to study genetics and cell biology. Additionally, the development of *A. nidulans* "clean background" strains, which are lacking production of common SMs, combined with the availability of regulatable promoters and several genetic selection markers have facilitated its wide use as a heterologous expression host.¹² The common airborne pathogen *A. fumigatus*

infections, although infections can also be caused by *A. flavus*, *A. terreus*, *A. niger*, and *A. nidulans*.^{13,14} Nevertheless, *A. fumigatus* is known to produce biologically useful SMs, including fumitremorgin C, which exhibits potent activity against the breast cancer resistance protein.¹⁵ Melanized *A. niger* is used extensively in the biotechnology industry for production of citric acid and enzymes.¹⁶ Additionally, it produces an array of therapeutically relevant SMs, including the antimicrobial aurasperone A,¹⁷ the antioxidant and antifungal aurasperone B,¹⁸ the human cancer cytotoxic agent bicoumanigrin A,¹⁹ and the antioxidant pyranonigrin A.²⁰ *A. terreus* is used for biotechnological production of the cholesterol-lowering drug lovastatin^{21,22} and the industrial polymer precursor itaconic acid.^{23,24}

2. The status of genome mining Aspergillus secondary metabolites

The overall status of linking predicted SM core backbone synthase enzymes to their downstream products in *A. nidulans, A. fumigatus, A. niger*, and *A. terreus* is summarized in Table 1. Of the 66 predicted core synthase enzymes in the *A. nidulans* genome, 29 (43.9%) have been linked to downstream SM products. Similarly, of the 40 predicted SM core synthase enzyme-encoding genes in *A. fumigatus*, 19 (47.5%) have been linked to downstream SM products. While the *A. niger* and *A. terreus* genomes contains 99 and 74 predicted SM synthase enzymes, only 14 (14.1%) and 20 (27.0%) have been linked to their products, respectively. Tables 2-5 list the predicted SM core synthase genes and linked cluster products in *A. nidulans, A. fumigatus, A. niger*, and *A. terreus*, respectively. The following sections review the specific advances made in the genetic characterization and biosynthetic pathway elucidation of SMs produced by these four species in the past six years (2012-2018). It is important to note that levels of details that have been clarified for these pathways varies quite significantly, as some pathways have been

proposed with considerable detail while others involve sole characterization of the core synthase enzyme.

3. Genetic characterization of secondary metabolites in Aspergillus nidulans

3.1 Biosynthesis of ent-pimara-8(14),15-diene

The silent SM gene cluster of the novel diterpene *ent*-pimara-8(14),15-diene was activated through overexpression of the Zn(II)₂Cys₆ transcription factor PbcR present in the cluster.²⁵ This led to high up-regulation of 7 adjacent genes encoding a diterpene synthase, a geranylgeranyl pyrophosphate synthase, a HMG-CoA reductase, a translation elongation factor, a short-chain dehydrogenase, a hypothetical protein with partial similarity to methyltransferase, and a cytochrome P450, as well as the production of *ent*-pimara-8(14),15-diene. Based on this information, the biosynthesis of *ent*-pimara-8(14),15-diene was proposed to involve HMG-CoA reductase AN1593 to generate mevalonate and geranylgeranyl pyrophosphate synthase AN1592 to generate geranylgeranyl pyrophosphate (Scheme 1). Next, the diterpene synthase AN1594 was proposed to catalyze two cyclization reactions to generate *ent*-pimara-8(14),15-diene through a *ent*-copalyl diphosphate intermediate.

3.2 Biosynthesis of asperniduglene A1

The asperniduglenes were discovered upon activation of the *sdg* gene cluster in *A. nidulans*, which harbors genes with similarity to the citreoviridin (*ctv*) gene cluster in *A. terreus*.²⁶ Interestingly, despite the similarity of the cluster to the *ctv* cluster, the asperniduglenes fall into a different class of compounds than citreoviridin. The cluster was activated by replacing the promoters of genes within the *sdg* cluster with the inducible *alcA* promoter. Large-scale

cultivation and examination of SMs and intermediates produced by mutant strains enabled the biosynthetic pathway of asperniduglene A1 to be proposed (Scheme 2). First, the polyketide product is biosynthesized by the HR-PKS SdgA, followed by epoxidation by SdgC, and subsequent ketone formation via Meinwald rearrangement, likely catalyzed by SdgF. Next, SdgC catalyzes a second epoxidation on the last olefin, followed by stereospecific cyclization and hydrolytic cleavage, both of which may be catalyzed by SdgD, to form asperniduglene A1.

3.3 Biosynthesis of aspernidine A

The biosynthetic gene cluster of aspernidine A, which has exhibited antiproliferative activity against tumor cell lines,²⁷ was identified following construction of a genome-wide kinase knockout library in *A. nidulans*.²⁸ Screening of the library, which consisted of 98 deletion strains, revealed that deficiency of the mitogen-activated protein kinase MpkA resulted in the production of aspernidines A and C. Structural analysis indicated that aspernidines A and C are likely derived from orsellinaldehyde, which suggested the involvement of the NR-PKS PkfA in their biosynthesis.²⁹ Individual deletion of genes within the *pkf* cluster in the *mpkA*- genetic background strain resulted in the discovery of related compounds aspernidines D and E and allowed a biosynthetic pathway for aspernidine A to be partially proposed (Scheme 3). Following biosynthesis by PkfA, orsellinaldehyde undergoes O-methylation, hydroxylation, and prenylation to yield aspernidine D, which is likely catalyzed, in part, by the prenyltrasferase PkfE. Aspernidine D is then hydroxylated by cytochrome P450 PkfB to form aspernidine E, which is oxidized by PkfF to generate a dialdehyde intermediate that is subsequently transformed to aspernidine A in a manner that has not been fully clarified yet.

3.4 Biosynthesis of microperfuranone

To investigate SMs produced by NRPS-like genes, scientists replaced the native promoters of the 13 predicted NRPS-like genes in *A. nidulans* with the inducible *alcA* promoter.³⁰ Induction of NRPS-like MicA resulted in enhanced production of microperfuranone, which has previously been isolated from *Anixiella micropertusa* and *Emericella nidulans*.^{31,32} Heterologous expression of *micA* in *A. niger* confirmed that MicA is solely responsible for the biosynthesis of microperfuranone, which was proposed to involve the joining of two units of phenylpyruvic acid via an aldol condensation reaction while tethered to MicA (Scheme 4). Next, the tethered intermediate undergoes sulfur-mediated cyclization to yield a furan ring, followed by decarboxylation and keto-enol tautomerization to form microperfuranone.

3.5 Biosynthesis of fellutamide B

Fellutamide B, which was originally isolated from *Penicillum fellutanum*, is a potent proteasome inhibitor that also induces nerve growth factor release.³³ In the past decade proteasome inhibitors have emerged as effective anticancer agents, with several second-generation proteasome inhibitors currently being tested in clinical settings.^{34–36} To identify biosynthetic gene clusters that may be involved in the production of proteasome inhibitors, researchers searched for potential resistance genes harbored within SM gene clusters in *A. nidulans.*³⁷ Interestingly, they found that within the *inp* cluster, *inpE* encoded a putative proteasome component, which has no obvious role in SM biosynthesis. The silent *inp* cluster was activated by replacing the promoters of six genes within the cluster with the inducible promoter *alcA*, which revealed that fellutamide B is the SM cluster's final product. The fellutamide B biosynthetic gene cluster contains two NRPS genes, a predicted fatty-acyl-AMP ligase, a NRPS product release/transfer protein, a

transporter, and *inpE*, which was found to confer resistance to internally produced fellutamide B.³⁷ Biosynthesis of fellutamide B was proposed to involve initial activation of 3-hydroxydodecanoic acid by IncP to form 3-hydroxydodecanoyl-AMP, which undergoes addition of L-Asn and L-Gln while tethered to InpB, followed by addition of L-Leu while tethered to InpA (Scheme 5). The product is then released to yield fellutamide B.

3.6 Biosynthesis cichorine

Culturing of *A. nidulans* on Yeast Extract Sucrose (YES) led to the production of cichorine, which is a phytotoxin that possesses activity against corn, soybeans, and knapweed.^{38,39} The cichorine biosynthetic gene cluster was identified using targeted individual gene deletions, revealing that the gene cluster consisted of NR-PKS-encoding *pkbA*, regulatory protein-encoding *cicD*, transporter-encoding *cicA*, and four tailing protein-encoding genes.³⁸ Analysis of extracts produced by deletion strains enabled some insights into the cichorine biosynthetic pathway (Scheme 6), which involves initial production of 3-methyl-orsellinic acid by the PKS PkbA, which undergoes a ring-closing transformation by CicB and/or CicH, followed by phenol group methylation by CicE to yield nidulol. The remaining steps in cichorine biosynthesis involve a lactone to lactam conversion carried genes found outside the *cic* SM gene cluster, perhaps by genes within a different cluster, such as the case with xanthone and terpene biosynthesis in *A. nidulans*.^{40,41}

3.7 Biosynthesis aspercryptin

Researchers generated a "genetic dereplication" strain, which is deficient in production of most *A. nidulans* SMs, including sterigmatocystin,⁴² the emericellamides,⁴³ asperfurnanone,⁴⁴ the

Page 10 of 54

prenyl xanthones,⁴⁰ terrequinone,⁴⁵ F9775A and B,⁴⁶ asperthecin,⁴⁷ austinol,⁴¹ and dehydroaustinol.⁴¹ The clean SM background facilitated the detection of a novel SM, designated as aspercryptin.⁴⁸ The structure of aspercryptin indicated that it is biosynthesized by a NRPS pathway and involves the incorporation of six amino acids, including threonine, isoleucine, aspartic acid/asparagine, serine, lysine-like, and one unidentified amino acid. NRPS enzymes feature adenylation domains responsible for the correct identification and incorporation of amino acid monomers during SM biosynthesis. Often times, each adenylation domain present within an NRPS is responsible for the incorporation of a different amino acid.⁴⁹ Therefore, scientists searched for an NRPS containing six adenylation domains in silico, which revealed NRPSencoding AN7884. Microarray expression array data had previously revealed that AN7884 was co-regulated with 13 adjacent genes, including genes encoding for a short chain dehydrogenase, a cytochrome P450 hydroxylase, a fatty acid synthase, amino acid aminotransferase, and transporters. Targeted gene deletions confirmed the involvement of these genes in the biosynthesis of aspercryptin, which were designated as *atnA-atnN*, and evaluation of biosynthetic intermediates in deletion strains facilitated the elucidation of the aspercryptin biosynthetic pathway (Scheme 7). Interestingly, the proposed pathway uses cichorine as a precursor, which was confirmed by deleting the NR-PKS involved in cichorine biosynthesis, which eliminated production of aspercryptin.

3.8 Biosynthesis of felinone A

To search for negative regulators of secondary metabolism, researchers generated auxotrophic mutants by replacing the coding sequences of target SM core synthase enzymes with the *A*. *fumigatus riboB* gene (*AfriboB*).⁵⁰ Thus, when the target SM cluster is inactive, the fungus will

not be able to survive without media supplementation of riboflavin. The strain was then mutangenized with 4-nitroquinoline 1-oxide (NQO), which causes base-pair substitutions, and subsequent growth without riboflavin enabled the detection of strains in which the induced mutations resulted in SM cluster activation. This technique enabled the identification of the transcription factor *mcrA*. Investigation of SM production in mutant strains lacking and overexpressing *mcrA* revealed that it is a negative regulator of at least ten SM clusters in *A. nidulans*. Additionally, large-scale cultivation of the mcrA- deletion strain enabled the isolation of the antibiotic felinone A.⁵¹ Examination of the structure of felinone A, combined with products previously reported to be produced by the *dba* cluster,^{29,52} enabled the biosynthetic pathway for felinone A to be proposed (Scheme 8). The pathway involves generation of the polyketide product by the NR-PKS DbaI, followed by dearomatization via hydroxylation by the FAD-binding monnooxygenase DbaH. The final steps of the pathway include a ring closure to generate an azaphilone ring system followed by several reductive steps that have not been clarified yet.

3.9 Biosynthesis 4'-methoxyviridicatin

Quinolone alkaloids are a class of SMs that exhibit a broad range of medicinally relevant characteristics, including antibiotic, antiviral, antimalarial, and antitumor activities.⁵³ A 6,6quinolone scaffold is present in a variety of quinolone alkaloids, including 4'-methoxyviridicatin and structurally similar viridicatin, which exhibits strong activity against *Mycobacterium tuberculosis*.⁵⁴ To elucidate the biosynthetic nature of this class of compounds, a silent candidate cluster containing genes encoding an NRPS, a prenyltransferase, terpene cyclases, and redox enzymes was activated through overexpression of the NRPS AsqK.⁵⁵ A combination of in vivo

and in vitro assays were conducted to elucidate the biosynthetic pathway of 4'methoxyviridicatin (Scheme 9). The proposed pathway involves an anthranilic acid and Omethyl-L-tyrosine precursor, which undergo conversion to 4'-methoxycyclopeptin by NRPS AsqK. Next, the dioxygenase AsqJ catalyzes two distinct oxidation reactions, the first being a desaturation reaction to form a double bond and yield 4'-methoxydehydrocyclopeptine, followed by monooxygenation of that double bond to form an epoxide and yield (-)-4'methoxycyclopenine. Interestingly, this epoxide formation then facilitates subsequent nonenzymatic rearrangement to form the 6,6-quinolone viridiatin scaffold from the 6,7-bicyclic core of (-)-4'-methoxycyclopenine, yielding 4'-methoxyviridicatin.

3.10 Biosynthesis of grey-brown conidiophore pigment

Fungal pigments have a wide range of beneficial properties, including antioxidant, antimicrobial, and anticancer activities, and can act as natural alternatives to chemically synthesized colorants.⁵⁶ Historically, the NRPS IvoA and the phenol oxidase IvoB were known to be involved in grey-brown condidiophore pigment production,⁵⁷ although its biosynthetic pathway had not been fully elucidated. Additionally, microarray expression data had revealed that the gene adjacent to *ivoA*, *ivoC*, was coregulated with *ivoA*.⁵⁸ Researchers therefore replaced the native promoters of *ivoA*, *ivoB*, and *ivoC* with the inducible promoter *alcA*, which resulted in hyphal accumulation of dark pigments.⁵⁹ The biosynthetic pathway was reconstructed in a stepwise manner to assign functions to each involved gene, revealing that IvoA is the first NRPS known to acetylate tryptophan, leading to *N*-acetyltryptophan. IvoC is then responsible for 6-hydroxylation of N-tryptophan, followed by subsequent oxidation by IvoB to yield grey-brown conidiophore pigment (Scheme 10).

3.11 Biosynthesis of (+)-asperlin

The SM (+)-asperlin, whose production has been reported in *A. nidulans, Aspergillus caespitosus*, and *Aspergillus versicolor*, possesses antibiotic, anti-inflammatory, and antitumor activity.^{60–64} The biosynthetic gene clsuter responsible for (+)-asperlin production was recently identified in *A. nidulans* using a novel cluster activation method that features the use of a hybrid transcription factor,⁶⁵ as previous attempts to activate this cluster through overexpression of the cluster's transcription factor were unsuccessful.²⁹ Up-regulation of the hybrid transcription factor fused to the activation domain of the asperfuranone gene cluster transcription factor AfoA, led to production of (+)-asperlin. Targeted gene deletions in combination with RNA-seq confirmed the involvement of 10 genes in the biosynthesis of (+)-asperlin, which were designated as *alnA-alnI* and *alnR*. Additionally, (2Z,4Z,6E)-octa-2,4,6-trienoic acid, which exhibits photoprotectant properties,⁶⁶ was identified as a biosynthetic pathway intermediate (Scheme 11). The individual steps involved in the biosynthesis of (+)-asperlin remain to be fully elucidated.

4. Genetic characterization of secondary metabolites in Aspergillus fumigatus

4.1 Biosynthesis of hexadehydroastechrome

The positive global regulator of secondary metabolism LaeA has been shown to also play a major role in positive regulation of virulence genes in *A. fumigatus*.⁶⁷ One way that LaeA alters virulence is through up-regulation of SM gene clusters responsible for biosynthesis of toxins, such as the epipolythiodioxopiperazine gliotoxin.^{13,68} To search for other SM virulence factors in *A. fumigatus*, scientists reasoned that such SMs would be up-regulated by both LaeA and

exposure to host/hypoxia environments. Microarrays were compared to identify gene clusters that exhibited down-regulation in *laeA*- deletion strains and up-regulation in response to host exposure/hypoxia.^{69–72} Such comparison revealed the identification of the *has* eight-gene cluster, harboring genes encoding the NRPS HasD, the DMATS HasE, two C6 transcription factors HasA and HasF, the transporter HasB, the O-methyltransferase HasC, the FAD binding protein HasG, and the cyctochrome P450 HasH.⁷³ C6 transcription factors commonly regulate expression of genes within a SM cluster and hasA was highly down-regulated in the laeAmutant strain. Researchers therefore overexpressed hasA by replacing its promoter with the constitutive gdpA promoter, which led to activation of the has gene cluster and production of the Fe(III) complex hexadehydroastechrome. Interestingly, activation of the has cluster enhanced the virulence of *A. fumigatus*, significantly decreasing the survival of infected mice.⁷³ To investigate the biosynthetic pathway of hexadehydroastechrome, individual gene knockout mutants were generated for hasB-hasE in the OE::hasA genetic background strain. Biosynthesis of hexadehydroastechrome initiates by loading the NRPS HasD with L-tryptophan and L-alanine, followed by prenylation of the Trp-Ala-dipeptide (Scheme 12). The subsequent biosynthetic tailoring reactions performed by HasH, HasC, and HasG were proposed to occur while the intermediate remains tethered to the NRPS. Next, the NRPS releases a O-methylated diketopiperazine derivative, which then forms a trimeric complex with Fe(III).

