

Physicochemical interactions with (-)-epigallocatechin-3gallate drives structural modification of celiac-associated immunostimulatory peptide α2-gliadin (57-89) at physiological conditions

Journal:	Food & Function
Manuscript ID	FO-ART-03-2019-000553.R1
Article Type:	Paper
Date Submitted by the Author:	25-Apr-2019
Complete List of Authors:	Van Buiten, Charlene; Pennsylvania State University, Department of Food Science Yennawar, Neela; Pennsylvania State University Pacheco, Carlos; Pennsylvania State University Hatzakis, Emannuel ; Penn State University, Food Science and Technology Elias, Ryan; Pennsylvania State University, Department of Food Science

1	Physicochemical interactions with (-)-epigallocatechin-3-gallate drive structural
2	modification of celiac-associated immunostimulatory peptide α_2 -gliadin (57-89) at
3	physiological conditions
4	
5	Charlene B. Van Buiten ^a , Neela H. Yennawar ^b , Carlos N. Pacheco ^c , Emmanuel Hatzakis ^d ,
6	Ryan J. Elias ^{a*}
7	
8	^a Department of Food Science, The Pennsylvania State University, University Park, PA, USA
9	^b Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA, USA
10	° Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
11	^d Department of Food Science and Technology, The Ohio State University, OH, USA
12	* Corresponding author at: Department of Food Science, The Pennsylvania State University,
13	University Park, PA, USA
14	
15	Email address: elias@psu.edu (R. J. Elias)
16	
17	Keywords
18	Celiac disease, EGCG, gliadin, gluten, tea polyphenols
19	
20	Abstract
21	(-)-Epigallocatechin-3-gallate (EGCG), a major phenolic constituent of tea, has been shown
22	to have biological activity within inflammatory pathways involved with food allergies and
23	intolerances. Proposed mechanisms for this effect include sequestration and structural

24	modification of immunostimulatory proteins as a result of interactions with EGCG. The present
25	study employs biophysical techniques including dynamic light scattering, circular dichroism and
26	nuclear magnetic resonance to elucidate the likely mechanism(s) by which EGCG interacts with
27	α_2 -gliadin (57-89) (α_2 g), an immunodominant peptide in celiac disease pathogenesis. We
28	demonstrate that EGCG interacts with $\alpha_2 g$ in a multi-phase reaction driven by non-specific
29	binding, resulting in the formation of polydisperse EGCG/ α_2 g complexes which induce changes
30	in peptide structure. We also show that these interactions occur at a range of pH levels associated
31	with digestion, including pH 2.0, 6.8 and 7.5. Based on previous reports of binding specificity of
32	enzymes and antigen presenting cells in celiac disease pathogenesis, our results provide
33	foundational support for EGCG to prevent recognition of immunostimulatory gliadin epitopes by
34	the body and thus prevent the inflammatory and autoimmune response associated with celiac
35	disease.

36

37 1 Introduction

According to the 2007 – 2010 National Health and Nutrition Examination Survey (NHANES), 38 39 the average adult in the United States consumes approximately 200 mg of flavonoids per day, the 40 majority of which are consumed in the context of green or black tea.¹ The health benefits 41 associated with tea and its constituent flavonoids have been extensively explored, both in vitro and *in vivo*.²⁻⁵ In recent years, attention has turned to the potential for flavonoids to aid in the 42 43 treatment of inflammatory disorders including inflammatory bowel disease and the alleviation of symptoms associated with food allergy.⁶⁻¹⁰ These studies have demonstrated that flavonoids can 44 45 be multi-functional with respect to prevention and reversal of the disease states investigated. One 46 flavonoid of particular interest is EGCG, the major catechin found in green tea.

Page 3 of 36

47	In models of food allergy, EGCG has been shown to mediate the degranulation of mast cells
48	via inhibition of histidine decarboxylase as well as reduce the expression of key proteins
49	involved in immune cell recruitment. ^{11–13} As food allergies are stimulated by contact with an
50	external antigen, "epitope masking", or physically blocking recognition of immunostimulatory
51	proteins by immune cells, has also been explored as a possible mechanism by which polyphenols
52	such as EGCG might mitigate the symptoms of food allergy. This has been demonstrated most
53	notably with peanut proteins and procyanidins from cranberries and blueberries, which were
54	shown to decrease allergen binding by IgE and attenuate histamine and β -hexoaminidase
55	release. ¹⁴ In other studies, peanut proteins have been shown to undergo conformational changes
56	upon binding to EGCG, ⁷ suggesting that structural modification may contribute to the decreased
57	IgE recognition described by Plundrich et al. (2017). EGCG has also been shown to structurally
58	modify ovalbumin, a major allergen found in eggs, preventing uptake of the allergen by
59	monocytes and thus attenuating the allergic response. ⁸
60	Celiac disease is an autoimmune enteropathy that shares characteristics with both
61	inflammatory bowel disease and food allergies. In celiac disease, gluten proteins from wheat,
62	barley and rye stimulate a host of symptoms that primarily manifest in the small intestine,
63	inducing inflammation and damage to the enterocytes. ¹⁵ Gluten proteins are rich in proline
64	residues and feature repeat motifs of polyproline II (PPII) helices and random coils, structures
65	that are important for their recognition by key receptors in pathogenesis. ¹⁶ Tissue
66	transglutaminase (TG2) is an endogenous enzyme secreted by enterocytes in response to gluten
67	proteins passing the brush border that cross-links with gluten, preferentially deamidating
68	glutamine residues one amino acid away from proline residues. ¹⁷ Human leukocyte antigen
69	(HLA)-DQ2 (DQA1*05:01, DQB1*02:01) recognizes gluten epitopes and presents them to T

70	cells, activating the adaptive immune response which leads to destruction of small intestinal
71	architecture and secretion of antibodies against gluten and TG2.18
72	The present work explores the use of a dietary polyphenol (EGCG) as a gliadin protein
73	binding agent which, if successful, could represent a novel therapeutic approach for alleviating
74	celiac disease symptoms by masking binding sites and epitopes capable of being recognized by
75	TG2 or HLA-DQ2. Characterization of the etiology of the celiac disease autoimmune response
76	has led to the discovery of physiologically stable, 33-amino acid fragment of α_2 -gliadin that is
77	produced upon enzymatic digestion of gluten both in vitro and in vivo. This immunodominant
78	33-mer, α_2 -gliadin (57-89) (α_2 g; LQLQPF(PQPQLPY)_3PQPQPF), contains six overlapping
79	epitopes (1 α -I, PFPQPQLPY; 3 α -II, PQPQLPYPQ; 2 α -III, PYPQPQLPY) that are able to be
80	deamidated by TG2 and be recognized by HLA-DQ2.19
81	The tendency for proline-rich proteins such as $\alpha_2 g$ proteins to form PPII helices allows for
82	increased accessibility of polyphenols to potential binding sites within the proteins, favoring
83	noncovalent interactions such as hydrogen bonding, van der Waals interactions and π - π
84	stacking. ²⁰ This phenomenon has been explored with respect to proline-rich salivary proteins and
85	wine tannins, as precipitation interactions between the two are thought to drive the oral sensation
86	of astringency. Interactions between EGCG and proline-rich salivary proteins have been shown
87	to modify the structure of salivary proteins and result in precipitation of both compounds. ²¹
88	Structural characterization of $\alpha_2 g$ has revealed that the peptide transitions between extended PPII
89	helices and type II β -turns depending on solvent conditions and temperature, ²² suggesting that
90	structural modification as a result of binding with EGCG may also be possible.
91	The objective of the present study was to explore the potential for EGCG to bind to $\alpha_2 g$ and
92	to determine the structural impact of this interaction on the peptide. We sought to elucidate the

93	mechanism by which these interactions occur and define physiological factors which may
94	influence the interaction. From a functional perspective, structural modification of $\alpha_2 g$ via
95	interaction with EGCG may provide groundwork for developing a nutraceutical approach to
96	preventing the autoimmune response associated with celiac disease by preventing recognition of
97	α_2 g by TG2 and/or HLA-DQ2. This protective mechanism could work in conjunction with those
98	previously explored by our group, including prevention of gliadin digestion and inhibition of
99	gliadin-stimulated permeability and inflammation in the small intestine. ²³
100	
101	2 Materials and Methods
102	EGCG (> 98% purity) was purchased from Quality Phytochemicals (East Brunswick, NJ)
103	and α_2 -gliadin (57-89) (LQLQPF(PQPQLPY)_3PQPQPF; MW = 3911.4 kDa; 95-97% purity)
104	was synthesized by 21st Century Biochemicals (Marlboro, MA).
105	
106	2.1 Dynamic Light Scattering
107	Dynamic light scattering (DLS) experiments were carried out using a Viscotek 802 DLS with
108	OmniSIZE software (Malvern Instruments, Malvern, UK). Initial samples of varying $\alpha_2 g$ and
109	EGCG concentrations were screened for detectable colloids and to ensure experimental
110	concentrations remained below the turbidity threshold.
111	DLS was also used to measure the hydrodynamic radii (R _h), molecular weight and size
112	distribution using a mean of at least ten DLS measurements of EGCG/ α_2 g complexes. EGCG
113	was added to 12.8 μ M α_2 g at molar ratios of 5-50 times excess EGCG in 10 mM sodium
114	phosphate buffer, pH 6.8. Samples were prepared 1 h prior to analysis, which was carried out at
115	37 °C. Samples were filtered using a 0.45 μ m membrane filter (Millipore Sigma, Burlington,

116	MA) prior to loading 12 μ l of it into the quartz cuvette for each DLS measurement. R _h were
117	measured based on 10 separate measurements of 10 s each. Experiments characterizing pH and
118	concentration effects on R_h were carried out at pH 2.0, 6.8 and 7.5 with concentrations of 0.25
119	μ M α_2 g and 0.4-50 times excess EGCG in 10 mM sodium phosphate buffer.
120	
121	2.1 Isotheral Titration Calorimetry
122	An isothermal titration calorimeter (ITC; MicroCal Auto-iTC200, Malvern Instruments,
123	Westborough, MA) was used to measure the enthalpies of mixing for $\alpha_2 g$ and EGCG.
124	Experiments were conducted at 37 °C in 10 mM sodium phosphate buffer, pH 6.8 with a
125	reference power of 5 $\mu cal/s.$ EGCG (3.2 mM) was titrated into a cell containing 280 μL of 12.8
126	mM $\alpha_2 g$ as 38 injections of 1 μ L each. EGCG was injected into buffer alone as a control, and the
127	results were subtracted from the EGCG/ α_2 g results. Data were integrated and analyzed using
128	Origin (OriginLabs, Inc., Northampton, MA). Each injection lasted 2 s and an interval of 300 s
129	was maintained between injections. The cell was stirred at 750 rpm throughout the experiment.
130	Buffer matching was ensured with a reference run prior to running experiments.
131	
132	2.1 Nuclear Magnetic Resonance
133	All nuclear magnetic resonance (NMR) experiments were performed on a Bruker Avance-
134	III-HD 500-MHz instrument operating at a ¹ H frequency of 500.20 MHz using a 5-mm Prodigy
135	BBO BB- ¹ H/ ¹⁹ F/D Z-GRD probe at temperature of 298 K. Solvent suppression was achieved
136	using the Sinc1.100 excitation sculpting sequence. ²⁴ Data acquisition and processing for all

- 137 experiments were performed with Topspin 3.2 (Bruker, Billerica, MA) and MestReNova 10.0.1
- 138 (Mestrelab Research, Santiago de Compostela, Spain).

139 **2.3.1 Saturation Transfer Difference NMR**

140 NMR samples were prepared immediately prior to analysis by dissolving α_2 -gliadin (57-89) 141 and each ligand in 85% H₂O, 15% dimethylsulfoxide-d₆ (DMSO-d₆, 99.8%, deuterium; EMD 142 Millipore, Billerica, MA) to achieve a final concentration of 0.25 mM in 500 µL. DMSO-d₆ was 143 used to aid with solubility. Ligand mapping experiments were performed with 25 mM ligand per 144 sample, or 100-fold excess.