4.2 Biosynthesis of endocrocin

The anthraquinone endocrocin has been isolated from a broad range of species, including various fungi,^{74,75} plants,⁷⁶ and insects.⁷⁷ Historically, anthraquinones have been known to display various medicinal properties, such as anti-inflammatory and antitumor bioactivities, and have

been used in dyes, cosmetics, paper manufacturing, and as food additives.^{76,78,79} However, more recently endocrocin was found to contribute to the pathogenicity of A. fumigatus through inhibition of neutrophil recruitment.⁸⁰ Interestingly, endocrocin was found to be biosynthesized through two distinct routes by physically discrete clusters enc and tpc in A. fumigatus.^{81,82} Biosynthesis by the *enc* cluster was initially reported in *A. fumigatus* CEA10-derived strains.⁸¹ which did not produce trypacidin due to a single nucleotide mutation present in PKS-encoding *tpcC*.⁸³ To elucidate the biosynthetic pathway of endocrocin in *A. fumigatus*, the genome was surveyed for a candidate NR-PKS. Endocrocin was previously identified as a biosynthetic intermediate of monodictyphenone that was only produced in strains lacking the activity of the decarboxylase MdpH.⁸⁴ Bioinformatics were therefore used to search for proteins with similarity to the monodictyphenone-producing NR-PKS MdpG in A. nidulans, which revealed the identification of three NR-PKS genes within the A. fumigatus genome. The biosynthetic gene clusters of two of the NR-PKSs suggested a final product more complex than endocrocin, so researchers focused on the third NR-PKS, which they named EncA. The NR-PKS EncA lacked the thioesterase (TE) or Claisen cyclase (CLC) domain that is usually responsible for releasing the nascent polyketide product in this class of enzymes.^{85,86} In such TE-less enzymes, the polyketide product is instead released by metallo-β-lactamase-type thioesterases enzymes.⁸⁷ To confirm involvement of EncA in the biosynthesis of endocrocin, a *encA*- mutant was generated, which resulted in a strain deficient in endocrocin production.⁸¹ Subsequent deletion of tailoring genes revealed the involvement of the metallo- β -lactamase domain protein EncB and the anthrone oxidase EncC in endocrocin biosynthesis, which enabled its biosynthetic pathway to be proposed (Scheme 13). Surprisingly, deletion of the cluster gene *encD* resulted in increased production of endocrocin, which could have occurred for two reasons: EncD may catalyze the

formation of an unknown product from endocrocin or EncD may inhibit endocrocin biosynthesis by converting an intermediate to an unknown product.⁸¹

Redundant biosynthesis of endocrocin by the *tpc* cluster was later revealed upon elucidation of the trypacidin biosynthetic pathway in *A. fumigatus* strain Af293, which will be discussed more thoroughly in the following section.⁸² To investigate any interrelationships between endocrocin and trypacidin, *encA* was deletion in the trypacidin-producing Af293 strain. In contrast to the previous study conducted in CEA10-derived strains with an inactive *tpc* cluster, deletion of *encA* did not result in complete loss of endocrocin production, although production yields decreased.^{81,82} Subsequent generation of a mutant strain deficient in both *encA* and *tpcA* resulted in a complete loss of endocrocin. To further investigate the biosynthesis of endocrocin by *tpc*-encoded enzymes, genes within the *tpc* cluster were individually deleted in the *encA*- background, which revealed a second pathway for endocrocin biosynthesis, as the beginning pathway steps both involve the production of atrochrysone carboxylic acid from TpcC and TpcB, which then undergoes a loss of H₂O to yield endocrocin anthrone. Formation of endocrocin is then catalyzed by TpcL.

4.3 Biosynthesis of trypacidin

The spore metabolite trypacidin, which was initially identified as an anti-protozoal agent,^{88,89} was more recently shown to be cytotoxic against human lung cells.⁹⁰ A candidate cluster for trypacidin biosynthesis was identified as a cluster harboring the TE-less NR-PKS TpcC,⁸² which belongs to the same NR-PKS clade as the endocrocin PKS in *A. fumigatus*,⁸¹ the monodicyphenone PKS in *A. nidulans*,⁸⁴ and the geodin PKS in *A. terreus*.⁹¹ The 13 genes within

the cluster, 12 of which displayed high sequence homology to the geodin-producing cluster,⁹¹ were individually deleted and mutant strains were analyzed for the production of pathway intermediates,⁸² which enabled proposal of the trypacidin biosynthetic pathway (Scheme 14). The first few steps are identical to that of endocrocin biosynthesis, with the generation of atrochrysone carboxylic acid from NR-PKS TpcC and metallo- β-lactamase TpcB. TpcK then catalyzes decarboxylation to yield atrochrysone, which then undergoes dehydration to yield emodine anthrone. The anthrone oxygenase TpcL catalyzes the addition of a ketone functional group to yield emodin, followed by activity of the O-methyltransferase TpcA to yield questin. The remaining steps in the pathway were proposed based on comparison to similar pathways, and involve a ring opening catalyzed by TpcG, TpcI, and TpcF, followed by O-methylation by both TpcM and TpcH to generate monomethylsulochrin, which is then converted to trypacidin by TpcJ.

4.4 Biosynthesis of helvolic acid

Fusidane-type antibiotics are a class of fungi-derived triterpenes that include helvolic acid,⁹² fusidic acid,⁹³ and cephalosporin P1,⁹⁴ all which display potent activity against Gram-positive bacteria.⁹⁵ Structurally, they have a characteristic tetracyclic core that is generated from enzymatic cyclization of (3S)-2,3-oxidosqualene.⁹⁶ Notably, fusidane-type antibiotics have exhibited no cross-resistance to commonly used antibiotics,^{97,98} which has drawn the attention of scientists to search for analogs with increased bioactivity.⁹⁹ Researchers therefore investigated the full biosynthetic pathway of helvolic acid, as such understanding can facilitate the development of useful fusidane-type antibiotic derivatives. A portion of genes within the helvolic-acid-producing *hel* cluster had previously been identified. To further characterize the

cluster, its nine genes were heterologously introduced stepwise in *Aspergillus oryzae*, which resulted in the production and of helvolic acid and 21 derivatives, three of which exhibited increased antibiotic activity against *Staphylococcus aureus* when compared to helvolic acid.¹⁰⁰ A biosynthetic pathway was proposed for helvolic acid (Scheme 15), which involves initial cyclization of (3S)-2,3-oxidosqualene by oxidosqualene cyclase HelA to yield protosta-17(20)Z,24-dien-3β-ol. The intermediate then undergoes two rounds of oxidation by HelB1 and HelB2, followed by acetylation by HelD2, oxidation by HelB4, and oxidative decarboxylation by HelC. Next, HelB3 mediates two oxidative reactions which result in hydroxyl and ketone formation, followed by O-acetylation by HelD1, and dehydrogenation by HelE to yield helvolic acid. Interestingly, this study revealed unique roles for HelB1 and HelC, which work together to remove the C-4 β methyl group through oxidation followed by decarboxylation, a mechanism distinct from the similar demethylation reaction that occurs during sterol biosynthesis.

4.5 Biosynthesis of fumipyrrole

A. fumigatus is capable of surviving in a myriad of distinct niches, ranging from the human lung, where it can cause invasive aspergillosis in immunocompromised individuals, to decaying vegetation, where it plays important roles in breaking down organic matter.¹⁰¹ The capacity to readily survive in different habitats, which correlates with pathogenicity in physiological environments, is largely dependent on the ability to sense external stimuli and respond with different signal transduction cascades, including the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway.¹⁰² To explore the targets of the cAMP/PKA pathway, the catalytic subunit 1 of PKA was overexpressed, which resulted in induction of the pathway and differential expression of various genes, including high up-regulation of the transcription

factor *fmpR*, which is harbored in a SM gene cluster.¹⁰³ To identify the SM produced by this cluster, *fmpR* was overexpressed using the Tet-on system,¹⁰⁴ which led to activation of six other cluster genes encoding the NRPS FmpE, the fructosyl amino acid oxidase FmpA, hypothetical proteins FmpB and FmpC, ABC multidrug transporter FmpD, and the phenol-2-monooxygenase FmpF. The product produced by this biosynthetic gene cluster was identified as the novel SM fumipyrrole (Scheme 16).

4.6 Biosynthesis of neosartoricin and fumicyclines

The meroterpenoid neosartoricin was first isolated following activation of the six-gene nsc/fcc cluster in both A. fumigatus and Neosartorya fischeri, which harbors genes encoding the TE-less NR-PKS NscA/FccA, the metallo-β-lactamase-type thioesterase NscB/FccB, the Flavindependent monooxygenase NscC/FccC, the polycyclic prenyltransferase NscD/FccD, the NADdependent dehydratase NscE/FccE, and the pathway-specific Zn(II)₂Cys₆ transcription factor NscR/FccR.¹⁰⁵ In both species, the cluster was activated through overexpression of NscR/FccR. Shortly after, related fumicyclines A and B were isolated from A. fumigatus following cocultivation with *Streptomyces rapamycinicus*.¹⁰⁶ Full genome microarrays were used to identify the gene cluster responsible for production of funicyclines, which revealed upregulation of the *nsc/fcc* gene cluster following cocultivation. To confirm the involvement of this cluster, NR-PKS-encoding *nscA/fccA* was deleted, which resulted in complete elimination of fumicycline production. For both studies, the biosynthetic pathway of neosartoricin and fumicyclines was proposed based on the detection of intermediates and shunt products (Scheme 17). Biosynthesis initiates with reactions catalyzed by the NR-PKS NscA/FccA and release of the nascent polyketide product by NscB/FccB. The intermediate then undergoes a loss of CO₂,

followed by prenylation catalyzed by NscD/FccD and hydroxylation by NscC/FccC to yield fumicycline B. Fumicycline B then undergoes O-acetylation to yield neosartoricin or dehydration to yield fumicycline A.

4.7 Biosynthesis of fumagillin

Since its discovery in 1951, the antibiotic fumagillin has been extensively studied for its medicinal applications, which include anti-angiogenic activity through inhibition of human type 2 methionine aminopeptidase (MetAP-2) and potential use for treatment of amebiasis and microsporidiosis.^{107–110} Fumagillin is a meroterpenoid that possesses a highly-oxygenated cyclohexane ring esterified with a decatetraenedioic acid. Interestingly, although the total synthesis of fumagillin has been well-studied,^{111,112} its biosynthetic pathway had not been elucidated. Researchers therefore examined SM clusters harboring genes encoding HR-PKSs in A. fumigatus, and identified a candidate cluster containing genes encoding MetAP-2 and a type 1 MetAP, which they hypothesized might be involved in self-resistance against fumgaillin.¹¹³ To confirm that this cluster was responsible for fumagillin production, the cluster's HR-PKS, designated *fma*-PKS, was deleted, which resulted in complete elimination of fumagillin production. In vitro assays were used to decipher the functions of other enzymes encoded within the *fma* cluster, which enabled the biosynthetic pathway of fumagillin to be proposed (Scheme 18). Biosynthesis of the terpenoid portion of the carbon backbone involves initial generation of farnesyl pyrophosphaten (FPP), which is converted to sesquiterpene β -trans-bergamotene by the terpene cyclase *fma*-TC, which then undergoes two rounds of epoxidation, dihydroxylation, and O-methylation to yield fumagillol. In parallel, the HR-PKS fma-PKS biosynthesizes the polyketide product, which is then combined with fumagillol in a reaction catalyzed by *fma*-AT.

The intermediate's terminal alkene is then epoxidated, followed by hydrolysis to yield a vicinal diol, followed by cleavage to yield an aldehyde, and oxidation to generate fumagillin.

5. Genetic characterization of secondary metabolites in Aspergillus niger

5.1 Biosynthesis of kotanin

To identify the biosynthetic gene cluster responsible for biosynthesis of the bicoumarin kotanin in A. niger, scientists searched for gene clusters containing NR-PKS genes, since formation of the monomeric coumarin does not require any reduction steps.¹¹⁴ The candidate clusters were further narrowed down to include only clusters harboring cytochrome P450 or monooxygenases, which would be required for kotanin production. The NR-PKS required for kotanin biosynthesis was confirmed to be KtnS through targeted gene deletion, which led to complete loss of coumarin production. The functions of the other genes within the cluster were investigated using targeted gene deletions, which confirmed the involvement of the O-methytransferase KtnB and the cytochrome P450 monooxygenase KtnC in kotanin biosynthesis, and allowed the biosynthetic pathway for kotanin to be proposed (Scheme 19). The pathway is initially catalyzed by KtnS to synthesize the pentaketidic dihydroxycoumarin, followed by O-methylation by KtnB to yield a siderin derivative. Next, KtnC catalyzes an oxidative phenol coupling reaction while controlling regio- and stereoselectivity to generate P-(+)-orlandin. Docking experiments were performed to explore the mechanism of regio- and stereoselectivity, which revealed that it is likely dependent on substrate orientation in the active site of KtnC.¹¹⁴ P-(+)-kotanin is then generated following O-methylation of P-(+)-orlandin.

5.2 Biosynthesis of azanigerones

Although many SM gene clusters contain only one encoding PKS, others contain two that can either work in sequence or in convergence to biosynthesize the polyketide product.^{44,115,116} When two PKS enzymes work in sequence, the polyketide chain biosynthesized from the first PKS is transferred to the second PKS, which continues the chain elongation process. Two PKSs working in convergence function independently of one another, and the polyketide products generated from each enzyme are ultimately connected by other pathway enzymes. To explore similar PKS-PKS partnerships in A. niger, researchers overexpressed a pathway-specific transcription factor that was present in a cluster that also harbored the NR-PKS AzaA and the HR-PKS AzaB, which led to the production of previously unknown azaphilone SMs.¹¹⁷ Azaphilones are a class of compounds that consist of a highly-oxygenated bicyclic core and a chiral quaternary center.¹¹⁸ They are structurally diverse and feature a wide range of bioactivities, including antimicrobial, antifungal, antiviral, antioxidant, ant-inflammatory, cytotoxic, and nematicidal properties.¹¹⁸ The most abundant azaphilone produced in the overexpression strain was designated as azanigerone A. Other related compounds were produced at earlier time points, including FK17-P2a and azanigerones B and C, and azanigerone D was observed to replace azanigerone A at later time points. To further explore the mechanism of collaboration between NR-PKS AzaA and HR-PKS AzaB in azanigerone biosynthesis, an *azaB*- deletion strain was generated, which upon culturing led to the accumulation of two new compounds, designated as azanigerones E and F. This suggests a convergence biosynthesis model, in which AzaA and AzaB biosynthesize two discrete polyketide products which are combined at later step in the pathway. Interestingly, this is the first report of convergent collaboration between an NR-PKS and a HR-PKS in SM biosynthesis. These findings, combined with subsequent in vitro experiments to confirm the role of tailoring enzyme AzaH, enabled scientists to propose a pathway for azaphilone biosynthesis in A. niger

(Scheme 20). The NR-PKS AzaA catalyzes biosynthesis of a hexaketide precursor, which then undergoes a terminal ketone reduction catalyzed by the ketoreductase AzaE to yield FK17-P2a. Next, the monooxygenase AzaH hydroxylates FK17-P2a, which facilitates formation of the pyran-ring and generation of azanigerone E. In parallel, the HR-PKS AzaB biosynthesizes a 2,4-dimethylhexanoyl chain, which is combined with FK17-P2a to generate azanigerone B in a reaction facilitated by the acyltransferase AzaD. Next, azanigerone B is hydroxylated by FAD-dependent monooxygenase AzaG or AzaL to yield azanigerone C, followed by C-C oxidative cleavage by cytochrome P450 AzaI, and oxidation of the aldehyde to a carboxylic acid by AzaJ, yielding azanigerone A. Azanigerone A can then undergo addition of NH₃ to generate azanigerone D, which was observed to replace azanigerone A production at later time points.

5.3 Biosynthesis of yanuthone D

The yanuthones comprise a group of SMs that feature an epoxylated six-member ring with a sesquiterpene and two other varying side chains.¹¹⁹ The core structure of yanuthones can be derived from the polyketide 6-methylsalicylic acid (6-MSA), which are distinguished as class I yanuthones, or from an unknown precursor that generates a C6-core scaffold, which are distinguished as class II yanuthones.¹²⁰ The class I yanuthone, yanuthone D, has displayed potent antimicrobial activity against *Candida albicans*, methicillin-resistant *S. aureus*, and vancomycin-resistant *Enterococcus*.^{119,121} To investigate the capacity of *A. niger* to produce 6-MSA-derived SMs, the *A. niger* PKS-encoding YanA was heterologously expressed in *A. nidulans* to confirm its involvement in the biosynthesis of the polyketide 6-MSA.¹²¹ To identify the final SM product of the 10-gene *yan* cluster, a *yanA*- deletion strain was generated and screened on various media, which revealed a loss of production of two SMs that were identified as yanuthones D and E. The

biosynthetic pathway of yanuthone D was further investigated by individually deleting genes within the *yan* cluster which resulted in the accumulation of yanuthone intermediates, and enabled a biosynthetic pathway to be proposed (Scheme 21). The pathway initiates with the biosynthesis of 6-MSA by the PKS YanA, followed by decarboxylation by YanB, and hydroxylation by the cytochrome P450 YanC, yielding toluquinol. Epoxide formation is then catalyzed by YanD and/or YanE, followed by prenylation by YanG to form 7deacetoxyyanuthone A. Next, cytochrome P450 YanH catalyzes conversion to 22deacetylyanuthone A, followed by conversion to yanuthone E by the O-mevalon transferase YanI. Interestingly, this is the first time that O-mevalon transferase activity has been molecularly characterized. Lastly, the oxidase YanF catalyzes the formation of yanuthone D from yanuthone E.

5.4 Biosynthesis of the pyranonigrins

The pyranonigrins are a group of compounds produced by *A. niger* with 2,2-diphenyl-1picrylhydrazyl radical scavenging antioxidant activity.^{20,122} The *pyn* gene cluster was activated by introducing a plasmid containing the pathway-specific Zn₂Cys₆ transcriptional regulator *pynR* under control of the arginase (*aga*) promoter.¹²³ Cluster activation resulted in induced transcription of PKS-NRPS-encoding *pynA*, FAD-dependent oxidoreductase-encoding *pynB*, Nmethyltransferase-encoding *pynC*, cyctochrome P450 oxidase-encoding *pynD*, and NAD-binding protein-encoding *pynE*, along with production of the SM pyranonigrin E. In a subsequent study, the *pyn* cluster was activated by replacing the *pynR* promoter with the robust *glaA* promoter,¹²⁴ and the biosynthetic pathway of pyranonigrin E was investigated using cluster gene deletion mutants in combination with in vivo and in vitro assays.¹²⁵ Researchers identified three

additional *pyn* cluster genes, including flavin-dependent oxidase-encoding *pynG*, aspartase protease-encoding *pynH*, and thioesterase-encoding *pynI*. The proposed biosynthetic pathway initiates with biosynthesis of the polyketide-nonribosomal peptide hybrid product by PynA, followed by release of the intermediate from PynA by PynI, generating pyranonigrin J (Scheme 22). Next PynC catalyzes N-methylation of pyranonigin J, followed by epoxidation by PynG, which facilitates the subsequent ring closure. PynD and PynH then catalyze the formation of pyranonigrin E, which can then dimerize to form pyranonigrin F. Alternatively, PynE can catalyze the conversion of pyranonigrin E to pyranonigrin G, which can be reversed by the PynB.

The potent antioxidant pyranonigrin A, whose production was previously reported in A. niger,^{126,127} was found to be biosynthesized by a PKS-NRPS gene cluster different from the *pyn* cluster.¹²⁸ The biosynthetic pathway of pyranonigrin A, which was elucidated in *Penicillium thymicola*, involves initial biosynthesis of the polyketide-nonribosomal peptide product by the PKS-NRPS PyrA, followed by product release catalyzed by either a Dieckmann cyclase (DKC) and/or the hydrolase PyrD (Scheme 23). Next, FAD-binding monooxygenase PyrC may catalyze epoxidation followed by subsequent ring closure to form the pyrano[2,3-c]pyrrole core, followed by conversion to pyranonigrin S and pyranonigrin A by cytochrome P450 PyrB.

6. Genetic characterization of secondary metabolites in Aspergillus terreus

In 2014, a review summarizing advances in SM genome mining in *A. terreus* was published by C.J. Guo et al,¹²⁹ which included the genetic characterization of terretonin,¹³⁰ asperfuranone,¹² terrein,¹³¹ terreic acid,¹³² and acetylaranotin.¹³³ This section focuses on discoveries made in *A. terreus* SM biosynthesis research since that review was published.

6.1 Biosynthesis of aspterric acid

The gene cluster responsible for the biosynthesis of the potent herbicide aspterric acid was identified using a resistance-gene-directed approach.¹³⁴ Scientists focused on identifying SMs that would target the dihydroxyacid dehydratase (DHAD) enzyme within the branched chain amino acid (BCAA) biosynthetic pathway, which is necessary for plant growth and considered a specific target for weed-control agents.¹³⁵ They reasoned that gene clusters responsible for biosynthesis of a DHAD inhibitor may also include a self-resistance gene, such as an additional copy of DHAD that is not sensitive to the produced inhibitor. Such a cluster was identified in A. *terreus*, which included genes encoding the sesquiterpene cyclase AstA, cyctochrome P450 enzymes AstB and AstC, and a homolog of DHAD AstD. Interestingly, this cluster is conserved across multiple fungal genomes, including Neosartorya fischeri NRRL 181, Penicillium *brasilianum*, and *Penicillium solitum* strain RS1.¹³⁴ To activate the silent gene cluster, *astA*, *astB*, and *astC* were heterologously expressed stepwise in *Saccharomyces cerevisiae* RC01, which resulted in the production of the sesquiterpenoid aspterric acid and its biosynthetic intermediates, and enabled researchers to propose the biosynthetic pathway for aspterric acid (Scheme 24). Its biosynthesis initiates with the cyclization of farnesyl diphosphate by AstA to yield (-)-daucane, followed by AstB-catalyzed oxidation to convert a methyl group to a carboxylic acid and form an epoxide. Next, the oxidation of a methyl group by AstC yields an alcohol, which facilitates an intramolecular epoxide opening to generate aspterric acid. Aspterric acid was found to inhibit DHAD at sub-micromolar levels, highlighting its capacity for use as a potent herbicidal agent. Additionally, the ability of the DHAD AstD to confer self-resistance to aspterric acid was confirmed.

Page 27 of 54

6.2 Biosynthesis of phenguignardic acid

The NRPS-like-encoding gene *pgnA* was activated in *A. terreus* using a doxycycline-dependent inducible Tet-on expression system that had previously been developed for the activation of genes in *A. niger*.^{104,136} The system involves *gdpA*-mediated constitutive expression of the doxycycline-dependent transcriptional activator rtTA fused to *tetO7* sites and a Pmin promoter sequence that precedes the target gene. In the presence of doxycycline, rtRA binds to *tetO7*-Pmin and activates transcription of the target gene. The study revealed that activation of the *pgnA* resulted in the production of phenguignardic acid,¹³⁶ which has displayed non-host-specific phytotoxic activity.¹³⁷ Heterologous expression in *A. nidulans* confirmed that PgnA is independently responsible for phenguignardic acid production (Scheme 25).

6.3 Biosynthesis of asperphenamate

The amino acid ester asperphenamate and its derivatives have displayed potent activity against breast cancer cell lines.^{138,139} The structure of asperphenamate consists of *N*benzoylphenylalanine and *N*-benzoylphenylalaninol subunits, which are linked together by an ester. Its bioactivity and rare structure prompted the molecular characterization of asperphenamate. Targeted gene deletions in asperphenamate-producing *Penicillium brevicompactum* confirmed that the *apm* cluster, which harbors two NRPSs and is conserved across the genomes of *A. terreus* and *Aspergillus aculeatus*, is responsible for asperphenamate biosynthesis.¹⁴⁰ The biosynthetic pathway of asperphenamate was elucidated by examining the production of biosynthetic intermediates in deletion strains and by conducting feeding studies in heterologous hosts. This study confirmed that NRPSs ApmA and ApmB are sufficient for

biosynthesis of asperphenamate, despite the presence of potential tailoring enzymes within the cluster (Scheme 26). First, ApmA biosynthesizes an amide intermediate from phenylalanine and benzoic acid precursors. ApmB activates the same substrates and accepts the ApmA-biosynthesized linear dipeptidyl precursor, which are combined through inter-molecular ester bond formation to generate asperphenamate. Interestingly, this was the first study to reveal a two-module NRPS system responsible for the biosynthesis of an amino acid ester.

6.4 Biosynthesis of citreoviridin

Citreoviridin is an ATP synthase inhibitor that has been investigated as a therapeutic agent to target breast cancer.¹⁴¹ To identify its biosynthetic gene cluster in *A. terreus*, a resistance-genedriven approach was utilized.¹⁴² One such cluster contained the F1-ATPase β -chain-encoding CtvE, which is a subunit of the target of citreoviridin, along with genes encoding the HR-PKS CtvA, the SAM-dependent methyltransferase CtvB, the flavin-dependent monooxygenase CtvC, and the hydrolase CtvD. To investigate the biosynthetic pathway of citreoviridin, the genes within the *ctv* cluster were heterologously expressed stepwise in *A. nidulans*, which resulted in the production of intermediates and allowed a biosynthetic pathway to be proposed (Scheme 27). CtvA first biosynthesizes an α -pyrone intermediate, which undergoes hydroxyl group methylation by CtvB to yield citreomontanin. Next, the citreomontanin terminal alkenes undergo isomerization to form a (17Z)-hexaene, which is bisepoxidated by CtvC. CtvD then catalyzes formation of the tetrahydrofuran ring, resulting in citreoviridin production.

7. Conclusion

In the post-genomic era, fungal sequencing initiatives have accelerated our ability to link SMs to their biosynthetic gene clusters. Further, they have enhanced our understanding of fungal SM biosynthetic processes and the underpinning genes that define them. Such knowledge can have enormous applications for pharmaceutical production and industrial processes, as genetic engineering can be used to optimize SM production levels or to generate useful second-generation analogs. Despite the significant progress made in the past six years, many SMs that *Aspergillus* species have the capacity to produce still have not been identified or linked to their biosynthetic gene clusters, which remains true for many other fungal species. Thorough characterization of the *Aspergillus* secondary metabolome will require a combination of approaches, including the use of inducible promoters, overexpression of pathway-specific regulators, growth in various conditions, heterologous expression, and gene knockout techniques, along with the collaborative effort of the research community.

Conflicts of Interest

The authors declare no conflicts of interest.

Acknowledgements

Research in the Wang group is supported in part by R21 AI127640 from the National Institute of Allergy and Infectious Diseases, by NNX15AB49G from the National Aeronautics and Space Administration, and by WP-2339 from the US Department of Defense SERDP. We thank Adriana Blachowicz for proofreading the manuscript and for providing the image of *A. fumigatus* used in the Table of Contents figure.

References

- 1 A. L. Demain and A. Fang, in *History of Modern Biotechnology I*, Springer, Berlin, Heidelberg, 2000, pp. 1–39.
- 2 M. A. Fischbach and C. T. Walsh, Chem. Rev., 2006, 106, 3468-3496.
- 3 D. J. Newman and G. M. Cragg, J. Nat. Prod., 2012, 75, 311–335.
- 4Z. R. Flores-Bustamante, F. N. Rivera-Orduña, A. Martínez-Cárdenas and L. B. Flores-Cotera, J. *Antibiot. (Tokyo)*, 2010, **63**, 460–467.
- 5 D. Colombo and E. Ammirati, J. Biol. Regul. Homeost. Agents, 2011, 25, 493-504.
- 6K. Scherlach and C. Hertweck, Org. Biomol. Chem., 2009, 7, 1753–1760.
- 7H. B. Bode, B. Bethe, R. Höfs and A. Zeeck, ChemBioChem, 2002, 3, 619.
- 8 J. E. Galagan, S. E. Calvo, C. Cuomo, L.-J. Ma, J. R. Wortman, S. Batzoglou, S.-I. Lee, M. Baştürkmen, C. C. Spevak, J. Clutterbuck, V. Kapitonov, J. Jurka, C. Scazzocchio, M. Farman, J. Butler, S. Purcell, S. Harris, G. H. Braus, O. Draht, S. Busch, C. D'Enfert, C. Bouchier, G. H. Goldman, D. Bell-Pedersen, S. Griffiths-Jones, J. H. Doonan, J. Yu, K. Vienken, A. Pain, M. Freitag, E. U. Selker, D. B. Archer, M. Á. Peñalva, B. R. Oakley, M. Momany, T. Tanaka, T. Kumagai, K. Asai, M. Machida, W. C. Nierman, D. W. Denning, M. Caddick, M. Hynes, M. Paoletti, R. Fischer, B. Miller, P. Dyer, M. S. Sachs, S. A. Osmani and B. W. Birren, *Nature*, 2005, 438, 1105–1115.
- 9I. Kjærbølling, T. C. Vesth, J. C. Frisvad, J. L. Nybo, S. Theobald, A. Kuo, P. Bowyer, Y. Matsuda, S. Mondo, E. K. Lyhne, M. E. Kogle, A. Clum, A. Lipzen, A. Salamov, C. Y. Ngan, C. Daum, J. Chiniquy, K. Barry, K. LaButti, S. Haridas, B. A. Simmons, J. K. Magnuson, U. H. Mortensen, T. O. Larsen, I. V. Grigoriev, S. E. Baker and M. R. Andersen, *Proc. Natl. Acad. Sci. U. S. A.*, 2018, **115**, E753–E761.
- 10 G. L. Challis, *Microbiol. Read. Engl.*, 2008, **154**, 1555–1569.
- 11 J. F. Sanchez, A. D. Somoza, N. P. Keller and C. C. C. Wang, Nat. Prod. Rep., 2012, 29, 351–371.
- 12 Y.-M. Chiang, C. E. Oakley, M. Ahuja, R. Entwistle, A. Schultz, S.-L. Chang, C. T. Sung, C. C. C.
- Wang and B. R. Oakley, J. Am. Chem. Soc., 2013, 135, 7720-7731.
- 13 T. R. T. Dagenais and N. P. Keller, Clin. Microbiol. Rev., 2009, 22, 447-465.
- 14 J. P. Latgé, Clin. Microbiol. Rev., 1999, 12, 310-350.
- 15 S. K. Rabindran, D. D. Ross, L. A. Doyle, W. Yang and L. M. Greenberger, *Cancer Res.*, 2000, **60**, 47–50.
- 16 E. Schuster, N. Dunn-Coleman, J. C. Frisvad and P. W. M. Van Dijck, *Appl. Microbiol. Biotechnol.*, 2002, **59**, 426–435.
- 17 M. Shaaban, K. A. Shaaban and M. S. Abdel-Aziz, Org. Med. Chem. Lett., 2012, 2, 6.
- 18 E. Choque, Y. El Rayess, J. Raynal and F. Mathieu, *Appl. Microbiol. Biotechnol.*, 2015, **99**, 1081–1096.
- 19 J. Hiort, K. Maksimenka, M. Reichert, S. Perović-Ottstadt, W. H. Lin, V. Wray, K. Steube, K. Schaumann, H. Weber, P. Proksch, R. Ebel, W. E. G. Müller and G. Bringmann, *J. Nat. Prod.*, 2004, **67**, 1532–1543.
- 20 Y. Miyake, C. Ito, M. Itoigawa and T. Osawa, Biosci. Biotechnol. Biochem., 2007, 71, 2515–2521.
- 21 J. A. Tobert, Nat. Rev. Drug Discov., 2003, 2, 517–526.
- 22 S. M. Samiee, N. Moazami, S. Haghighi, F. Aziz Mohseni, S. Mirdamadi and M. R. Bakhtiari, *Iran. Biomed. J.*, 2003, **7**, 29–33.
- 23 T. Willke and K. D. Vorlop, Appl. Microbiol. Biotechnol., 2001, 56, 289–295.
- 24 T. Robert and S. Friebel, *Green Chem.*, 2016, 18, 2922–2934.
- 25 K. Bromann, M. Toivari, K. Viljanen, A. Vuoristo, L. Ruohonen and T. Nakari-Setälä, *PLOS ONE*, 2012, 7, e35450.
- 26 T.-S. Lin, B. Chen, Y.-M. Chiang and C. C. C. Wang, ChemBioChem, , DOI:10.1002/cbic.201800486.
- 27 K. Scherlach, J. Schuemann, H.-M. Dahse and C. Hertweck, J. Antibiot. (Tokyo), 2010, 63, 375–377.
- 28 J. Yaegashi, M. B. Praseuth, S.-W. Tyan, J. F. Sanchez, R. Entwistle, Y.-M. Chiang, B. R. Oakley and C. C. C. Wang, *Org. Lett.*, 2013, **15**, 2862–2865.

- 29 M. Ahuja, Y.-M. Chiang, S.-L. Chang, M. B. Praseuth, R. Entwistle, J. F. Sanchez, H.-C. Lo, H.-H. Yeh, B. R. Oakley and C. C. C. Wang, *J. Am. Chem. Soc.*, 2012, **134**, 8212–8221.
- 30 H.-H. Yeh, Y.-M. Chiang, R. Entwistle, M. Ahuja, K.-H. Lee, K. S. Bruno, T.-K. Wu, B. R. Oakley and C. C. C. Wang, *Appl. Microbiol. Biotechnol.*, 2012, **96**, 739–748.
- 31 H. Fujimoto, Y. Satoh, K. Yamaguchi and M. Yamazaki, *Chem. Pharm. Bull. (Tokyo)*, 1998, 46, 1506–1510.
- 32 A. Kralj, S. Kehraus, A. Krick, E. Eguereva, G. Kelter, M. Maurer, A. Wortmann, H.-H. Fiebig and G. M. König, *J. Nat. Prod.*, 2006, **69**, 995–1000.
- 33 J. Hines, M. Groll, M. Fahnestock and C. M. Crews, Chem. Biol., 2008, 15, 501-512.
- 34 H. Wang, Q. Yang, Q. P. Dou and H. Yang, Curr. Protein Pept. Sci., 2018, 19, 358–367.
- 35 A. L. Goldberg, J. Cell Biol., 2012, 199, 583-588.
- 36 A. F. Kisselev, W. A. van der Linden and H. S. Overkleeft, Chem. Biol., 2012, 19, 99-115.
- 37 H.-H. Yeh, M. Ahuja, Y.-M. Chiang, C. E. Oakley, S. Moore, O. Yoon, H. Hajovsky, J.-W. Bok, N. P. Keller, C. C. C. Wang and B. R. Oakley, *ACS Chem. Biol.*, 2016, **11**, 2275–2284.
- 38 J. F. Sanchez, R. Entwistle, D. Corcoran, B. R. Oakley and C. C. C. Wang, *MedChemComm*, , DOI:10.1039/C2MD20055D.
- 39 A. Stierle, J. Hershenhorn and G. Strobel, *Phytochemistry*, 1993, **32**, 1145–1149.
- 40 J. F. Sanchez, R. Entwistle, J.-H. Hung, J. Yaegashi, S. Jain, Y.-M. Chiang, C. C. C. Wang and B. R. Oakley, *J. Am. Chem. Soc.*, 2011, **133**, 4010–4017.
- 41 H.-C. Lo, R. Entwistle, C.-J. Guo, M. Ahuja, E. Szewczyk, J.-H. Hung, Y.-M. Chiang, B. R. Oakley and C. C. C. Wang, *J. Am. Chem. Soc.*, 2012, **134**, 4709–4720.
- 42 D. W. Brown, J. H. Yu, H. S. Kelkar, M. Fernandes, T. C. Nesbitt, N. P. Keller, T. H. Adams and T. J. Leonard, *Proc. Natl. Acad. Sci.*, 1996, **93**, 1418–1422.
- 43 Y.-M. Chiang, E. Szewczyk, T. Nayak, A. D. Davidson, J. F. Sanchez, H.-C. Lo, W.-Y. Ho, H. Simityan, E. Kuo, A. Praseuth, K. Watanabe, B. R. Oakley and C. C. C. Wang, *Chem. Biol.*, 2008, **15**, 527–532.
- 44 Y.-M. Chiang, E. Szewczyk, A. D. Davidson, N. Keller, B. R. Oakley and C. C. C. Wang, J. Am. Chem. Soc., 2009, **131**, 2965–2970.
- 45 J. W. Bok, D. Hoffmeister, L. A. Maggio-Hall, R. Murillo, J. D. Glasner and N. P. Keller, *Chem. Biol.*, 2006, **13**, 31–37.
- 46 J. F. Sanchez, Y.-M. Chiang, E. Szewczyk, A. D. Davidson, M. Ahuja, C. Elizabeth Oakley, J. Woo Bok, N. Keller, B. R. Oakley and C. C. C. Wang, *Mol. Biosyst.*, 2010, **6**, 587–593.
- 47 E. Szewczyk, Y.-M. Chiang, C. E. Oakley, A. D. Davidson, C. C. C. Wang and B. R. Oakley, *Appl. Environ. Microbiol.*, 2008, **74**, 7607–7612.
- 48 Y.-M. Chiang, M. Ahuja, C. E. Oakley, R. Entwistle, A. Asokan, C. Zutz, C. C. C. Wang and B. R. Oakley, *Angew. Chem. Int. Ed.*, 2016, **55**, 1662–1665.
- 49 T. Stachelhaus, H. D. Mootz and M. A. Marahiel, Chem. Biol., 1999, 6, 493-505.
- 50 C. E. Oakley, M. Ahuja, W.-W. Sun, R. Entwistle, T. Akashi, J. Yaegashi, C.-J. Guo, G. C. Cerqueira, J. Russo Wortman, C. C. C. Wang, Y.-M. Chiang and B. R. Oakley, *Mol. Microbiol.*, 2017, **103**, 347–365.
- 51 F.-Y. Du, X.-M. Li, P. Zhang, C.-S. Li and B.-G. Wang, Mar. Drugs, 2014, 12, 2816–2826.
- 52 J. Gerke, Ö. Bayram, K. Feussner, M. Landesfeind, E. Shelest, I. Feussner and G. H. Braus, *Appl Env. Microbiol*, 2012, **78**, 8234–8244.
- 53 M. Daneshtalab and A. Ahmed, J. Pharm. Pharm. Sci., 2011, 15, 52-72.
- 54 A. Abdel-Hadi, M. Awad, N. Abo-Dahab, A. El-Shanawany, M. Abdelkader and M. Abo-Kadoum, *Issues Biol. Sci. Pharm. Res.*
- 55 N. Ishikawa, H. Tanaka, F. Koyama, H. Noguchi, C. C. C. Wang, K. Hotta and K. Watanabe, *Angew. Chem. Int. Ed Engl.*, 2014, **53**, 12880–12884.