145 In all STD-NMR experiments, on-resonance irradiation of peptide α_2 -gliadin was performed 146 at 1.84 ppm while off-resonance irradiation was set to 40 ppm. These conditions were selected 147 based on preliminary experimentation with the peptide and each ligand alone, ensuring that the 148 on-resonance irradiation frequency would not overlap with ligand resonances, but would fully 149 saturate the peptide (Figures S1, S2). The water peak originating from wet DMSO- d_6 was 150 suppressed in all experiments using the excitation sculpting pulse sequence in order to preserve 151 exchangeable protons. Spectra were acquired using 100 50-ms E-Burp pulses for selective 152 saturation of the peptide with a total saturation time of 5.0 s, 12.0 s relaxation delay, and an acquisition time of 1.7 s for an overall recycle delay of 14 s.²⁵ Other parameters were 90° pulse 153 154 of 10.13 µs @ 20 W, spectral width of 19.2 ppm and 32 scans per irradiation frequency (in blocks of 8 scans at each on/off irradiation) and receiver gain of 203.²⁶ 155

Binding epitopes on each ligand were identified by the presence of ligand signal in the difference spectra. The importance of individual protons in each interaction was evaluated by comparing their relative degrees of saturation. These values were calculated by setting the most intense ligand signal to 100% and normalizing all other signals accordingly, given similar relaxation rates of each hydrogen in the ligand molecules (Figure S3, Table S1).

161

162 **2.3.2 2D NMR**

163	2D NMR sampl	es were prepared	with 0.25 m	$M \alpha_2 g$ in 10 m	M phosphate	buffer, pH 6.8 with	h
				-	. .		

- 164 15% DMSO-d₆. EGCG was added to protein-ligand samples 1 h prior to analysis to achieve a
- 165 final concentration of 12.5 mM EGCG, or 50-fold ligand excess. All experiments were run at a
- 166 temperature of 297 K with a spectral width of 20 ppm (¹H) and 170 ppm (¹³C). TOCSY
- 167 experiments were performed using 256 increments and 24 scans for a total time of 63 hours and
- 168 15 minutes. Mixing times of 20, 45, 65, 75 and 110 ms were used during acquisition of the α_{2g}
- alone and later merged for assignment of the spectra. A mixing time of 110 ms only was used for
- 170 acquisition of the α_2 g/EGCG complex. ¹H-¹³C HSQC experiments were acquired using 256
- 171 increments and 136 scans for a total time of 16 hours and 18 minutes.
- 172 Partial assignment of $\alpha_2 g$ was achieved based on previously published literature regarding
- 173 chemical shift values for amino acids leucine, glutamine, proline, phenylalanine and tyrosine.^{27,28}
- 174

175 **2.4 Circular Dichroism**

176 Circular dichroism (CD) spectra were recorded in the far-UV region on a Jasco J-1500 CD 177 spectrometer in a 0.1 mm path length cuvette. Spectra were acquired at every nanometer from 160 to 260 nm at 37 °C. EGCG spectra were recorded at each experimental concentration as 179 controls to subtract from the corresponding EGCG/ α_2 g spectra. All spectra were averaged from 3 180 scans. Data were normalized to produce molar residue ellipticity values, smoothed over 5 nm, 181 and plotted with the JASCO spectra manager software. Changes in secondary structure were 182 calculated as changes in relative helicity using the following equation:

183 $\frac{\left[\theta\right]_{222}}{\left[\theta\right]_{208}} = \text{ relative helicity}$

184	Effects of concentration and pH were carried out at pH 2.0, 6.8 and 7.5 with concentrations
185	of 0.25 μ M α_2 g and 10-times excess EGCG in 10 mM sodium phosphate buffer using a 1 mm
186	cuvette.
187	
188	2.5 Statistical Analysis
189	All analyses were repeated in triplicate $(n = 3)$ and analyzed with-one-way ANOVA and two-
190	way ANOVA analysis for samples with varied pH experiments, then paired with Tukey's test for
191	honestly significant differences. Differences of $p < 0.05$ were considered significant. Statistical
192	analysis was performed using GraphPad Prism 6.0 (GraphPad, La Jolla, CA).
193	
194	3 Results and Discussion
195	3.1 EGCG interacts with $\alpha_2 g$ to form insoluble complexes
196	Upon mixing $\alpha_2 g$ and EGCG in sodium phosphate buffer (10 mM, pH 6.8), the formation of
197	insoluble aggregates was observed (Figure 1). The physical state of $\alpha_2 g$ and EGCG appeared to
198	be dependent upon concentration ratio. While colloidal particles were measured at some
199	concentration ratios, a turbidity threshold was reached for others where the upper detection limits
200	of the Viscotek instrument used for DLS were reached, indicating a turbid solution due to haze
201	formation and subsequent phase separation. Colloidal particles were detected at low
202	concentrations protein (0.025 mg/mL) even in the absence of EGCG, and phase separation did
203	not occur even upon the addition of EGCG in 100-times excess of $\alpha_2 g$. In contrast, phase
204	separation occurred after the addition of EGCG in only 5-times excess of greater protein
205	concentrations (0.25 mg/mL). This trend is not linear, rather, the turbidity threshold at a given
206	protein concentration appears to decrease in a similar fashion to a one-phase decay. At a