56 M. P. Narsing Rao, M. Xiao and W.-J. Li, Front. Microbiol., , DOI:10.3389/fmicb.2017.01113.

57 C. E. Birse and A. J. Clutterbuck, *Microbiology*, 1990, 136, 1725–1730.

- 58 M. R. Andersen, J. B. Nielsen, A. Klitgaard, L. M. Petersen, M. Zachariasen, T. J. Hansen, L. H. Blicher, C. H. Gotfredsen, T. O. Larsen, K. F. Nielsen and U. H. Mortensen, *Proc. Natl. Acad. Sci.*, 2013, **110**, E99–E107.
- 59 C. T. Sung, S.-L. Chang, R. Entwistle, G. Ahn, T.-S. Lin, V. Petrova, H.-H. Yeh, M. B. Praseuth, Y.-M. Chiang, B. R. Oakley and C. C. C. Wang, *Fungal Genet. Biol.*, 2017, **101**, 1–6.
- 60 A. D. Argoudelis and J. F. Zieserl, Tetrahedron Lett., 1966, 7, 1969–1973.
- 61 S. Mizuba, K. Lee and J. Jiu, Can. J. Microbiol., 1975, 21, 1781–1787.
- 62 D.-S. Lee, G.-S. Jeong, B. Li, S. U. Lee, H. Oh and Y.-C. Kim, *J. Pharmacol. Sci.*, 2011, **116**, 283–295.
- 63 L. He, M.-H. Nan, H. C. Oh, Y. H. Kim, J. H. Jang, R. L. Erikson, J. S. Ahn and B. Y. Kim, *Biochem. Biophys. Res. Commun.*, 2011, **409**, 489–493.
- 64 Y. Zhou, R. Chen, D. Liu, C. Wu, P. Guo and W. Lin, Mar. Drugs, , DOI:10.3390/md15110358.
- 65 M. F. Grau, R. Entwistle, Y.-M. Chiang, M. Ahuja, C. E. Oakley, T. Akashi, C. C. C. Wang, R. B. Todd and B. R. Oakley, *ACS Chem. Biol.*, 2018, **13**, 3193–3205.
- 66 E. Flori, A. Mastrofrancesco, D. Kovacs, Y. Ramot, S. Briganti, B. Bellei, R. Paus and M. Picardo, *Pigment Cell Melanoma Res.*, 2011, **24**, 618–630.
- 67 J. W. Bok, S. A. Balajee, K. A. Marr, D. Andes, K. F. Nielsen, J. C. Frisvad and N. P. Keller, *Eukaryot. Cell*, 2005, **4**, 1574–1582.
- 68 J. W. Bok and N. P. Keller, Eukaryot. Cell, 2004, 3, 527-535.
- 69 R. M. Perrin, N. D. Fedorova, J. W. Bok, R. A. C. Jr, J. R. Wortman, H. S. Kim, W. C. Nierman and N. P. Keller, *PLOS Pathog.*, 2007, **3**, e50.
- 70 J. A. Sugui, H. S. Kim, K. A. Zarember, Y. C. Chang, J. I. Gallin, W. C. Nierman and K. J. Kwon-Chung, *PLOS ONE*, 2008, **3**, e2655.
- 71 S. D. Willger, S. Puttikamonkul, K.-H. Kim, J. B. Burritt, N. Grahl, L. J. Metzler, R. Barbuch, M. Bard, C. B. Lawrence and R. A. C. Jr, *PLOS Pathog.*, 2008, **4**, e1000200.
- 72 M. Vödisch, K. Scherlach, R. Winkler, C. Hertweck, H.-P. Braun, M. Roth, H. Haas, E. R. Werner, A. A. Brakhage and O. Kniemeyer, *J. Proteome Res.*, 2011, **10**, 2508–2524.
- 73 W.-B. Yin, J. A. Baccile, J. W. Bok, Y. Chen, N. P. Keller and F. C. Schroeder, *J. Am. Chem. Soc.*, 2013, **135**, 2064–2067.
- 74 I. Kurobane, L. C. Vining and A. G. Mcinnes, J. Antibiot. (Tokyo), 1979, 32, 1256-1266.
- 75 R. Räisänen, H. Björk and P. H. Hynninen, Z. Für Naturforschung C, 2014, 55, 195–202.
- 76 R. Gautam, K. V. Karkhile, K. K. Bhutani and S. M. Jachak, Planta Med., 2010, 76, 1564–1569.
- 77 N. Kikuchi, M. Teshiba, T. Tsutsumi, R. Fudou, H. Nagasawa and S. Sakuda, *Biosci. Biotechnol. Biochem.*, 2011, **75**, 764–767.
- 78 M. Gill and W. Steglich, in *Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products*, eds. M. Gill and W. Steglich, Springer Vienna, Vienna, 1987, pp. 1–297.
- 79 Q. Huang, G. Lu, H.-M. Shen, M. C. M. Chung and C. N. Ong, Med. Res. Rev., 2007, 27, 609–630.
- 80 E. Berthier, F. Y. Lim, Q. Deng, C.-J. Guo, D. P. Kontoyiannis, C. C. C. Wang, J. Rindy, D. J. Beebe, A. Huttenlocher and N. P. Keller, *PLOS Pathog.*, 2013, **9**, e1003289.
- 81 F. Y. Lim, Y. Hou, Y. Chen, J.-H. Oh, I. Lee, T. S. Bugni and N. P. Keller, *Appl. Environ. Microbiol.*, 2012, **78**, 4117–4125.
- 82 K. Throckmorton, F. Y. Lim, D. P. Kontoyiannis, W. Zheng and N. P. Keller, *Environ. Microbiol.*, 2016, **18**, 246–259.
- 83 J. Weber, V. Valiante, C. S. Nødvig, D. J. Mattern, R. A. Slotkowski, U. H. Mortensen and A. A. Brakhage, *ACS Synth. Biol.*, 2017, **6**, 62–68.
- 84 Y.-M. Chiang, E. Szewczyk, A. D. Davidson, R. Entwistle, N. P. Keller, C. C. C. Wang and B. R. Oakley, *Appl. Environ. Microbiol.*, 2010, **76**, 2067–2074.
- 85 I. Fujii, A. Watanabe, U. Sankawa and Y. Ebizuka, Chem. Biol., 2001, 8, 189–197.
- 86 T. P. Korman, J. M. Crawford, J. W. Labonte, A. G. Newman, J. Wong, C. A. Townsend and S.-C. Tsai, *Proc. Natl. Acad. Sci. U. S. A.*, 2010, **107**, 6246–6251.

- 87 T. Awakawa, K. Yokota, N. Funa, F. Doi, N. Mori, H. Watanabe and S. Horinouchi, *Chem. Biol.*, 2009, 16, 613–623.
- 88 J. Balan, L. Ebringer, P. Nemec, S. Kovac and J. Dobias, J. Antibiot. (Tokyo), 1963, 16, 157-160.
- 89 W. B. Turner, J. Chem. Soc. Perkin 1, 1965, 6658–6659.
- 90 T. Gauthier, X. Wang, J. Sifuentes Dos Santos, A. Fysikopoulos, S. Tadrist, C. Canlet, M. P. Artigot, N. Loiseau, I. P. Oswald and O. Puel, *PloS One*, 2012, 7, e29906.
- 91 M. T. Nielsen, J. B. Nielsen, D. C. Anyaogu, D. K. Holm, K. F. Nielsen, T. O. Larsen and U. H. Mortensen, *PLOS ONE*, 2013, **8**, e72871.
- 92 E. Chain, H. W. Florey, M. A. Jennings and T. I. Williams, Br. J. Exp. Pathol., 1943, 24, 108–119.
- 93 W. O. Godtfredsen, S. Jahnsen, H. Lorck, K. Roholt and L. Tybring, Nature, 1962, 193, 987.
- 94 H. S. Burton and E. P. Abraham, Biochem. J., 1951, 50, 168-174.
- 95 W. Von Daehne, W. O. Godtfredsen and P. R. Rasmussen, in *Advances in Applied Microbiology*, ed. D. Perlman, Academic Press, 1979, vol. 25, pp. 95–146.
- 96 I. Abe, M. Rohmer and G. D. Prestwich, Chem. Rev., 1993, 93, 2189-2206.
- 97 P. Fernandes, Cold Spring Harb. Perspect. Med., 2016, 6, a025437.
- 98 D. N. Wilson, Nat. Rev. Microbiol., 2014, 12, 35-48.
- 99 T. Duvold, M. D. Sørensen, F. Björkling, A. S. Henriksen and N. Rastrup-Andersen, J. Med. Chem., 2001, 44, 3125–3131.
- 100 J.-M. Lv, D. Hu, H. Gao, T. Kushiro, T. Awakawa, G.-D. Chen, C.-X. Wang, I. Abe and X.-S. Yao, *Nat. Commun.*, 2017, **8**, 1644.
- 101 F. Tekaia and J.-P. Latgé, Curr. Opin. Microbiol., 2005, 8, 385-392.
- 102 N. Rispail, D. M. Soanes, C. Ant, R. Czajkowski, A. Grünler, R. Huguet, E. Perez-Nadales, A. Poli, E. Sartorel, V. Valiante, M. Yang, R. Beffa, A. A. Brakhage, N. A. R. Gow, R. Kahmann, M.-H. Lebrun, H. Lenasi, J. Perez-Martin, N. J. Talbot, J. Wendland and A. Di Pietro, *Fungal Genet. Biol. FG B*, 2009, 46, 287–298.
- 103 J. Macheleidt, K. Scherlach, T. Neuwirth, W. Schmidt-Heck, M. Straßburger, J. Spraker, J. A. Baccile, F. C. Schroeder, N. P. Keller, C. Hertweck, T. Heinekamp and A. A. Brakhage, *Mol. Microbiol.*, 2015, **96**, 148–162.
- 104 V. Meyer, F. Wanka, J. van Gent, M. Arentshorst, C. A. M. J. J. van den Hondel and A. F. J. Ram, *Appl. Environ. Microbiol.*, 2011, **77**, 2975–2983.
- 105 Y.-H. Chooi, J. Fang, H. Liu, S. G. Filler, P. Wang and Y. Tang, Org. Lett., 2013, 15, 780–783.
- 106 C. C. König, K. Scherlach, V. Schroeckh, F. Horn, S. Nietzsche, A. A. Brakhage and C. Hertweck, *ChemBioChem*, 2013, 14, 938–942.
- 107 M. C. McCOWEN, M. E. Callender and J. F. Lawlis, Science, 1951, 113, 202–203.
- 108 J. H. Killough, G. B. Magill and R. C. Smith, Science, 1952, 115, 71-72.
- 109 J.-M. Molina, M. Tourneur, C. Sarfati, S. Chevret, A. de Gouvello, J.-G. Gobert, S. Balkan, F. Derouin and Agence Nationale de Recherches sur le SIDA 090 Study Group, *N. Engl. J. Med.*, 2002, **346**, 1963–1969.
- 110 N. Sin, L. Meng, M. Q. W. Wang, J. J. Wen, W. G. Bornmann and C. M. Crews, *Proc. Natl. Acad. Sci.*, 1997, **94**, 6099–6103.
- 111 E. J. Corey and B. B. Snider, J. Am. Chem. Soc., 1972, 94, 2549-2550.
- 112 J. Yamaguchi and Y. Hayashi, Chem. Weinh. Bergstr. Ger., 2010, 16, 3884-3901.
- 113 H.-C. Lin, Y.-H. Chooi, S. Dhingra, W. Xu, A. M. Calvo and Y. Tang, J. Am. Chem. Soc., 2013, 135, 4616–4619.
- 114 C. Gil Girol, K. M. Fisch, T. Heinekamp, S. Günther, W. Hüttel, J. Piel, A. A. Brakhage and M. Müller, *Angew. Chem. Int. Ed.*, 2012, **51**, 9788–9791.
- 115 H. Zhou, K. Qiao, Z. Gao, M. J. Meehan, J. W.-H. Li, X. Zhao, P. C. Dorrestein, J. C. Vederas and Y. Tang, J. Am. Chem. Soc., 2010, **132**, 4530–4531.
- 116 X. Xie, M. J. Meehan, W. Xu, P. C. Dorrestein and Y. Tang, J. Am. Chem. Soc., 2009, 131, 8388–8389.
- 117 A. O. Zabala, W. Xu, Y.-H. Chooi and Y. Tang, Chem. Biol., 2012, 19, 1049–1059.

118 N. Osmanova, W. Schultze and N. Ayoub, Phytochem. Rev., 2010, 9, 315–342.

- 119 T. S. Bugni, D. Abbanat, V. S. Bernan, W. M. Maiese, M. Greenstein, R. M. Van Wagoner and C. M. Ireland, *J. Org. Chem.*, 2000, **65**, 7195–7200.
- 120 L. M. Petersen, D. K. Holm, P. B. Knudsen, K. F. Nielsen, C. H. Gotfredsen, U. H. Mortensen and T. O. Larsen, *J. Antibiot. (Tokyo)*, 2015, **68**, 201–205.
- 121 D. K. Holm, L. M. Petersen, A. Klitgaard, P. B. Knudsen, Z. D. Jarczynska, K. F. Nielsen, C. H. Gotfredsen, T. O. Larsen and U. H. Mortensen, *Chem. Biol.*, 2014, **21**, 519–529.
- 122 R. Riko, H. Nakamura and K. Shindo, J. Antibiot. (Tokyo), 2014, 67, 179–181.
- 123 T. Awakawa, X.-L. Yang, T. Wakimoto and I. Abe, ChemBioChem, 2013, 14, 2095-2099.
- 124 M. Ganzlin and U. Rinas, J. Biotechnol., 2008, 135, 266-271.
- 125 T. Yamamoto, Y. Tsunematsu, H. Noguchi, K. Hotta and K. Watanabe, Org. Lett., 2015, 17, 4992–4995.
- 126 J. Hiort, K. Maksimenka, M. Reichert, S. Perović-Ottstadt, W. H. Lin, V. Wray, K. Steube, K. Schaumann, H. Weber, P. Proksch, R. Ebel, W. E. G. Müller and G. Bringmann, *J. Nat. Prod.*, 2004, **67**, 1532–1543.
- 127 G. Schlingmann, T. Taniguchi, H. He, R. Bigelis, H. Y. Yang, F. E. Koehn, G. T. Carter and N. Berova, *J. Nat. Prod.*, 2007, **70**, 1180–1187.
- 128 M.-C. Tang, Y. Zou, D. Yee and Y. Tang, AIChE J., 2018, 64, 4182-4186.
- 129 C.-J. Guo and C. C. C. Wang, Front. Microbiol., DOI:10.3389/fmicb.2014.00717.
- 130 C.-J. Guo, B. P. Knox, Y.-M. Chiang, H.-C. Lo, J. F. Sanchez, K.-H. Lee, B. R. Oakley, K. S. Bruno and C. C. C. Wang, *Org. Lett.*, 2012, 14, 5684–5687.
- 131 C. Zaehle, M. Gressler, E. Shelest, E. Geib, C. Hertweck and M. Brock, *Chem. Biol.*, 2014, **21**, 719–731.
- 132 C.-J. Guo, W.-W. Sun, K. S. Bruno and C. C. C. Wang, Org. Lett., 2014, 16, 5250-5253.
- 133 C.-J. Guo, H.-H. Yeh, Y.-M. Chiang, J. F. Sanchez, S.-L. Chang, K. S. Bruno and C. C. C. Wang, *J. Am. Chem. Soc.*, 2013, **135**, 7205–7213.
- 134 Y. Yan, Q. Liu, X. Zang, S. Yuan, U. Bat-Erdene, C. Nguyen, J. Gan, J. Zhou, S. E. Jacobsen and Y. Tang, *Nature*, 2018, **559**, 415–418.
- 135 T. M. Amorim Franco and J. S. Blanchard, Biochemistry, 2017, 56, 5849-5865.
- 136 W.-W. Sun, C.-J. Guo and C. C. C. Wang, Fungal Genet. Biol. FG B, 2016, 89, 84-88.
- 137 D. Molitor, J. C. Liermann, B. Berkelmann-Löhnertz, I. Buckel, T. Opatz and E. Thines, *J. Nat. Prod.*, 2012, **75**, 1265–1269.
- 138 L. Yuan, J. H. Wang and T. M. Sun, Chin. Chem. Lett., 2010, 21, 155-158.
- 139 L. Yuan, Y. Li, C. Zou, C. Wang, J. Gao, C. Miao, E. Ma and T. Sun, *Bioorg. Med. Chem. Lett.*, 2012, **22**, 2216–2220.
- 140 W. Li, A. Fan, L. Wang, P. Zhang, Z. Liu, Z. An and W.-B. Yin, Chem. Sci., 2018, 9, 2589-2594.
- 141 H.-Y. Chang, T.-C. Huang, N.-N. Chen, H.-C. Huang and H.-F. Juan, Cell Death Dis., 2014, 5, e1540.
- 142 T.-S. Lin, Y.-M. Chiang and C. C. C. Wang, Org. Lett., 2016, 18, 1366–1369.
- 143 J. W. Bok, Y.-M. Chiang, E. Szewczyk, Y. Reyes-Dominguez, A. D. Davidson, J. F. Sanchez, H.-C. Lo, K. Watanabe, J. Strauss, B. R. Oakley, C. C. C. Wang and N. P. Keller, *Nat. Chem. Biol.*, 2009, **5**, 462–464.
- 144 K. Scherlach, A. Sarkar, V. Schroeckh, H.-M. Dahse, M. Roth, A. A. Brakhage, U. Horn and C. Hertweck, *ChemBioChem*, 2011, **12**, 1836–1839.
- 145 M. Eisendle, H. Oberegger, I. Zadra and H. Haas, Mol. Microbiol., 2003, 49, 359-375.
- 146 A. P. MacCabe, H. van Liempt, H. Palissa, S. E. Unkles, M. B. Riach, E. Pfeifer, H. von Döhren and J. R. Kinghorn, *J. Biol. Chem.*, 1991, **266**, 12646–12654.
- 147 D. W. Brown, T. H. Adams and N. P. Keller, Proc. Natl. Acad. Sci., 1996, 93, 14873-14877.
- 148 A. Watanabe, I. Fujii, U. Sankawa, M. E. Mayorga, W. E. Timberlake and Y. Ebizuka, *Tetrahedron Lett.*, 1999, **40**, 91–94.
- 149 S. Bergmann, J. Schümann, K. Scherlach, C. Lange, A. A. Brakhage and C. Hertweck, *Nat. Chem. Biol.*, 2007, **3**, 213–217.

- 150 S. Bouhired, M. Weber, A. Kempf-Sontag, N. P. Keller and D. Hoffmeister, *Fungal Genet. Biol. FG B*, 2007, 44, 1134–1145.
- 151 K. A. O'Hanlon, L. Gallagher, M. Schrettl, C. Jöchl, K. Kavanagh, T. O. Larsen and S. Doyle, *Appl Env. Microbiol*, 2012, **78**, 3166–3176.
- 152 K. Reiber, E. P. Reeves, C. M. Neville, R. Winkler, P. Gebhardt, K. Kavanagh and S. Doyle, *FEMS Microbiol. Lett.*, 2005, **248**, 83–91.
- 153 M. Schrettl, E. Bignell, C. Kragl, Y. Sabiha, O. Loss, M. Eisendle, A. Wallner, H. N. A. Jr, K. Haynes and H. Haas, *PLOS Pathog.*, 2007, **3**, e128.
- 154 A. Watanabe, I. Fujii, H.-F. Tsai, Y. C. Chang, K. J. Kwon-Chung and Y. Ebizuka, *FEMS Microbiol. Lett.*, 2000, **192**, 39–44.
- 155 I. A. Unsöld and S.-M. Li, ChemBioChem, 2006, 7, 158–164.
- 156 D. M. Gardiner and B. J. Howlett, FEMS Microbiol. Lett., 2005, 248, 241-248.
- 157 P. Wiemann, B. E. Lechner, J. A. Baccile, T. A. Velk, W.-B. Yin, J. W. Bok, S. Pakala, L. Losada, W. C. Nierman, F. C. Schroeder, H. Haas and N. P. Keller, *Front. Microbiol.*, , DOI:10.3389/fmicb.2014.00530.
- 158 B. D. Ames, X. Liu and C. T. Walsh, Biochemistry, 2010, 49, 8564-8576.
- 159 B. D. Ames and C. T. Walsh, Biochemistry, 2010, 49, 3351-3365.
- 160 T. Itoh, K. Tokunaga, Y. Matsuda, I. Fujii, I. Abe, Y. Ebizuka and T. Kushiro, *Nat. Chem.*, 2010, **2**, 858–864.
- 161 S. Maiya, A. Grundmann, S.-M. Li and G. Turner, *Chembiochem Eur. J. Chem. Biol.*, 2006, 7, 1062–1069.
- 162 S. Maiya, A. Grundmann, X. Li, S.-M. Li and G. Turner, *Chembiochem Eur. J. Chem. Biol.*, 2007, **8**, 1736–1743.
- 163 J. C. Frisvad, J. Smedsgaard, R. A. Samson, T. O. Larsen and U. Thrane, *J. Agric. Food Chem.*, 2007, **55**, 9727–9732.
- 164 J. C. Frisvad, T. O. Larsen, U. Thrane, M. Meijer, J. Varga, R. A. Samson and K. F. Nielsen, *PloS One*, 2011, **6**, e23496.
- 165 Y.-M. Chiang, K. M. Meyer, M. Praseuth, S. E. Baker, K. S. Bruno and C. C. C. Wang, *Fungal Genet. Biol.*, 2011, **48**, 430–437.
- 166 Y. Li, Y.-H. Chooi, Y. Sheng, J. S. Valentine and Y. Tang, J. Am. Chem. Soc., 2011, **133**, 15773–15785.
- 167 M. Gressler, C. Zaehle, K. Scherlach, C. Hertweck and M. Brock, Chem. Biol., 2011, 18, 198-209.
- 168 C.-J. Guo, B. P. Knox, J. F. Sanchez, Y.-M. Chiang, K. S. Bruno and C. C. C. Wang, *Org. Lett.*, 2013, **15**, 3562–3565.
- 169 E. Geib, M. Gressler, I. Viediernikova, F. Hillmann, I. D. Jacobsen, S. Nietzsche, C. Hertweck and M. Brock, *Cell Chem. Biol.*, 2016, 23, 587–597.
- 170 K. X. Huang, I. Fujii, Y. Ebizuka, K. Gomi and U. Sankawa, J. Biol. Chem., 1995, 270, 21495–21502.
- 171 J. Kennedy, K. Auclair, S. G. Kendrew, C. Park, J. C. Vederas and C. R. Hutchinson, *Science*, 1999, **284**, 1368–1372.

TABLES

	Aspergillus nidulans		Aspergillus	Aspergillus fumigatus Aspergil		is niger	Aspergillu	spergillus terreus	
	Linked	Total	Linked	Total	Linked	Total	Linked	Total	
PKS	16	33	6	16	8	46	9	29	
NRPS	11	25	9	18	4	35	9	36	
Hybrid	1	1	1	2	2	9	1	1	
DMATS	0	5	2	3	0	2	0	5	
TC	1	2	1	1	0	7	1	3	
Total	29	66	19	40	14	99	20	74	

Table 1. The status of linking *Aspergillus* SM core synthase genes to downstream products

Table 2. Core secondary metabolite synthesis genes and their products in A. nidulans

No.	Broad designation	Gene name	Gene type	SM(s) produced	
1	AN0016	pes1	NRPS		
2	AN0150	mdnG	NR-PKS	monodictyphenone. ⁸⁴ emodin. ¹⁴³ xanthones. ⁴⁰ sanghaspirodins A and B ¹⁴⁴	
3	AN0523	nkdA	NR-PKS		
4	AN0607	sidC	NRPS	ferricrocin ¹⁴⁵	
5	AN1034	afoE	NR-PKS	asperfuranone ⁴⁴	
6	AN1036	afoG	HR-PKS	asperfuranone ⁴⁴	
7	AN1242	nlsA	NRPS	nidulanin A ⁵⁸	
8	AN1594		TC	ent-nimara-8(14) 15-diene ²⁵	
9	AN1680		NRPS-like		
10	AN1784	sdøA (nkiA)	HR-PKS	asperniduglene A 1 ²⁶	
11	AN2032	nkh 4	NR-PKS	usperindugiene TT	
12	AN2032	nkhB	HD DKS		
12	AN2055	ркив	NRPS_like		
14	AN2545	oas 1	NDDC	emericellamides ⁴³	
14	AN2547	eusA	HD DKS	emericallamides ⁴³	
16	AN2621	eusb acv A	NPPS	panicillin ¹⁴⁶	
17	AN2021	ucvA	NDDS like	pemenini	
18	AN3230	nkfA	ND DVS	asperniding Λ^{28}	
10	AN3230	ркул	HR_PKS	aspennune A	
20	AN3277		TC		
20	AN3386	nki 1	NP PKS	6 hydroxy 7 methyl 3 nonylisoquingline 5.8 dione ²⁹	
21	AN3396	phiA mic A	NRPS_like	micronerfuranone ³⁰	
22	AN3405	inn A	NDDC	fallutamida B ³⁷	
23	AN3496	inpA	NRPS	fellutamide B ³⁷	
25	AN3612	тръ	HR_PKS	Tendulinde D	
25	AN/827		NRPS_like		
20	AN5318		NRPS-like		
28	AN5475		NR_PKS		
20	AN6000	ant 4	NR-PKS	asperthecin ⁴⁷	
30	AN6236	sidD	NRPS	aspertiteeni	
31	AN6/31	SIUD	HR_PKS		
32	AN6448	nkh 4	NR-PKS	cichorine ³⁸ aspercryptin ⁴⁸	
33	AN6784	rnt 4	DMAT	elenorme, aspereryptin	
34	AN6791	лріл	HR_PKS		
35	AN7071	nka A	NR-PKS	alternarial citreoisocoumarin and analogs ²⁹	
36	AN7084	ркдл	DKS like	and handly, encoisocountain and analogs	
37	AN7480		DKS like		
20	AN7925	ate 1 (nkaST)	ND DVS	atariamataavatin 147	
30	AN 7880	SICA (PRSST)	DKS like	steriginatocystin	
39 40	AN7884	ate 1	NDDC	acpercruptin ⁴⁸	
40	AN7003	dhal (nkaA)	ND DVC	felinone A ⁵⁰	
41	AN7000	ava (preA)	ND DVS	F0775 A and Pl43 conchemizeding A and Pl44	
42	AIN / 909 A NI 9105	OFSA	NDDC Blo	177/75 A and D., sangnasphounis A and B.	
43	ANOTUS	a 4	ND DVC	VIII A 1 malanin ¹⁴⁸	
44	A1N6209	WA	INK-PKS	I WAI, inclamin."	

45	AN8383	ausA	NR-PKS	austinol, dehydroaustinol ⁴¹
46	AN8412	apdA	Hybrid	aspyridone A, B ¹⁴⁹
47	AN8513	tdiA	NRPS-like	terrequinone A ¹⁵⁰
48	AN8910		HR-PKS	
49	AN9005		HR-PKS	
50	AN9129		NRPS-like	
51	AN9226	asqK	NRPS	4'-methoxyviridicatin ⁵⁵
52	AN9243		NRPS-like	
53	AN9244		NRPS	
54	AN10289		DMAT	
55	AN10297		NRPS-like	
56	AN10430		HR-PKS	
57	AN10486		NRPS-like	
58	AN10576	ivoA	NRPS	grey-brown conidiophore pigment57,59
59	AN11080		DMAT	
60	AN11191	alnA	HR-PKS	(+)-asperlin ⁶⁵
61	AN11202		DMAT	
62	AN11820		NRPS-like	
63	AN12331		PKS-like	
64	AN12331		PKS-like	
65	AN12402	xptB	DMAT	
66	AN12440		NR-PKS	

Table 3. Core secondary metabolite synthesis genes and their products in A. fumigatus

No.	Af293 gene	A1163 gene	Gene name	Gene type	SM(s) produced
1	Afu1g01010	no homolog		HR-PKS	
2	Afu1g10380	AFUB_009800	pesB (pes1)	NRPS	fumigaclavine C ¹⁵¹
3	Afu1g17200	AFUB_016590	sidC	NRPS	ferricrocin, hydroxyferricrocin ^{152,153}
4	Afu1g17740	AFUB_045790		Hybrid	
5	Afu2g01290	AFUB_018370		HR-PKS	
6	Afu2g05760	AFUB_022790		PKS-like	
7	Afu2g17600	AFUB_033290	alb1 (pksP)	NR-PKS	YWA1, conidial pigment ¹⁵⁴
8	Afu2g17990	AFUB_033680	fgaPT1	DMAT	fumigaclavine C155
9	Afu3g01410	AFUB_046990		HR-PKS	
10	Afu3g02530	no homolog		PKS-like	
11	Afu3g02570	no homolog		NR-PKS	
12	Afu3g02670	AFUB_045610		NRPS-like	
13	Afu3g03350	AFUB_044900	sidE	NRPS	
14	Afu3g03420	AFUB_044830	sidD	NRPS	fusarinine C, triacetylfusarinine C152,153
15	Afu3g12920	AFUB_036270	hasD (pesF)	NRPS	hexadehydroastechrome73
16	Afu3g12930	AFUB_036260	hasE	DMAT	hexadehydroastechrome73
17	Afu3g13730	AFUB_035460	pesG	NRPS	
18	Afu3g14700	AFUB_034520		HR-PKS	
19	Afu3g15270	AFUB_033950	pesH	NRPS	
20	Afu4g00210	AFUB_100730	encA	NR-PKS	endocrocin ⁸¹
21	Afu4g14560	AFUB_071800*	<i>tpcC</i>	NR-PKS	trypacidin, endocrocin ⁸²
22	Afu4g14770	AFUB_072030	helA	TC	helvolic acid ¹⁰⁰
23	Afu5g10120	AFUB_057720		NRPS-like	
24	Afu5g12730	AFUB_060400	pesI	NRPS	
25	Afu6g03480	AFUB_094810	fmpE	NRPS-like	fumipyrrole ¹⁰³
26	Afu6g08560	AFUB_074520		NRPS-like	
27	Afu6g09610	AFUB_075660	pesJ	NRPS	
28	Afu6g09660	AFUB_075710	gliP	NRPS	gliotoxin ¹⁵⁶
29	Afu6g12050	AFUB_078040	fqzC(pesL)	NRPS	fumigaclavine C ¹⁵⁷ , fumiquinazolines ¹⁵⁸
30	Afu6g12080	AFUB_078070		NRPS	fumiquinazolines159
31	Afu6g13930	AFUB_000820	pyr2	HR-PKS	pyripyropene A ¹⁶⁰
32	Afu7g00160	AFUB_086700	nscA (fccA)	NR-PKS	neosartoricin, 105 fumicyclines106
33	Afu8g00170	AFUB_086360	ftmA	NRPS	fumitremorgins ¹⁶¹
34	Afu8g00370	AFUB_086200	fma-PKS	HR-PKS	fumagillin ¹¹³
35	Afu8g00540	AFUB_086030	psoA	Hybrid	pseurotin A ¹⁶²
36	Afu8g00620	AFUB_085950	cdpNPT	DMAT	-
37	Afu8g01640	AFUB_084950		NRPS-like	

38 39 40	Afu8g02350 no homolog	AFUB_084240 AFUB_079710 AFUB_045640	NR-PKS PKS PKS	
*indicat	tes pseudogene	AI'0D_043040	183	

Table 4.	Core secondary	metabolite s	synthesis	genes and	their	products in	1 <i>A</i> .	niger