207	concentration of 0.05 mg/mL α_2 g, the turbidity threshold was over 75-times excess EGCG,
208	whereas doubling the concentration of protein decreased the relative amount of EGCG required
209	for phase separation by more than half (25-times excess).
210	
211	3.2 Cooperative, non-specific binding interactions drive EGCG-α ₂ gliadin complex
212	formation
213	Observation of reaction thermodynamics driving the formation of colloidal α_2 g/EGCG
214	complexes by isothermal titration calorimetry (ITC) demonstrated that $\alpha_2 g$ contains multiple
215	binding sites for EGCG, resulting in a cooperative, multiphasic reaction (Figure 2). The
216	relatively small exchange of heat observed suggests that these interactions are non-covalent, and
217	the presence of multiple potential binding sites on each reactant suggest that the interaction is
218	multivalent.
219	While the net energy of the reaction appears to be endothermic, the isotherm generated upon
220	titration of EGCG into $\alpha_2 g$ demonstrates a complex reaction of both endothermic and exothermic
221	responses upon injection (Figure 2b). Based on the intensity of primary endothermic phase
222	observed suggests initial reactions are driven by hydrophobicity of the peptide and EGCG.
223	Hydrophobic interactions between proline-rich proteins and polyphenols have been well-
224	documented as occurring between ring structures within peptides including aromatic and
225	pyrrolidine rings, ²⁹ both of which are present in $\alpha_2 g$ in the form of 13 proline residues and 5
226	aromatic amino acids including phenylalanine and tyrosine. The change in the sign of the
227	complexation enthalpy coincides with a sudden increase in the hydrodynamic radius of the
228	complexes at the onset of the exothermic complexation process. The endothermic response arises
229	from the co-desolvation of the peptide and polyphenol, which displaces water. ³⁰ The weak

Page 11 of 36

230	exothermic reaction is likely derived from the formation of hydrogen bonds, which are able to
231	form between peptide bond carbonyls and phenolic hydroxyl groups. ³¹ The continuation of
232	endothermic reactions to saturation suggests further hydrophobic interaction which may be due
233	to the aggregation of EGCG/ α_2 g complexes. ²⁰
234	NMR was used to elucidate binding sites on both EGCG and $\alpha_2 g$ in STD-NMR and 2D
235	NMR experiments, respectively. These data were used in conjunction with findings from ITC to
236	define the stochiometric characteristics of the interaction based on available interaction sites
237	within the structures of each reactant. STD-NMR is a pseudo-2D experiment in which a receptor
238	(e.g., a protein) is selectively irradiated to transfer saturation signals to areas of the ligand that
239	are in contact with the receptor, resulting in a decreased signal intensity from the free ligand.
240	This also provides information regarding which parts of the ligand are in contact with the
241	receptor. ³² This method allows for semi-quantitative characterization of binding epitopes on
242	ligands through calculation of the relative degree of saturation of each proton involved in the
243	interaction.
244	Interaction between α_2 -gliadin (57-89) and EGCG was also observed by STD-NMR (Figure
245	3). Localization of more intense STD signals within the structure of EGCG suggest the
246	possibility of preferential binding or interaction specificity (Figure 3c). In a comparison of the
247	overall saturation of each ring constituent of EGCG, the B- and D-rings showed the greatest
248	degree of saturation with no significant difference between one another, regardless of solvent
249	system and visualization of phenolic hydroxyl groups (Figure 3d, Figure S4). All hydrogens on
250	the A- and C-rings show a lesser degree of saturation than those of the B- and D-rings,
251	suggesting further distance from the peptide and a lesser role in the overall interaction. These
252	trends suggest the importance of the EGCG's gallate and galloyl moieties with respect to

253 interaction with $\alpha_2 g$. As relative degree of saturation is a measurement of relative spatial 254 proximity between ligand and peptide, one can conclude that the flexibility of the galloyl 255 moieties allow insertion into binding pockets, whereas A- and C-ring hydrogens are more likely 256 to be affected by steric hindrance and play a less meaningful role with respect to their interaction 257 with $\alpha_2 g$.

258 2D NMR experiments were performed in order to identify areas within the peptide that are 259 structurally affected upon the formation of EGCG/ α_2 g complexes either as a result of direct 260 binding with EGCG or conformational changes induced by binding elsewhere on the peptide.³³ 261 Crosspeaks were assigned to amino acids based on previously determined chemical shift values 262 and correlation patters with adjustment for solvent effects and neighboring amino acid 263 residues.^{21,27}

The ¹H-¹³C HSQC experiment allowed for elucidation of structural changes as observed by changes in ¹³C chemical shifts (Figure 4a-c). Superimposition of the EGCG/ α_2 g spectrum over the spectrum of α_2 g alone shows slight changes in each nucleus, though more pronounced in the proton spectrum as the chemical shift spread is smaller and more sensitive to change. The changes in the HSQC spectra as a result of EGCG addition are primarily 15-30 Hz higher frequency on f2.

As ¹H-¹H TOCSY measures correlations between protons in the same spin system, it is helpful for mapping changes within a group of nuclei, such as the R groups of amino acids in a peptide (Figure 4d-g). These data demonstrate primarily high frequency shifts as a result of interaction with EGCG. These shifts can be attributed to binding rather than bulk or solvent effects, as the DMSO-d₆ signal remains unchanged between the two spectra. Our findings from ITC demonstrate that the interaction mechanism could not be fit into a one-site binding model,

276	suggesting multiple binding sites. This is corroborated by these findings where changes in
277	chemical shift are not isolated to specific residues. This is unsurprising due to the size and
278	simplicity of the peptide in question, as well as the high frequency of residues that have been
279	implicated as potential binding sites for polyphenolic interaction. Of α_2 g's primary sequence, 13
280	amino acids are proline and 5 possess aromatic R-groups; thus, 54% of the α_2 g's amino acids
281	provide potential binding sites for EGCG not including the hydrogen bonding sites.
282	High-frequency shifts observed in the NMR spectra have been shown to result from the
283	binding of aromatic rings between to the peptide of interest, as has been shown previously. ^{21,33,34}
284	The stacking of aromatic rings between two molecules causes the electron density of that area to
285	increase, inducing the observed high frequency shifts of the proton nuclei, which can be
286	observed most clearly with the tyrosine signals shown in Figure 5b. The greatest shifts noted
287	appeared in the HN-H crosspeak regions shown in Figure 5c, which suggest the importance of
288	the peptide backbone. These shifts may be due to direct interaction and hydrogen bond formation
289	with EGCG or overarching changes to the chemical environment caused by those interactions,
290	such as structural modification. ²¹

Taken together, the findings from ITC and NMR allow for elucidation of the stoichiometry of the interactions between EGCG and $\alpha_2 g$. Based on the inflection point in (I) of the ITC data (Figure 2a), the stoichiometry of the initial endothermic reaction phases can be estimated to be ~5:1 (EGCG: $\alpha_2 g$). The formation of insoluble complexes between proline-rich proteins and polyphenols is most favorable at (polyphenol binding site):(protein binding site) ratios of approximately 1:1.^{20,35} STD-NMR confirms the presence of 3 identified binding sites per EGCG molecule (phenolic rings A, B, D) and a potential 18 binding sites (proline and aromatic residues) per α_2 g molecule, the (polyphenol binding site):(protein binding site) ratio can be

299 calculated to be 0.83:1, a favorable condition for complex formation.²⁰

300

301 **3.3 Interactions cause subtle changes to protein structure at physiological pH conditions**

302 The physical characteristics of EGCG/ α_2 g complexes were investigated by DLS and CD over 303 the course of titration (Figure 5a). ITC demonstrated that an endothermic reaction occurs as the 304 molar ratio of EGCG: α_2 g increased from 0-10, at which point the binding isotherm suggests that 305 a point of saturation has been reached.³⁶ The saturation of binding sites within a peptide by 306 polyphenols has been described previously as the formation of a "polyphenolic coating".³⁷ Our 307 data show only modest increases in R_h by DLS throughout this titration period. The stacking of 308 phenolic rings onto proline and aromatic residues up to a point of binding site saturation has been 309 documented with other proline-rich proteins with varying implications for particle size that are 310 dependent on both the protein and polyphenol. Where our data show that particle size does not 311 change upon initial interactions with EGCG, other studies have shown decreases in particle size 312 as measured by DLS at this stage. The rationale for the decrease is that complexation with 313 polyphenols may cause proteins to become more compact.^{20,38} Though α_{2g} is similar to the 314 salivary proteins used in the majority of these studies in terms of a high frequency of proline 315 residues in tandem repeats within the primary structure, the proline residues in α_2 g are not 316 mutually adjacent. Moreover, salivary proteins typically feature a high frequency of glycine 317 residues which contribute to the flexibility of the protein backbone; these residues are notably 318 absent from $\alpha_2 g$.

319 Increases in R_h of EGCG/ $\alpha_2 g$ complexes were recorded as EGCG concentrations increased 320 beyond 10-times molar excess of $\alpha_2 g$. These increases correspond to the weakly exothermic

321	reaction measured by ITC between 10- and 20-times molar excess of EGCG. One explanation
322	for the observed exothermic response is the formation of hydrogen bonds within complexes,
323	which serve to stabilize the complexes. Hydrogen bonds could be occurring between two
324	$EGCG/\alpha_2 g$ complexes as well via the phenolic hydroxyl groups. The increase in R_h suggests that
325	the latter crosslinking between EGCG/ α_2 g complexes via noncovalent interactions are beginning
326	to occur. As binding site saturation is achieved within the peptide structure, EGCG molecules
327	oriented towards the surface of the complex, or the "polyphenol coating" are able to bind other
328	EGCG or EGCG/ α_2 g complexes, causing the formation of larger intermolecular bridges, or
329	cross-links. ²⁰ This phenomenon explains the sharp increase in R_h measured, which cannot be
330	explained simply by an additive effect of EGCG alone continuing to bind to singular complexes.
331	In the second endothermic phase taking place between 20- and 40-times molar excess of
332	EGCG, continuous growth of particle size is again observed, culminating in a stabilized
333	maximum of 52.9 nm \pm 3.5 from 35- to 50-times molar excess EGCG that corresponds to the
334	stabilized ΔH_{obs} of part IV in Figure 2. The increase in size suggests a large cluster formed by 6
335	to 8 EGCG/ α_2 g complexes. Interestingly, heat is still absorbed by the system even after the R _h
336	measurements have reached a plateau. This may be due to additional binding of EGCG to the
337	predominant population of large clusters and a lack of single EGCG/ α_2 g complexes available for
338	further binding to the clusters. It is also possible that two large clusters cannot in turn bind stably
339	with each other due to weak interactions. In addition, the findings from CD experiments suggests
340	that the $\alpha_2 g$ undergoes structural change, as noted by an increase in $\theta_{222}/\theta_{208}$ as EGCG is titrated
341	into the system beyond 40-times molar excess. An increase in $\theta_{222}/\theta_{208}$ denotes an increase in
342	relative helicity of the $\alpha_2 g$, and the heat absorption may be due to the desolvation of functional
343	groups as the peptide undergoes rearrangement within the EGCG/ α_2 g complex system.

344 The ability of EGCG to induce a conformational change in a protein upon binding has been 345 shown previously, notably causing a similar disorder-to-order transition in proline-rich salivary protein IB-5²¹, which shares structural similarities to $\alpha_2 g$ in terms of molecular weight, primary 346 347 amino acid sequence and natively unfolded structure. In general, interactions between 348 polyphenols and proline-rich salivary proteins have been shown to be similar to the interactions 349 observed in the present study, in that they are the result of cooperative binding mechanisms and 350 driven by both entropy and enthalpy.^{29,30,36,39,40} Polyphenols like EGCG have been shown to 351 interact with multiple areas on a single peptide, causing the peptide to "wrap around" the 352 polyphenols. This results in a modification of the structure of the protein, which was confirmed 353 in the present study by CD.