No.	CBS 513.88 gene	ATCC 1015 gene (FungiDB)	JGI v4 Protein ID	Gene name	Gene type	SM(s) produced
1	An01g00060	ASPNIDRAFT 55511	1083843		PKS-like	
2	An01g01130	no homolog	no homolog		HR-PKS	
3	An01g06930	ASPNIDRAFT_225574	1162446	fum l	HR-PKS	fumonisins ^{163,164}
4	An01g06950	ASPNIDRAFT_225587	1083446	U U	HR-PKS	
5	An01g11770	ASPNIDRAFT 170963	1082121		NRPS-like	
6	An02g00210	N/A –	1121186		NRPS-like	
7	An02g00450	ASPNIDRAFT 118617	1088618		HR-PKS	
8	An02g00840	ASPNIDRAFT 36645	1184525		NRPS-like	
9	An02g05070	ASPNIDRAFT 36929	1158197		NRPS	
10	An02g08290	ASPNIDRAFT 118624	1122199		Hybrid	
11	An02g09430	ASPNIDRAFT 37260	1135841		HR-PKS	
12	An02g10140	ASPNIDRAFT 173610	1152150		NRPS-like	
13	An02g14220	ASPNIDRAFT 55650	1165581		PKS-like	
14	An03g00650	ASPNIDRAFT 128584	1166499		NRPS	
15	An03g01820	N/A	1109472		NR-PKS	
16	An03g03520	ASPNIDRAFT 191228	1186498	sidD	NRPS	siderophore
17	An03g04890	ASPNIDRAFT 191577	1186592	57412	TC	siderophore
18	An03g05140	ASPNIDRAFT 118598	1159456		HR-PKS	
19	An03g05440	ASPNIDRAFT 191422	1153534		NR-PKS	
20	An03g05680	ASPNIDRAFT 191357	1092575		NRPS-like	
21	An03g06010	ASPNIDRAFT 44571	44571		NRPS	
22	An03g06380	ASPNIDRAFT 191702	1125648		HR-PKS	
23	An04g01150	ASPNIDRAFT 190264	1094020		NRPS-like	
23	An0/1g0/13/0	ASPNIDRAFT 44005	1126346		HR-PKS	
27	An04g04340	ASPNIDRAET 100801	1120540		NPDS like	
25	An04g04380	ASPNIDRAFT 118635	1177761		NRPS	
20	An04g00200	ASPNIDRAFT_118055	1126840	ktn S	ND DKS	kotanin ¹¹⁴
27	An04g09530	ASPNIDRAFT_31499	1120049	кинъ	HP DVS	Kotalilli
20	An04g10030	ASDNIDRAFT_118002	1120920		NDDC	
29	An05g01000	ASPNIDRAFT_110399	11602098		DKS like	
21	An06g00430	ASPNIDRAFI_1/3930	1109209	aidC	I NDDC	aidaranhara
22	An00g01500	ASPNIDRAFI_20/030	11691/1	siac	NRP5	siderophore
32	An0/g01030		1151290		INK-PKS	
22	An0/g02560	ASPNIDRAFI_40100	1104215		DMAI	
34	An08g02310	ASPNIDRAF1_52//4	1108030		INKPS	
35	An08g03/90	ASPNIDRAFI_1/6/22	1188/22		Hybrid	
36	An08g04820	ASPNIDRAF1_38316	1188/89		NRPS-like	
3/	An08g09220	no homolog	no homolog		NRPS-like	
38	An08g10830	ASPNIDRAF1_120113	1130084			
39	An08g10930	ASPNIDRAF1_4/22/	1114420		PKS-like	
40	An09g00450	ASPNIDRAFT_188/38	1114543		NRPS-like	
41	An09g00520	ASPNIDRAFT_43555	1114546		NRPS	
42	An09g01290	ASPNIDRAFT_43495	1148587		HR-PKS	
43	An09g01690	ASPNIDRAFT_212679	1079950		NRPS	. 117
44	An09g01860	ASPNIDRAFT_56946	1080089	azaA	NR-PKS	azanigerones
45	An09g01930	ASPNIDRAFT_188817	1148627	azaB	HR-PKS	azanigerones ¹¹⁷
46	An09g02100	no homolog	no homolog		PKS-like	
47	An09g05110	ASPNIDRAFT_129581	1114952		NRPS-like	
48	An09g05340	ASPNIDRAFT_188697	188697		HR-PKS	
49	An09g05730	ASPNIDRAFT_56896	1099425	albA (fwnA)	NR-PKS	naphtho-γ-pyrones, melanin ¹⁶⁵
50	An09g06090	ASPNIDRAFT_50045	50045		TC	
51	An10g00140	ASPNIDRAFT_44965	1123159	yanA	HR-PKS	yanuthone D ¹²¹
52	An10g00630	ASPNIDRAFT_45003	45003		PKS-like	
53	An11g00050	ASPNIDRAFT_118659	1126949		NRPS	
54	An11g00250	ASPNIDRAFT_179585	1111323	pynA	Hybrid	pyranonigrins E-J ^{123,125}
55	An11g03920	ASPNIDRAFT_179079	1095656		HR-PKS	-
56	Am11~04250	ASDNIDDAFT 120526	115/309		NRPS_like	