354 Among the differences in test conditions between these experiments and those previously characterizing proline-rich protein interactions with polyphenols is pH. As a primary interest in 355 these interactions is their contribution to astringency in wine, these systems are often tested at 356 357 acidic pH (~3.5).^{20,21,36,38} Further, variations in concentration have been explored that may affect 358 the course of the reaction. An understanding of the effect that pH plays in terms of protein-359 phenolic interactions is essential in developing a potential therapy for any disease state involving 360 the digestive tract. Each experiment to this point has been carried out at pH 6.8, characteristic of 361 the duodenojejunal junction, where the symptoms of celiac disease tend to manifest.^{15,41} 362 In order to investigate the impact of pH throughout the digestive tract on the complexes 363 formed, DLS and CD were run at pH 2.0. pH 6.8 and pH 7.5. The concentration of α_2 g was 364 increased tenfold for these experiments. Overall, the trends observed in terms of particle size 365 were not affected by pH, showing that increasing EGCG concentration result in the formation of 366 insoluble complexes (Figure 5b). The notable differences in particle size occur at lower

367 concentrations ratios. Where increases in R_h were not observed in the initial experiments until 368 after 10-times EGCG concentration was achieved, the increases in particle size observed here are 369 immediate and dependent on pH. At pH 2.0, which represents the gastric environment, larger 370 particles were observed to form upon the first EGCG addition, whereas the increase in particle 371 size is more gradual for higher pH levels. This may be attributed to the stability of EGCG at each 372 pH level as well as the decreased availability of hydrogen bonding partners for EGCG due to 373 protonation of the peptide, resulting in an equilibrium shift towards complexes that feature a 374 greater amount of ring-stacking. Nevertheless, as the titration proceeded in each case, the 375 development of similarly sized particles occurred at the same rate. The plateau of R_h as 376 EGCG: α_2 g approached 50 suggests that the reaction proceeds in a similar fashion was what was 377 discussed for lower concentrations. 378 A non-significant change in peptide structure from disordered to ordered was observed at 379 these increased concentrations (p = 0.08; Figure 5c); however, the change was observed at only

380 10-times molar excess of EGCG, which is lower than the observed minimum concentration 381 excess in previous experiments. This is may be due to a phenomenon known as "macromolecular 382 crowding", wherein the reduction in free water caused by increased concentration of 383 macromolecules can induce protein folding and affect conformational stability.⁴² The potential 384 for crowding to induce a conformational change in the peptide with lower concentrations of 385 EGCG has important implications for this interaction, as an *in vivo* system would be more 386 complex than what has been tested in vitro with these experiments. Though a more complex 387 environment would introduce competition for binding between EGCG and $\alpha_2 g$, polyphenols 388 have been shown to bind preferentially to proline-rich proteins and our findings suggest that the

389 presence of potential competitors and other molecules may initiate conformational changes with390 a lesser amount of available EGCG.

391

392 4 Conclusions

393 Our findings demonstrate that interactions between EGCG and α_{2g} occur though four distinct 394 energetic phases which correspond to the formation of insoluble complexes and result in 395 structural modification of the peptide (Figure 6). The initial endothermic phase (I) of the reaction 396 corresponded to hydrophobic interactions as EGCG stacks onto the $\alpha_2 g$. Dynamic light scattering 397 revealed increases in $R_{\rm h}$ of particles through the following weak exothermic phase (II), driven by 398 polar interactions or hydrogen bonding, and further endothermic reactions (III) culminating in 399 the reaction reaching a saturation point (IV). Structural changes to the peptide backbone were 400 characterized by both 2D NMR and CD. Changes in chemical shifts within the HN-Ha crosspeak region of the ¹H-¹H TOCSY spectrum suggested modification to the chemical 401 402 environment through interactions with or refolding of the peptide backbone. Examination of the 403 relative helicity of the peptide within the EGCG/ α_2 g complex by CD revealed that a structural change did take place, increasing helicity as a result of a disorder-to-order transition. 404 405 The ability of EGCG to interact with $\alpha_2 g$ in a range of physiologically relevant environments 406 and to elicit a conformational change on the peptide highlights the potential for polyphenols to 407 be used as a nutraceutical approach to mitigating the symptoms and immune response associated 408 with celiac disease. Previous work has demonstrated that pre-treatment of gliadin proteins with

- 409 polyphenol-rich green tea extract mitigates gliadin-mediated inflammatory responses and
- 410 permeability in a cell culture model of celiac disease.²³ Celiac disease pathogenesis is based
- 411 heavily upon the deamidation of glutamine within gluten peptide fragments and upon the

412	recognition of epitopes containing proline and glutamine residues by immune cells. Each of these
413	potential receptors, TG2 and HLA-DQ2, respectively, feature binding pockets specific to the
414	structural characteristics of gliadin in terms of both amino acid sequence as well as extended
415	structuration. ^{19,43} Minor changes to amino acids within highly immunogenic gliadin fragments
416	have been shown to greatly decrease recognition by HLA-DQ2 and thus, have the potential to
417	prevent an immune response. Although direct changes to the amino acid sequence (i.e.
418	substitution) in vivo would be impossible, these findings support the potential for development of
419	a post-digestion mechanism for blocking gliadin peptide recognition through sequestration of
420	binding epitopes and structural modification of the immunostimulatory peptide.
421	Interactions between gliadin proteins and dietary polyphenols from green tea have been
422	studied in other in vitro systems which highlight other factors beyond pH which may affect the
423	formation and stability of the complexes observed in this study. These studies demonstrated the
424	propensity of tea polyphenols to interact with both native and hydrolyzed gliadins, as well as the
425	protective effects of polyphenols against gliadin-mediated inflammation and permeability in a
426	cell culture model of the small intestine. ²³ At this time, the protective effects of polyphenols
427	against gliadin has not been tested in vivo, though gliadin sequestration via synthetic polymer
428	systems that interact with the protein in a similar manner have been shown to prevent celiac-
429	associated immune responses in gliadin sensitized mice.44,45 The comprehensive approach taken
430	in this study to examine physical and chemical interactions between $\alpha_2 g$ and EGCG in
431	physiologically relevant environments provides the foundation for further exploration of EGCG
432	and other dietary polyphenol as therapeutic or protective agents within the context of celiac
433	disease.

434

435 **Conflict of Interest**

- 436 The authors declare no competing financial interest.
- 437

438 Acknowledgements

- 439 The authors would like to thank Julia A. Fecko from the Penn State Automated Biological
- 440 Calorimetry Facility for her help with training on instrumentation and assistance in optimizing
- 441 ITC experiments. This project was supported by a National Institute of Food and Agriculture
- 442 Predoctoral Fellowship awarded to C. V. under Grant no. 2016-67011-24702, USDA Agriculture
- 443 and Food Research Initiative. ITC, DLS and CD experiments were performed at the Penn State
- 444 Automated Biological Calorimetry Facility University Park, PA thanks in part to the NSF-MRI
- 445 award DBI-0922974.
- 446

447 **References**

- K. Kim, T. M. Vance, O. K. Chun, Estimated intake and major food sources of flavonoids among
 US adults: changes between 1999–2002 and 2007–2010 in NHANES. *Eur. J. Nutr.*, 2016, 55,
 833–843.
- J. D. Lambert, C. S. Yang, Cancer chemopreventive activity and bioavailability of tea and tea
 polyphenols. *Mutat. Res. Fundam. Mol. Mech. Mutagen.*, 2003, **523–524**, 201–208.
- 453 3. M. Bose *et al.*, The major green tea polyphenol, (-)-epigallocatechin-3-gallate, inhibits obesity,
- 454 metabolic syndrome, and fatty liver disease in high-fat-fed mice. J. Nutr., 2008, **138**, 1677–83.
- 455 4. C. S. Yang, J. M. Landau, Effects of tea consumption on nutrition and health. *J. Nutr.*, 2000, 130,
 456 2409–2412.

457	5.	J. V Higdon, B. Frei, Tea catechins and polyphenols: health effects, metabolism, and antioxidant
458		functions. Crit. Rev. Food Sci. Nutr., 2003, 43, 89-143.
459	6.	M. Brückner, S. Westphal, W. Domschke, T. Kucharzik, A. Lügering, Green tea polyphenol
460		epigallocatechin-3-gallate shows therapeutic antioxidative effects in a murine model of colitis. J.
461		Crohn's Colitis., 2012, 6, 226–235.
462	7.	J. Vesić, I. Stambolić, D. Apostolović, M. Milčić, D. Stanic-Vucinic, T. C. Velickovic,
463		Complexes of green tea polyphenol, epigalocatechin-3-gallate, and 2S albumins of peanut. Food
464		<i>Chem.</i> , 2015, 185 , 309–317.
465	8.	J. Ognjenović, M. Stojadinović, M. Milčić, D. Apostolović, J. Vesić, I. Stambolić, M.
466		Atanasković-Marković, M. Simonović, T. C. Velickovic, Interactions of epigallo-catechin 3-
467		gallate and ovalbumin, the major allergen of egg white. Food Chem., 2014, 164, 36-43.
468	9.	H. S. Oz, T. Chen, W. J. S. De Villiers, Green tea polyphenols and sulfasalazine have parallel
469		anti-inflammatory properties in colitis models. Front. Immunol., 2013, 4, 1-10.
470	10.	N. J. Plundrich, M. Kulis, B. L. White, M. H. Grace, R. Guo, A. W. Burks, J. P. Davis, M. A.
471		Lila, Novel strategy to create hypoallergenic peanut protein-polyphenol edible matrices for oral
472		immunotherapy. J. Agric. Food Chem., 2014, 62, 7010-21.
473	11.	F. Yang, W. J. S. De Villiers, C. J. McClain, G. W. Varilek, Green Tea Polyphenols Block
474		Endotoxin-Induced Tumor Necrosis Factor- Production and Lethality in a Murine Model. J. Nutr.,
475		1998, 128 , 2334–2340.
476	12.	E. Melgarejo, M. Á. Medina, F. Sánchez-Jiménez, L. M. Botana, M. Domínguez, L. Escribano,
477		A. Orfao, J. L. Urdiales. (-)-Epigallocatechin-3-gallate interferes with mast cell adhesiveness,
478		migration and its potential to recruit monocytes. Cell. Mol. Life Sci., 2007, 64, 2690-2701.

479	13.	E. Melgarejo, M. Á. Medina, Targeting of histamine producing cells by EGCG: a green dart
480		against inflammation? J Physiol Biochem., 2010, 66, 3, 265-270.
481	14.	N. J. Plundrich, R. R. Bansode, E. A. Foegeding, L. L. Williams, M. A. Lila, Protein-bound
482		Vaccinium fruit polyphenols decrease IgE binding to peanut allergens and RBL-2H3 mast cell
483		degranulation in vitro. Food Funct., 2017, 8, 1611–1621.
484	15.	A. Fasano, C. Catassi, Celiac Disease. New Engl. J. Med., 2007, 367, 1731-1743.
485	16.	M. Kreis, B. G. Forde, S. Rahman, B. J. Miflin, P. R. Shewry, Molecular evolution of the seed
486		storage proteins of barley, rye and wheat. J. Mol. Biol., 1985, 183, 499-502.
487	17.	L. W. Vader, A. de Ru, Y. van der Wal, Y. M. C. Kooy, W. Benckhuijsen, M. L. Mearin, J. W.
488		Drijfhout, P. van Veelen, F. Koning, Specificity of tissue transglutaminase explains cereal
489		toxicity in celiac disease. J. Exp. Med., 2002, 195, 643-9.
490	18.	C. Catassi, E. Fabiani, G. Iacono, C. D'Agate, R. Francavilla, F. Biagi, U. Volta, S. Accomando,
491		A. Picarelli, I. De Vitis, G. Pianelli, R. Gesuita, F. Carle, A. Mandolesi, I. Bearzi, A. Fasano, A
492		prospective, double-blind, placebo-controlled trial to establish a safe gluten threshold for patients
493		with celiac disease. Am. J. Clin. Nutr., 2007, 85, 160-6.
494	19.	CY. Kim, H. Quarsten, E. Bergseng, C. Khosla, L. M. Sollid, Structural basis for HLA-DQ2-
495		mediated presentation of gluten epitopes in celiac disease. Proc. Natl. Acad. Sci. U. S. A., 2004,
496		101, 4175–9.

- 497 20. E. Jöbstl, J. O'Connell, J. P. Fairclough, M. P. Williamson, Molecular model for astringency
 498 produced by polyphenol/protein interactions. *Biomacromolecules.*, 2004, 5, 942–9.
- C. Pascal, F. Paté, V. Cheynier, M. A. Delsuc, Study of the interactions between a proline-rich
 protein and a flavan-3-ol by NMR: Residual structures in the natively unfolded protein provides
- 501 anchorage points for the ligands. *Biopolymers.*, 2009, **91**, 745–756.