57 An11g04200 ASPNIDRAFT_39126 1224321 HR-PKS 58 An11g05570 ASPNIDRAFT_39114 39114 NRPS-like 60 An11g05570 ASPNIDRAFT_47991 1224252 HR-PKS 61 An11g05500 ASPNIDRAFT_39174 1154415 TC 63 An11g05400 ASPNIDRAFT_118644 1112058 Hybrid 64 An11g05200 ASPNIDRAFT_118629 11679356 HR-PKS 76 An12g02050 ASPNIDRAFT_19014 1084740 NR PKS 66 An12g02050 ASPNIDRAFT_189378 1150307 HR-PKS 76 An12g020570 ASPNIDRAFT_189378 1150307 HR-PKS 70 An12g027070 ASPNIDRAFT_18378 1150307 HR-PKS 71 An12g07200 ASPNIDRAFT_43807 1172138 NRPS 72 An12g07070 ASPNIDRAFT_194805 1005566 NRPS 73 An12g07070 ASPNIDRAFT_194805 1005566 NRPS 74 An12g01600 ASPNIDRAFT_128238 1164914 HR-PKS 74 An12g016070 ASPNIDRAF							
S8 An1 [g05500 ASPNIDRAFT_9114 9114 NRPS-like 59 An1 [g05500 ASPNIDRAFT_47991 1224252 IRE-PKS 60 An1 [g05900 no homolog no homolog IRE-PKS 61 An1 [g05900 no homolog no homolog IRE-PKS 62 An1 [g06500 no homolog no homolog IRE-PKS 63 An1 [g07310 N/A 1112167 ada/ RR-PKS 64 An1 [g0720 ASPNIDRAFT_18024 1167936 NR-PKS TAN-1612 ¹⁶⁶ 65 An1 2g02570 ASPNIDRAFT_18024 1067936 NR PKS TAN-1612 ¹⁶⁶ 66 An1 2g02730 no homolog no homolog NR PKS TAN-1612 ¹⁶⁶ 71 An1 2g0270 ASPNIDRAFT_43807 1172138 NRPS TAN-1612 ¹⁶⁷ 70 An1 2g0270 ASPNIDRAFT_43807 1172138 NRPS TC 73 An1 2g0270 ASPNIDRAFT_23203 1105566 NRPS TC 74 An1 2g04800 ASPNIDRA	57	An11g04280	ASPNIDRAFT_39026	1223918		HR-PKS	
59 An11g0570 ASPNIDRAFT_47991 1224252 HR-PKS 60 An11g0590 no homolog no homolog HR-PKS 61 An11g05200 no homolog no homolog HR-PKS 62 An11g06260 ASPNIDRAFT_3174 1154415 TC 63 An11g0720 N/A 1112167 ada/ HR-PKS 64 An11g0720 N/A 1112167 ada/ HR-PKS 65 An11g0720 ASPNIDRAFT_118629 H167936 HR-PKS TAN-1612 ¹⁶⁶ 66 An12g02670 ASPNIDRAFT_189378 1150307 HR-PKS HR-PKS 67 An12g02670 ASPNIDRAFT_189378 1150307 HR-PKS HR-PKS 68 An12g07070 ASPNIDRAFT_43807 1172138 NRPS HR-PKS 70 An12g07070 ASPNIDRAFT_4205 1003566 NRPS HR-PKS 71 An12g0707 ASPNIDRAFT_42066 1085752 TC TA An12g01600 ASPNIDRAFT_123803 H16473 NRPS-Hike 75 An13g02460 ASPNIDRAFT_45863 H116473 NRPS	58	An11g05500	ASPNIDRAFT_39114	39114		NRPS-like	
60 An1 [g05940] no homolog no homolog HR-PKS 61 An1 [g0560] AsPNIDRAFT_39174 1154415 TC 63 An1 [g0660] ASPNIDRAFT_39174 1154415 TC 64 An1 [g07310] N/A 1112167 ada/ NR-PKS TAN-1612 ¹⁶⁶ 65 An1 [g0720] ASPNIDRAFT_18029 1167936 ada/4 NR-PKS TAN-1612 ¹⁶⁶ 66 An12g02260 ASPNIDRAFT_180378 1150307 HR-PKS TAN-1612 ¹⁶⁶ 67 An12g0230 no homolog no homolog Nemolog NRPKS 68 An12g0230 ASPNIDRAFT_48066 1119191 HR-PKS 71 An12g0720 ASPNIDRAFT_49366 1085752 TC 74 An12g10800 ASPNIDRAFT_49566 1085752 TC 74 An12g0430 ASPNIDRAFT_194895 108588 NRPS-like 75 An13g0140 ASPNIDRAFT_194895 1085752 TC 74 An12g10860 ASPNIDRAFT_195043 11172993 </td <td>59</td> <td>An11g05570</td> <td>ASPNIDRAFT 47991</td> <td>1224252</td> <td></td> <td>HR-PKS</td> <td></td>	59	An11g05570	ASPNIDRAFT 47991	1224252		HR-PKS	
61 An11g05960 no homolog no homolog HR-PKS 62 An11g0640 ASPNIDRAFT_31714 11544115 TC 63 An11g07310 NA 1112167 ada/A Hybrid 64 An11g07310 NA 1112167 ada/A NR-PKS TAN-1612 ¹⁶⁶ 65 An11g07210 NA 1112167 ada/A NR-PKS TAN-1612 ¹⁶⁶ 66 An12g02050 ASPNIDRAFT_118027 11530307 HR-PKS FARS 67 An12g02730 no homolog no homolog HR-PKS FARS 68 An12g0707 ASPNIDRAFT_43807 1172138 NRPS FARS 70 An12g01030 ASPNIDRAFT_194807 1085566 NRPS FARS 71 An12g10400 ASPNIDRAFT_194807 1085752 TC FA 74 An12g01240 ASPNIDRAFT_123810 11161952 DMAT FA 75 An13g0240 ASPNIDRAFT_128031 1116492 NRPS FA 76<	60	An11g05940	no homolog	no homolog		HR-PKS	
	61	An11g05960	no homolog	no homolog		HR-PKS	
63 An11g06460 ASPNIDRAFT_118644 1112058 Hybrid 64 An11g07310 N/A 1112167 adaA NR-PKS TAN-1612 ¹⁶⁶ 65 An12g02050 ASPNIDRAFT_190014 1084740 NR PKS TAN-1612 ¹⁶⁶ 66 An12g02570 ASPNIDRAFT_190014 1084740 NR PKS TAN-1612 ¹⁶⁶ 67 An12g02730 no homolog no homolog HR-PKS TAN-1612 ¹⁶⁶ 69 An12g0270 ASPNIDRAFT_148066 1119191 HR-PKS TAN-1612 ¹⁶⁶ 70 An12g07070 ASPNIDRAFT_14205 1103566 NRPS TC 71 An12g10090 ASPNIDRAFT_42205 1103566 NRPS-like 73 An12g10670 ASPNIDRAFT_19593 1085888 NRPS-like 74 An12g10860 ASPNIDRAFT_128638 1116412 HR-PKS 76 An13g02400 ASPNIDRAFT_128638 1116412 HR-PKS 77 An13g02460 ASPNIDRAFT_41618 10199903 Hybrid 80 An14g01940 ASPNIDRAFT_41629 1155978 TC 81 An14	62	An11g06260	ASPNIDRAFT 39174	1154415		TC	
64 An I 1g07310 NA 1112167 adaA NR-PKS TAN-1612 ¹⁶⁶ 65 An I 2g0720 ASPNIDRAFT_118021 1167936 HR-PKS TAN-1612 ¹⁶⁶ 66 An 12g02050 ASPNIDRAFT_189378 1150307 HR-PKS 67 An 12g0270 ASPNIDRAFT_189378 1150307 HR-PKS 68 An 12g0720 ASPNIDRAFT_48907 1172138 NRPS 69 An 12g0720 ASPNIDRAFT_4807 1172138 NRPS 70 An 12g0720 ASPNIDRAFT_4807 1103566 NRPS 71 An 12g07070 ASPNIDRAFT_49806 1085888 NRPS-like 73 An 12g10670 ASPNIDRAFT_195043 1172993 NRPS-like 74 An 12g02460 ASPNIDRAFT_128620 1161952 DMAT 76 An 13g02460 ASPNIDRAFT_128638 1116441 HR-PKS 78 An 13g02460 ASPNIDRAFT_41840 1116473 NRPS 78 An 13g02460 ASPNIDRAFT_14840 11164204 HR-PKS	63	An11g06460	ASPNIDRAFT_118644	1112058		Hybrid	
65 An1lg0720 ASPNIDRAFT_118629 1167936 HR-PKS 66 An12g02050 ASPNIDRAFT_190014 1084740 NR PKS 67 An12g02730 no homolog no homolog HR-PKS 68 An12g02730 no homolog no homolog HR-PKS 69 An12g07070 ASPNIDRAFT_118666 1119191 HR-PKS 70 An12g07070 ASPNIDRAFT_42025 1103566 NRPS 72 An12g10090 ASPNIDRAFT_49805 1085782 TC 73 An12g10806 ASPNIDRAFT_159463 1172993 NRPS-like 74 An12g0806 ASPNIDRAFT_123820 1161952 DMAT 76 An13g02440 ASPNIDRAFT_123820 1161952 DMAT 76 An13g02440 ASPNIDRAFT_412803 HR-PKS 77 An13g02440 ASPNIDRAFT_41629 INFS-like 78 An13g02440 ASPNIDRAFT_41629 INFS-Sike 79 An13g02404 ASPNIDRAFT_41618 11099903 Hybrid 81 An14g0190 ASPNIDRAFT_118103 1104024 HR-PKS	64	An11g07310	N/A	1112167	adaA	NR-PKS	TAN-1612 ¹⁶⁶
66 An12g02050 ASPNIDRAFT_190014 1084740 NR PKS 67 An12g02670 ASPNIDRAFT_189378 1150307 HR-PKS 68 An12g0270 aspniDRAFT_189378 1172138 NRPS 69 An12g07070 ASPNIDRAFT_143807 1172138 NRPS 70 An12g07070 ASPNIDRAFT_143806 1119191 HR-PKS 71 An12g1070 ASPNIDRAFT_194895 1085888 NRPS-like 73 An12g10670 ASPNIDRAFT_195043 1172993 NRPS-like 75 An13g0140 ASPNIDRAFT_128203 1161952 DMAT 76 An13g02460 ASPNIDRAFT_57223 1156292 NRPS-like 77 An13g0240 ASPNIDRAFT_4480 1114413 HR-PKS 78 An13g0240 ASPNIDRAFT_4480 1116473 NRPS 80 An14g01010 ASPNIDRAFT_4480 1116473 NRPS 81 An13g02060 no homolog no homolog NRPS 82 An14g01010 ASPNIDRAFT_41618 <	65	An11g09720	ASPNIDRAFT_118629	1167936		HR-PKS	
67 An12g02670 ASPNIDRAFT_189378 1150307 HR-PKS 68 An12g02730 no homolog no homolog HR-PKS 69 An12g0720 ASPNIDRAFT_18507 1172138 NRPS 70 An12g07070 ASPNIDRAFT_194895 1085888 NRPS 71 An12g1070 ASPNIDRAFT_194895 1085752 TC 74 An12g1080 ASPNIDRAFT_123820 1161952 DMAT 75 An13g02430 ASPNIDRAFT_123838 116441 HR-PKS 76 An13g0240 ASPNIDRAFT_12838 116441 HR-PKS 77 An13g0240 ASPNIDRAFT_4880 1116473 NRPS-like 78 An13g0240 ASPNIDRAFT_4880 1116473 NRPS 78 An13g0240 ASPNIDRAFT_4880 1116473 NRPS 80 An14g01910 ASPNIDRAFT_41618 1099903 Hybrid 81 An14g02060 ASPNIDRAFT_181803 1104204 HR-PKS 82 An15g0140 ASPNIDRAFT_181803 1104204 HR-PKS 83 An15g07910 no homolog no ho	66	An12g02050	ASPNIDRAFT_190014	1084740		NR PKS	
68 An12g02730 no homolog no homolog HR-PKS 69 An12g02740 ASPNIDRAFT_43807 1172138 NRPS 70 An12g07070 ASPNIDRAFT_42205 1103566 NRPS 71 An12g10900 ASPNIDRAFT_194895 1085888 NRPS-like 73 An12g10670 ASPNIDRAFT_195061 1085752 TC 74 An12g10860 ASPNIDRAFT_195043 1172993 NRPS-like 75 An13g02430 ASPNIDRAFT_27223 1156292 DMAT 76 An13g02460 ASPNIDRAFT_41629 116473 NRPS 78 An13g02460 ASPNIDRAFT_41629 1156922 NRPS 79 An13g02460 ASPNIDRAFT_41629 115978 TC 78 An14g02100 ASPNIDRAFT_41846 1115863 Hybrid 81 An14g0210 ASPNIDRAFT_182031 1104204 HR-PKS 84 An15g0130 ASPNIDRAFT_182031 1164062 NRPS 87 An15g07500 ASPNIDRAFT_182031 116406	67	An12g02670	ASPNIDRAFT_189378	1150307		HR-PKS	
69 An12g02840 ASPNIDRAFT_43807 1172138 NRPS 70 An12g07070 ASPNIDRAFT_42205 1103566 NRPS 71 An12g10700 ASPNIDRAFT_42205 1103566 NRPS 72 An12g10090 ASPNIDRAFT_194895 1085888 NRPS-like 73 An12g10860 ASPNIDRAFT_195043 1172933 NRPS-like 74 An13g02430 ASPNIDRAFT_123820 1161952 DMAT 76 An13g02430 ASPNIDRAFT_123820 1161952 DMAT 76 An13g02400 ASPNIDRAFT_1248038 1116441 HR-PKS 77 An13g02400 ASPNIDRAFT_14803 116473 NRPS 80 An14g02060 ASPNIDRAFT_41618 1099903 Hybrid 81 An14g02060 ASPNIDRAFT_41803 1104204 HRPKS 80 An15g02130 ASPNIDRAFT_101803 104204 HRPKS 84 An15g05090 ASPNIDRAFT_210217 1119988 HR-PKS 85 An15g05090 ASPNIDRAFT_182031	68	An12g02730	no homolog	no homolog		HR-PKS	
70 An12g07070 ASPNIDRAFT_118666 1119191 HR-PKS 71 An12g07030 ASPNIDRAFT_194895 103566 NRPS 72 An12g10090 ASPNIDRAFT_194895 1085888 NRPS-like 73 An12g10670 ASPNIDRAFT_194895 1085752 TC 74 An12g10670 ASPNIDRAFT_123820 1161952 DMAT 75 An13g01840 ASPNIDRAFT_123820 1161952 DMAT 76 An13g02460 ASPNIDRAFT_128638 1116441 HR-PKS 77 An13g02460 ASPNIDRAFT_418480 1116473 NRPS-like 78 An13g02460 ASPNIDRAFT_41618 1099903 Hybrid 80 An14g01910 ASPNIDRAFT_41629 1155978 TC 81 An14g02060 ASPNIDRAFT_18803 1104204 HR-PKS 84 An15g02100 ASPNIDRAFT_18803 1104204 HR-PKS 85 An15g05990 ASPNIDRAFT_18803 1104204 HR-PKS 86 An15g07910 no homolog no homolog NRPS 87 An16g00600 ASPNIDRAFT_18744<	69	An12g02840	ASPNIDRAFT_43807	1172138		NRPS	
71 An12g07230 ASPNIDRAFT_42205 1103566 NRPS 72 An12g10090 ASPNIDRAFT_194895 1085888 NRPS-like 73 An12g10670 ASPNIDRAFT_49566 1085752 TC 74 An12g10860 ASPNIDRAFT_12803 1172993 NRPS-like 75 An13g02430 ASPNIDRAFT_128638 1116411 HR-PKS 77 An13g02460 ASPNIDRAFT_128638 1116473 NRPS 78 An13g02460 ASPNIDRAFT_4880 1116473 NRPS 79 An13g02400 ASPNIDRAFT_41618 1099903 Hybrid 80 An14g04850 ASPNIDRAFT_41629 1155978 TC 81 An14g02060 ASPNIDRAFT_41846 1115863 Hybrid 83 An15g02130 ASPNIDRAFT_118103 1104204 HR-PKS 84 An15g0750 ASPNIDRAFT_1182031 1164062 NRPS 85 An15g07910 no homolog no homolog NcPS 86 An15g07900 ASPNIDRAFT_182031 1164062 NRPS 87 An15g07920 no homolog <	70	An12g07070	ASPNIDRAFT_118666	1119191		HR-PKS	
72 An12g10090 ASPNIDRAFT_194895 1085888 NRPS-like 73 An12g10670 ASPNIDRAFT_195043 1172993 NRPS-like 74 An12g10860 ASPNIDRAFT_123820 1161952 DMAT 76 An13g02430 ASPNIDRAFT_128638 1116441 HR-PKS 77 An13g02460 ASPNIDRAFT_57223 1156292 NRPS-like 78 An13g02460 ASPNIDRAFT_44880 1116473 NRPS 79 An13g03040 ASPNIDRAFT_44880 1116473 NRPS 80 An14g01910 ASPNIDRAFT_41629 1159778 TC 81 An14g02060 ASPNIDRAFT_41846 1115863 Hybrid 83 An15g02130 ASPNIDRAFT_181803 1104204 HR-PKS 84 An15g05090 ASPNIDRAFT_182031 1164062 NRPS 85 An15g0730 ASPNIDRAFT_182031 1164062 NRPS 86 An15g07920 no homolog no homolog NRPS 87 An15g07920 no homolog no homolog NRPS 88 An15g07020 ASPNIDRAFT_18240 <td>71</td> <td>An12g07230</td> <td>ASPNIDRAFT_42205</td> <td>1103566</td> <td></td> <td>NRPS</td> <td></td>	71	An12g07230	ASPNIDRAFT_42205	1103566		NRPS	
73 An12g10670 ASPNIDRAFT_45966 1085752 TC 74 An12g10860 ASPNIDRAFT_195043 1172993 NRPS-like 75 An13g01840 ASPNIDRAFT_123820 1161952 DMAT 76 An13g02430 ASPNIDRAFT_128638 1116441 HR-PKS 77 An13g02460 ASPNIDRAFT_57223 1156292 NRPS-like 78 An13g0240 ASPNIDRAFT_41618 1099903 RPKS 79 An13g03040 ASPNIDRAFT_41618 1099903 Hybrid 81 An14g02060 ASPNIDRAFT_41618 1099903 Hybrid 83 An15g02130 ASPNIDRAFT_41803 1104204 HR-PKS 84 An15g02130 ASPNIDRAFT_181803 1104204 HR-PKS 85 An15g07910 ASPNIDRAFT_182031 1164062 NRPS 86 An15g07920 no homolog no homolog NRPS 87 An16g00600 ASPNIDRAFT_18601 1108909 NRPS 88 An15g07910 no homolog no homolog Ro homolog 91 An16g00620 ASPNIDRAFT_18601	72	An12g10090	ASPNIDRAFT_194895	1085888		NRPS-like	
74 An12g10860 ASPNIDRAFT_195043 1172993 NRPS-like 75 An13g01840 ASPNIDRAFT_123820 1161952 DMAT 76 An13g02340 ASPNIDRAFT_128638 11161411 HR-PKS 77 An13g02460 ASPNIDRAFT_128638 11164411 HR-PKS 78 An13g02460 ASPNIDRAFT_18800 1116473 NRPS 80 An14g01910 ASPNIDRAFT_41618 1099903 Hybrid 81 An14g02060 ASPNIDRAFT_41629 1155978 TC 82 An14g04850 ASPNIDRAFT_181803 1104204 HR-PKS 84 An15g04140 ASPNIDRAFT_181803 1104204 HR-PKS 85 An15g05090 ASPNIDRAFT_18744 1104411 HR-PKS 86 An15g07910 no homolog no homolog NRPS 87 An15g07920 no homolog no homolog NRPS 88 An15g07920 no homolog no homolog NRPS 90 An16g00260 ASPNIDRAFT_182041 1123743 NRPS 91 An16g006720 ASPNIDRAFT_18840	73	An12g10670	ASPNIDRAFT_45966	1085752		TC	
75 An13g01840 ASPNIDRAFT_123820 1161952 DMAT 76 An13g02430 ASPNIDRAFT_128638 1116441 HR-PKS 77 An13g02460 ASPNIDRAFT_57223 1156292 NRPS-like 78 An13g02460 ASPNIDRAFT_44880 1116473 NRPS 79 An13g02400 ASPNIDRAFT_44880 1116473 NRPS 80 An14g01910 ASPNIDRAFT_41618 1099903 Hybrid 81 An14g02060 ASPNIDRAFT_41629 1155978 TC 82 An14g04850 ASPNIDRAFT_181803 1104204 HR-PKS 83 An15g02130 ASPNIDRAFT_181803 1104204 HR-PKS 84 An15g07530 ASPNIDRAFT_181803 1164062 NRPS 85 An15g07910 no homolog no homolog Nchros 86 An15g07920 no homolog no homolog RPS 87 An16g00600 ASPNIDRAFT_128626 1175966 TC 90 An16g00600 ASPNIDRAFT_183440 1123743 NRPS-like 91 An16g00600 ASPNIDRAFT_18601	74	An12g10860	ASPNIDRAFT_195043	1172993		NRPS-like	
76 An13g02430 ASPNIDRAFT_128638 1116441 HR-PKS 77 An13g02460 ASPNIDRAFT_57223 1156292 NRPS-like 78 An13g02960 no homolog no homolog NRPKS 79 An13g03040 ASPNIDRAFT_44880 1116473 NRPS 80 An14g01910 ASPNIDRAFT_41618 1099903 Hybrid 81 An14g02060 ASPNIDRAFT_41846 1115863 Hybrid 82 An14g04850 ASPNIDRAFT_181803 1104204 HR-PKS 84 An15g02130 ASPNIDRAFT_181803 1104204 HR-PKS 85 An15g05090 ASPNIDRAFT_182031 1164062 NRPS 86 An15g0750 ASPNIDRAFT_182031 1164062 NRPS 87 An15g07910 no homolog no homolog NRPS 88 An15g07920 no homolog no homolog NRPS 89 An16g00260 ASPNIDRAFT_18340 1123743 NRPS-like 91 An16g06720 ASPNIDRAFT_18401 1128744 pyr.A Hybrid 92 An18g00520	75	An13g01840	ASPNIDRAFT_123820	1161952		DMAT	
77An13g02460ASPNIDRAFT_572231156292NRPS-like78An13g02960no homologno homologNR-PKS79An13g03040ASPNIDRAFT_448801116473NRPS80An14g01910ASPNIDRAFT_416181099903Hybrid81An14g02060ASPNIDRAFT_416291155978TC82An14g04850ASPNIDRAFT_418461115863Hybrid83An15g02130ASPNIDRAFT_1818031104204HR-PKS84An15g05090ASPNIDRAFT_1187441104411HR-PKS85An15g07910ASPNIDRAFT_1820311164062NRPS86An15g07910no homologno homologNRPS87An15g07910no homologno homologNRPS88An16g00260ASPNIDRAFT_1296261175966TC90An16g00600ASPNIDRAFT_1834401123743NRPS-like91An16g00520ASPNIDRAFT_186011108909NRPS92An18g0520ASPNIDRAFT_1870991128344pyrA93no homologASPNIDRAFT_188511087173Hybrid94no homologASPNIDRAFT_1385851154267HR PKS95no homologASPNIDRAFT_1385851154267HR PKS96no homologASPNIDRAFT_1385851154267HR PKS97no homologASPNIDRAFT_1385851154267HR PKS98no homologASPNIDRAFT_251531186328NRPS	76	An13g02430	ASPNIDRAFT_128638	1116441		HR-PKS	
78 An13g02960 no homolog no homolog NR-PKS 79 An13g03040 ASPNIDRAFT_44880 1116473 NRPS 80 An14g01910 ASPNIDRAFT_41618 1099903 Hybrid 81 An14g02060 ASPNIDRAFT_41629 1155978 TC 82 An14g04850 ASPNIDRAFT_41846 1115863 Hybrid 83 An15g02130 ASPNIDRAFT_181803 1104204 HR-PKS 84 An15g0510 ASPNIDRAFT_118744 1104411 HR-PKS 85 An15g07910 ASPNIDRAFT_182031 1164062 NRPS 86 An15g07910 no homolog no homolog NRPS ochratoxin ¹⁶⁴ 88 An16g00260 ASPNIDRAFT_129626 1175966 TC 0 An16g00260 ASPNIDRAFT_18404 1123743 NRPS-like 91 An16g00520 ASPNIDRAFT_18601 1108909 NRPS ferrichrome 92 An18g00520 ASPNIDRAFT_18851 1087173 Hybrid 93 no homolog ASPNIDRAFT_128601 1170655 Hybrid 94 no homolog <td>77</td> <td>An13g02460</td> <td>ASPNIDRAFT_57223</td> <td>1156292</td> <td></td> <td>NRPS-like</td> <td></td>	77	An13g02460	ASPNIDRAFT_57223	1156292		NRPS-like	
79 An13g03040 ASPNIDRAFT_44880 1116473 NRPS 80 An14g01910 ASPNIDRAFT_41618 1099903 Hybrid 81 An14g0260 ASPNIDRAFT_41629 1155978 TC 82 An14g04850 ASPNIDRAFT_41846 1115863 Hybrid 83 An15g04140 ASPNIDRAFT_181803 1104204 HR-PKS 84 An15g04140 ASPNIDRAFT_118744 1104411 HR-PKS 85 An15g0790 ASPNIDRAFT_182031 1164062 NRPS 86 An15g07910 no homolog no homolog NRPS 87 An15g07920 no homolog no homolog HR-PKS 88 An16g00600 ASPNIDRAFT_129626 1175966 TC 90 An16g00600 ASPNIDRAFT_188140 1123743 NRPS 91 An16g006720 ASPNIDRAFT_18810 1108909 NRPS ferrichrome 92 An18g00520 ASPNIDRAFT_18601 1108909 NRPS ferrichrome 92 no homolog ASPNIDRAFT_18851 1087173 Hybrid pyranonigrin A ¹²⁸ <tr< td=""><td>78</td><td>An13g02960</td><td>no homolog</td><td>no homolog</td><td></td><td>NR-PKS</td><td></td></tr<>	78	An13g02960	no homolog	no homolog		NR-PKS	
80 An14g01910 ASPNIDRAFT_41618 1099903 Hybrid 81 An14g02060 ASPNIDRAFT_41629 1155978 TC 82 An14g04850 ASPNIDRAFT_41846 1115863 Hybrid 83 An15g02130 ASPNIDRAFT_181803 1104204 HR-PKS 84 An15g04140 ASPNIDRAFT_181803 1104204 HR-PKS 85 An15g05090 ASPNIDRAFT_18744 1104411 HR-PKS 86 An15g07530 ASPNIDRAFT_182031 1164062 NRPS 87 An15g07910 no homolog no homolog NRPS ochratoxin ¹⁶⁴ 88 An15g07920 no homolog no homolog HR-PKS ochratoxin ¹⁶⁴ 89 An16g00600 ASPNIDRAFT_129626 1175966 TC 0 90 An16g006720 ASPNIDRAFT_183440 1123743 NRPS ferrichrome 92 An18g00520 ASPNIDRAFT_187099 1128344 pyrA Hybrid pyranonigrin A ¹²⁸ 93 no homolog ASPNIDRAFT_18851 1087173 Hybrid 128 94 no homolog	79	An13g03040	ASPNIDRAFT_44880	1116473		NRPS	
81 An14g02060 ASPNIDRAFT_41629 1155978 TC 82 An14g04850 ASPNIDRAFT_41846 1115863 Hybrid 83 An15g02130 ASPNIDRAFT_181803 1104204 HR-PKS 84 An15g0500 ASPNIDRAFT_10217 1119988 HR-PKS 85 An15g0500 ASPNIDRAFT_118744 1104411 HR-PKS 86 An15g07530 ASPNIDRAFT_182031 1164062 NRPS 87 An15g07910 no homolog no homolog NRPS 88 An15g07920 no homolog no homolog RR-PKS 89 An16g00600 ASPNIDRAFT_183440 1123743 NRPS-like 91 An16g006720 ASPNIDRAFT_183440 1123743 NRPS 92 An18g00520 ASPNIDRAFT_187099 1128344 pyr.A Hybrid 93 no homolog ASPNIDRAFT_138581 1087173 Hybrid 94 no homolog ASPNIDRAFT_138585 1154267 HR PKS 95 no homolog ASPNIDRAFT_171221 1156426 PR PKS 96 no homolog	80	An14g01910	ASPNIDRAFT_41618	1099903		Hybrid	
82 An14g04850 ASPNIDRAFT_41846 1115863 Hybrid 83 An15g02130 ASPNIDRAFT_181803 1104204 HR-PKS 84 An15g04140 ASPNIDRAFT_210217 1119988 HR-PKS 85 An15g05090 ASPNIDRAFT_182031 1164062 NRPS 86 An15g07910 no homolog no homolog NRPS 87 An15g07920 no homolog no homolog NRPS 88 An15g07920 no homolog no homolog NRPS 89 An16g00260 ASPNIDRAFT_129626 1175966 TC 90 An16g006720 ASPNIDRAFT_118704 1123743 NRPS 91 An16g006720 ASPNIDRAFT_18840 1123743 NRPS 92 An18g00520 ASPNIDRAFT_18709 1128344 pyr.4 Hybrid 93 no homolog ASPNIDRAFT_18851 1087173 Hybrid 94 no homolog ASPNIDRAFT_18855 1154267 HR PKS 95 no homolog ASPNIDRAFT_18855 1154267 HR PKS 96 no homolog ASPNIDRA	81	An14g02060	ASPNIDRAFT_41629	1155978		TC	
83 An15g02130 ASPNIDRAFT_181803 1104204 HR-PKS 84 An15g04140 ASPNIDRAFT_210217 1119988 HR-PKS 85 An15g05090 ASPNIDRAFT_118744 1104411 HR-PKS 86 An15g07530 ASPNIDRAFT_182031 1164062 NRPS 87 An15g07910 no homolog no homolog NRPS ochratoxin ¹⁶⁴ 88 An15g07920 no homolog no homolog KR-PKS ochratoxin ¹⁶⁴ 89 An16g00260 ASPNIDRAFT_129626 1175966 TC ochratoxin ¹⁶⁴ 90 An16g06700 ASPNIDRAFT_183440 1123743 NRPS ferrichrome 91 An16g06720 ASPNIDRAFT_18601 1108909 NRPS ferrichrome 92 An18g00520 ASPNIDRAFT_187099 1123743 NRPS ferrichrome 93 no homolog ASPNIDRAFT_187099 1128344 pyrA Hybrid pyranonigrin A ¹²⁸ 93 no homolog ASPNIDRAFT_138581 1087173 Hybrid stantation 94 no homolog ASPNIDRAFT_138585 1154267	82	An14g04850	ASPNIDRAFT_41846	1115863		Hybrid	
84 An15g04140 ASPNIDRAFT_210217 1119988 HR-PKS 85 An15g05090 ASPNIDRAFT_118744 1104411 HR-PKS 86 An15g07530 ASPNIDRAFT_182031 1164062 NRPS 87 An15g07910 no homolog no homolog NRPS ochratoxin ¹⁶⁴ 88 An15g07920 no homolog no homolog HR-PKS ochratoxin ¹⁶⁴ 89 An16g00260 ASPNIDRAFT_129626 1175966 TC Ochratoxin ¹⁶⁴ 90 An16g06720 ASPNIDRAFT_183440 1123743 NRPS-like 91 An16g06720 ASPNIDRAFT_187099 1128344 pyrA Hybrid 92 An18g00520 ASPNIDRAFT_187099 1128344 pyrA Hybrid 93 no homolog ASPNIDRAFT_187099 1128344 pyrA Hybrid 94 no homolog ASPNIDRAFT_18851 1087173 Hybrid 94 no homolog ASPNIDRAFT_18585 1154267 HR PKS 96 no homolog ASPNIDRAFT_194381 1159236 NR-PKS 97 no homolog	83	An15g02130	ASPNIDRAFT_181803	1104204		HR-PKS	
85 An15g05090 ASPNIDRAFT_118744 1104411 HR-PKS 86 An15g07530 ASPNIDRAFT_182031 1164062 NRPS 87 An15g07910 no homolog no homolog NRPS ochratoxin ¹⁶⁴ 88 An15g07920 no homolog no homolog HR-PKS ochratoxin ¹⁶⁴ 89 An16g00260 ASPNIDRAFT_129626 1175966 TC 0 90 An16g00600 ASPNIDRAFT_183440 1123743 NRPS-like 91 An16g06720 ASPNIDRAFT_18601 1108909 NRPS 92 An18g00520 ASPNIDRAFT_187099 1128344 pyrA Hybrid 93 no homolog ASPNIDRAFT_18601 1108909 NRPS ferrichrome 93 no homolog ASPNIDRAFT_187099 1128344 pyrA Hybrid pyranonigrin A ¹²⁸ 94 no homolog ASPNIDRAFT_138581 1087173 Hybrid 1089 95 no homolog ASPNIDRAFT_138585 1154267 HR PKS 96 95 no homolog ASPNIDRAFT_194381 1159236 NR-PKS 9	84	An15g04140	ASPNIDRAFT_210217	1119988		HR-PKS	
86 An15g07530 ASPNIDRAFT_182031 1164062 NRPS 87 An15g07910 no homolog no homolog NRPS ochratoxin ¹⁶⁴ 88 An15g07920 no homolog no homolog HR-PKS ochratoxin ¹⁶⁴ 89 An16g00260 ASPNIDRAFT_129626 1175966 TC 90 An16g00600 ASPNIDRAFT_183440 1123743 NRPS ferrichrome 91 An16g06720 ASPNIDRAFT_18601 1108909 NRPS ferrichrome 92 An18g00520 ASPNIDRAFT_187099 1128344 pyrA Hybrid pyranonigrin A ¹²⁸ 93 no homolog ASPNIDRAFT_18601 1108909 NRPS ferrichrome 94 no homolog ASPNIDRAFT_18601 1170655 Hybrid 94 no homolog ASPNIDRAFT_18585 1154267 HR PKS 96 no homolog ASPNIDRAFT_194381 1159236 NR-PKS 97 no homolog ASPNIDRAFT_211885 1168194 HR-PKS 98	85	An15g05090	ASPNIDRAFT_118744	1104411		HR-PKS	
87 An15g07910 no homolog no homolog no homolog NRPS ochratoxin ¹⁶⁴ 88 An15g07920 no homolog no homolog HR-PKS ochratoxin ¹⁶⁴ 89 An16g00260 ASPNIDRAFT_129626 1175966 TC 90 An16g00600 ASPNIDRAFT_183440 1123743 NRPS-like 91 An16g06720 ASPNIDRAFT_118601 1108909 NRPS ferrichrome 92 An18g00520 ASPNIDRAFT_187099 1128344 <i>pyrA</i> Hybrid pyranonigrin A ¹²⁸ 93 no homolog ASPNIDRAFT_18709 1128344 <i>pyrA</i> Hybrid pyranonigrin A ¹²⁸ 94 no homolog ASPNIDRAFT_1881 1087173 Hybrid 94 no homolog ASPNIDRAFT_128601 1170655 Hybrid 95 no homolog ASPNIDRAFT_171221 1156426 PR PKS 96 no homolog ASPNIDRAFT_194381 1159236 NR-PKS 97 no homolog ASPNIDRAFT_211885 1168194 HR-PKS 98 no homolog ASPNIDRAFT_55153 1186328 NRPS	86	An15g07530	ASPNIDRAFT_182031	1164062		NRPS	
88 An15g07920 no homolog no homolog HR-PKS ochratoxin ¹⁶⁴ 89 An16g00260 ASPNIDRAFT_129626 1175966 TC 90 An16g00600 ASPNIDRAFT_183440 1123743 NRPS-like 91 An16g06720 ASPNIDRAFT_118601 1108909 NRPS ferrichrome 92 An18g00520 ASPNIDRAFT_187099 1128344 <i>pyrA</i> Hybrid pyranonigrin A ¹²⁸ 93 no homolog ASPNIDRAFT_187099 1128344 <i>pyrA</i> Hybrid 94 no homolog ASPNIDRAFT_18709 1128344 <i>pyrA</i> Hybrid 94 no homolog ASPNIDRAFT_118581 1087173 Hybrid 95 no homolog ASPNIDRAFT_128601 1170655 Hybrid 95 no homolog ASPNIDRAFT_171221 1156426 PR PKS 96 no homolog ASPNIDRAFT_194381 1159236 NR-PKS 97 no homolog ASPNIDRAFT_211855 1168194 HR-PKS 98 no homolog	87	An15g07910	no homolog	no homolog		NRPS	ochratoxin ¹⁶⁴
89 An16g00260 ASPNIDRAFT_129626 1175966 TC 90 An16g00600 ASPNIDRAFT_183440 1123743 NRPS-like 91 An16g06720 ASPNIDRAFT_118601 1108909 NRPS ferrichrome 92 An18g00520 ASPNIDRAFT_187099 1128344 pyrA Hybrid pyranonigrin A ¹²⁸ 93 no homolog ASPNIDRAFT_18581 1087173 Hybrid 94 no homolog ASPNIDRAFT_128601 1170655 Hybrid 95 no homolog ASPNIDRAFT_138585 1154267 HR PKS 96 no homolog ASPNIDRAFT_171221 1156426 PR PKS 97 no homolog ASPNIDRAFT_194381 1159236 NR-PKS 98 no homolog ASPNIDRAFT_211885 1168194 HR-PKS 99 no homolog ASPNIDRAFT_55153 1186328 NRPS	88	An15g07920	no homolog	no homolog		HR-PKS	ochratoxin ¹⁶⁴
90 An16g00600 ASPNIDRAFT_183440 1123743 NRPS-like 91 An16g06720 ASPNIDRAFT_118601 1108909 NRPS ferrichrome 92 An18g00520 ASPNIDRAFT_187099 1128344 pyrA Hybrid pyranonigrin A ¹²⁸ 93 no homolog ASPNIDRAFT_118581 1087173 Hybrid 94 no homolog ASPNIDRAFT_128601 1170655 Hybrid 95 no homolog ASPNIDRAFT_138585 1154267 HR PKS 96 no homolog ASPNIDRAFT_194381 1159236 NR-PKS 97 no homolog ASPNIDRAFT_211855 1168194 HR-PKS 98 no homolog ASPNIDRAFT_55153 1186328 NRPS	89	An16g00260	ASPNIDRAFT_129626	1175966		TC	
91 An16g06720 ASPNIDRAFT_118601 1108909 NRPS ferrichrome 92 An18g00520 ASPNIDRAFT_187099 1128344 pyrA Hybrid pyranonigrin A ¹²⁸ 93 no homolog ASPNIDRAFT_118581 1087173 Hybrid pyranonigrin A ¹²⁸ 94 no homolog ASPNIDRAFT_128601 1170655 Hybrid pyranonigrin A ¹²⁸ 95 no homolog ASPNIDRAFT_138585 1154267 HR PKS p6 no homolog ASPNIDRAFT_171221 1156426 PR PKS 96 no homolog ASPNIDRAFT_194381 1159236 NR-PKS p8 no homolog ASPNIDRAFT_211885 1168194 HR-PKS 98 no homolog ASPNIDRAFT_55153 1186328 NRPS NRPS	90	An16g00600	ASPNIDRAFT_183440	1123743		NRPS-like	
92 An18g00520 ASPNIDRAFT_187099 1128344 pyrA Hybrid pyranonigrin A ¹²⁸ 93 no homolog ASPNIDRAFT_118581 1087173 Hybrid 94 no homolog ASPNIDRAFT_128601 1170655 Hybrid 95 no homolog ASPNIDRAFT_138585 1154267 HR PKS 96 no homolog ASPNIDRAFT_171221 1156426 PR PKS 97 no homolog ASPNIDRAFT_194381 1159236 NR-PKS 98 no homolog ASPNIDRAFT_211885 1168194 HR-PKS 99 no homolog ASPNIDRAFT_55153 1186328 NRPS	91	An16g06720	ASPNIDRAFT_118601	1108909		NRPS	ferrichrome
93 no homolog ASPNIDRAFT_118581 1087173 Hybrid 94 no homolog ASPNIDRAFT_128601 1170655 Hybrid 95 no homolog ASPNIDRAFT_138585 1154267 HR PKS 96 no homolog ASPNIDRAFT_171221 1156426 PR PKS 97 no homolog ASPNIDRAFT_194381 1159236 NR-PKS 98 no homolog ASPNIDRAFT_211885 1168194 HR-PKS 99 no homolog ASPNIDRAFT_55153 1186328 NRPS	92	An18g00520	ASPNIDRAFT_187099	1128344	pyrA	Hybrid	pyranonigrin A ¹²⁸
94 no homolog ASPNIDRAFT_128601 1170655 Hybrid 95 no homolog ASPNIDRAFT_138585 1154267 HR PKS 96 no homolog ASPNIDRAFT_171221 1156426 PR PKS 97 no homolog ASPNIDRAFT_194381 1159236 NR-PKS 98 no homolog ASPNIDRAFT_211885 1168194 HR-PKS 99 no homolog ASPNIDRAFT_55153 1186328 NRPS	93	no homolog	ASPNIDRAFT_118581	1087173		Hybrid	
95 no homolog ASPNIDRAFT_138585 1154267 HR PKS 96 no homolog ASPNIDRAFT_171221 1156426 PR PKS 97 no homolog ASPNIDRAFT_194381 1159236 NR-PKS 98 no homolog ASPNIDRAFT_211885 1168194 HR-PKS 99 no homolog ASPNIDRAFT_55153 1186328 NRPS	94	no homolog	ASPNIDRAFT_128601	1170655		Hybrid	
96 no homolog ASPNIDRAFT_171221 1156426 PR PKS 97 no homolog ASPNIDRAFT_194381 1159236 NR-PKS 98 no homolog ASPNIDRAFT_211885 1168194 HR-PKS 99 no homolog ASPNIDRAFT_55153 1186328 NRPS	95	no homolog	ASPNIDRAFT_138585	1154267		HR PKS	
97 no homolog ASPNIDRAFT_194381 1159236 NR-PKS 98 no homolog ASPNIDRAFT_211885 1168194 HR-PKS 99 no homolog ASPNIDRAFT_55153 1186328 NRPS	96	no homolog	ASPNIDRAFT_171221	1156426		PR PKS	
98 no homolog ASPNIDRAFT_211885 1168194 HR-PKS 99 no homolog ASPNIDRAFT_55153 1186328 NRPS	97	no homolog	ASPNIDRAFT_194381	1159236		NR-PKS	
99 no homolog ASPNIDRAFT_55153 1186328 NRPS	98	no homolog	ASPNIDRAFT_211885	1168194		HR-PKS	
	99	no homolog	ASPNIDRAFT_55153	1186328		NRPS	

Table 5. Core secondary metabolite synthesis genes and their products in *A. terreus*

No.	Broad designation	Gene name	Gene type	SM(s) produced
1	ATEG 00145	terA	NR-PKS	terrein ¹³¹
2	ATEG_00228		NRPS	
3	ATEG_00282		HR-PKS	
4	ATEG 00325		Hybrid	isoflavipucine ¹⁶⁷
5	ATEG_00700	atqA	NRPS-like	asterriquinones ¹⁶⁸
6	ATEG 00881	-	NRPS	-
7	ATEG_00913		NR-PKS	
8	ATEG 01002		NRPS	
9	ATEG_01052		NRPS-like	
10	ATEG_01730		DMAT	
11	ATEG_01769		TC	
12	ATEG 01894		HR-PKS	
13	ATEG_02004	apvA	NRPS-like	aspulvinones ¹⁶⁸
14	ATEG_02403	1	NRPS-like	1
15	ATEG_02434		HR-PKS	
16	ATEG_02815	btyA	NRPS-like	butyrolactones168

17	ATEG_02831		NRPS	
18	ATEG_02944		NRPS	
19	ATEG_03090		NRPS-like	
20	ATEG 03432		NR-PKS	
21	ATEG_03446		HR-PKS	
22	ATEG_03470	ataP	NRPS	acetylaranotin ¹³³
23	ATEG_03528		NRPS	
24	ATEG_03563	atmelA	NRPS-like	asp-melanin ^{168,169}
25	ATEG 03576		NRPS	usp metallin
26	ATEG 03629		NR-PKS	
20	ATEG_03630		NRPS-like	
28	ATEG_04218		DMAT	
20	ATEG_04218		NPPS	
29	ATEC_04322		NDDS	
21	ATEC_04323	ant A	TC	acentarria agid134
22	ATEC_04410	USIA		aspierrie aciu-
32	ATEG_04/18		NDDC 1:1	
22	ATEG_04973		INKPS-like	
34	ATEG_04999		DMAI	
35	ATEG_050/3		NKPS	
36	ATEG_05/95		NRPS-Ike	
37	ATEG_06056		HR-PKS	
38	ATEG_06111		DMAT	
39	ATEG_06113		NRPS	
40	ATEG_06206		NR-PKS	
41	ATEG_06275	atX	HR-PKS	terreic acid ¹³²
42	ATEG 06680		HR-PKS	
43	ATEG 06998		NRPS-like	
44	ATEG_07067		HR-PKS	
45	ATEG_07279		HR-PKS	
46	ATEG_07282		HR-PKS	
47	ATEG_07358		NRPS	
48	ATEG 07379		HR-PKS	
49	ATEG_07380		NRPS-like	
50	ATEG 07488		NRPS	
51	ATEG_07500		HR-PKS	
52	ATEG 07659	AteafoG	HR-PKS	asperfuranone ¹²
53	ATEG 07661	AteafoE	NR-PKS	asperfuranone ¹²
54	ATEG 07894	meajon	NRPS-like	usperturatione
55	ATEG_08172		HR-PKS	
56	ATEG_08204		TC	
57	ATEG_08/27		NRPS	
58	ATEG_08427	andC	NIR DKS	geodin ^{91,170}
50	ATEG_08451	geue	NR-IKS	geouin
59	ATEC_08002		NR-I KS	
60	ATEC_08800	A	NRPS-like	
01	ATEG_00010	pgnA	NRPS-like	phenguignardic acid ¹³⁶
62	ATEG_09019		NKPS	
63	ATEG_09033		NKPS-like	1 140
64	ATEG_09064	apmB	NRPS	asperphenamate ¹⁴⁰
65	ATEG_09068	apmA	NRPS	asperphenamate ¹⁴⁰
66	ATEG_09088		HR-PKS	
67	ATEG_09100		HR-PKS	
68	ATEG_09142		NRPS-like	
69	ATEG_09617		HR-PKS	citreoviridin ¹⁴²
70	ATEG_09961	lovB	HR-PKS	lovastatin ¹⁷¹
71	ATEG_09968	lovF	HR-PKS	lovastatin ¹⁷¹
72	ATEG_09980		DMAT	
73	ATEG_10080	trt4	NR-PKS	terretonin ¹³⁰
74	ATEG_10305	anaPS	NRPS	asterrelenin, epi-aszonalenin A168

SCHEMES

Scheme 1. Biosynthesis of ent-pimara-8(14),15-diene in A. nidulans.²⁵

Scheme 2. Biosynthesis of asperniduglene A1 in A. nidulans.²⁶

Scheme 3. Biosynthesis of aspernidine A in A. nidulans.²⁸

Scheme 4. Biosynthesis of microperfuranone in A. nidulans.³⁰

Scheme 5. Biosynthesis of fellutamide B in A. nidulans.³⁷

Scheme 6. Biosynthesis of cichorine in A. nidulans.³⁸

Scheme 7. Biosynthesis of aspercryptin in A. nidulans.48

Scheme 8. Biosynthesis of felinone A in A. nidulans.⁵⁰

Scheme 9. Biosynthesis of 4'-methoxyviridicatin in A. nidulans.⁵⁵

Scheme 10. Biosynthesis of grey-brown conidiophore pigment in A. nidulans.^{57,59}

Scheme 11. Biosynthesis of (+)-asperlin in A. nidulans.65

nexadenyarousteenra

Scheme 12. Biosynthesis of hexadehydroastechrome in A. fumigatus.⁷³

Scheme 13. Biosynthesis of endocrocin in A. fumigatus.⁸¹

Scheme 14. Biosynthesis of trypacidin in A. fumigatus.⁸²

Scheme 15. Biosynthesis of helvolic acid in A. fumigatus.¹⁰⁰

Scheme 16. Biosynthesios of fumipyrrole in A. fumigatus.¹⁰³

Scheme 17. Biosynthesis of neosartoricin and fumicyclines in A. fumigatus. 105,106

Scheme 18. Biosynthesis of fumagillin in A. fumigatus.¹¹³

Scheme 19. Biosynthesis of kotanin in A. niger. 114

Scheme 20. Biosynthesis of azanigerones in A. niger.¹¹⁷

Scheme 21. Biosynthesis of yanuthone D in A. niger.¹²¹

Scheme 22. Biosynthesis of pyranonigrins E-J in A. niger.^{123,125}

Scheme 23. Biosynthesis of pyranonigrin A in A. niger.¹²⁸

Scheme 24. Biosynthesis of aspterric acid in *A. terreus*.¹³⁴

Scheme 25. Biosynthesis of phenguignardic acid in A. terreus.¹³⁶

Scheme 26. Biosynthesis of asperphenamate in A. terreus.¹⁴⁰

Scheme 27. Biosynthesis of citreoviridin in *A. terreus*.¹⁴²