502	22.	M. G. Herrera, F. Zamarreño, M. Costabel, H. Ritacco, A. Hütten, N. Sewald, V. I. Dodero,
503		Circular dichroism and electron microscopy studies in vitro of 33-mer gliadin peptide revealed
504		secondary structure transition and supramolecular organization. <i>Biopolymers.</i> , 2014, 101 , 96–106.
505	23.	C. B. Van Buiten, J. D. Lambert, R. J. Elias, Green Tea Polyphenols Mitigate Gliadin-Mediated
506		Inflammation and Permeability in Vitro. Mol. Nutr. Food Res., 2018, 1700879, 1-8.
507	24.	K. Stott, J. Stonehouse, J. Keeler, TL. Hwang, A. J. Shaka, Excitation Sculpting in High-
508		Resolution Nuclear Magnetic Resonance Spectroscopy: Application to Selective NOE
509		Experiments. J. Am. Chem. Soc., 1995, 117, 4199-4200.
510	25.	H. Green, S. Wimperis, R. Freeman, Band-Selective Pulses without Phase Distortion. A
511		Simulated Annealing Approach. J. Magn. Reson., 1989, 85, 620-627.
512	26.	A. Viegas, J. Manso, F. L. Nobrega, E. J. Cabrita, Saturation-Transfer Difference (STD) NMR: A
513		Simple and Fast Method for Ligand Screening and Characterization of Protein Binding. J. Chem.
514		Educ., 2011, 88, 990–994.
515	27.	D. S. Wishart, C. G. Bigam, A. Holm, R. S. Hodges, B. D. Sykes, 1H, 13C and 15N random coil
516		NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J.
517		<i>Biomol. NMR.</i> , 1995, 5 , 67–81.
518	28.	S. Schwarzinger, G. J. A. Kroos, T. R. Foss, J. Chung, P. E. Wright, H. J. Dyson, Sequence-
519		dependent correction of random coil NMR chemical shifts. J. Am. Chem. Soc., 2001, 123, 2970-
520		2978.
521	29.	A. J. Charlton, N. J. Baxter, M. L. Kahn, A. J. G. Moir, E. Haslam, A. P. Davies, M. P.
522		Williamson, Polyphenol/peptide binding and precipitation. J. Agric. Food Chem., 2001, 50,
523		1593–601.

524	30.	O. Callies, A. Hernández Daranas, Application of isothermal titration calorimetry as a tool to
525		study natural product interactions. Nat. Prod. Rep., 2016, 33, 881-904.
526	31.	K. J. Siebert, A. Carrasco, P. Y. Lynn, Formation of Protein–Polyphenol Haze in Beverages. J.
527		Agric. Food Chem., 1996, 44, 1997–2005.
528	32.	M. Mayer, B. Meyer, Group epitope mapping by saturation transfer difference NMR to identify
529		segments of a ligand in direct contact with a protein receptor. J. Am. Chem. Soc., 2001, 123,
530		6108–6117.
531	33.	N. J. Murray, M. P. Williamson, T. H. Lilley, E. Haslam, Study of the interaction between
532		salivary proline-rich proteins and a polyphenol by 1H-NMR spectroscopy. Eur J Biochem., 1994,
533		219 , 923–935.
534	34.	N. J. Baxter, T. H. Lilley, E. Haslam, M. P. Williamson, Multiple Interactions between
535		Polyphenols and a Salivary Proline-Rich Protein Repeat Result in Complexation and
536		Precipitation. Biochem., 1997, 36, 18, 5566-5577.
537	35.	K. J. Siebert, N. V. Troukhanova, P. Y. Lynn, Nature of Polyphenol–Protein Interactions. J.
538		Agric. Food Chem., 1996, 44 , 80–85.
539	36.	C. Pascal, C. Poncet-Legrand, A. Imberty, C. Gautier, P. Sarni-Manchado, V. Cheynier, A.
540		Vernhet, Interactions between a non glycosylated human proline-rich protein and flavan-3-ols are
541		affected by protein concentration and polyphenol/protein ratio. J. Agric. Food Chem., 2007, 55,
542		4895–901.

- 543 37. N. Bordenave, B. R. Hamaker, M. G. Ferruzzi, Nature and consequences of non-covalent
- 544 interactions between flavonoids and macronutrients in foods. *Food Funct.*, 2014, **5**, 18–34.

545	38.	C. Poncet-Legrand, A. Edelmann, J. Putaux, D. Cartalade, P. Sarni-Manchado, A. Vernhet,
546		Poly(1-proline) interactions with flavan-3-ols units: Influence of the molecular structure and the
547		polyphenol/protein ratio. Food Hydrocoll., 2006, 20, 687-697.
548	39.	A. J. Charlton, N. J. Baxter, T. H. Lilley, E. Haslam, C. J. McDonald, M. P. Williamson, Tannin
549		interactions with a full-length human salivary proline-rich protein display a stronger affinity than
550		with single proline-rich repeats. FEBS Lett., 1996, 382, 289–92.
551	40.	C. Le Bourvellec, C. M. G. C. Renard, Interactions between Polyphenols and Macromolecules:
552		Quantification Methods and Mechanisms. Crit. Rev. Food Sci. Nutr., 2012, 52, 3, 213-248.
553	41.	D. F. Evans, G. Pye, R. Bramley, A. G. Clark, T. J. Dyson, J. D. Hardcastle, Measurement of
554		gastrointestinal pH profiles in normal ambulant human subjects. Gut., 1988, 29, 1035-41.
555	42.	I. M. Kuznetsova, K. K. Turoverov, V. N. Uversky, What Macromolecular Crowding Can Do to a
556		Protein. Int. J. Mol. Sci., 2014, 15, 23090-23140.
557	43.	J. L. Piper, G. M. Gray, C. Khosla, High selectivity of human tissue transglutaminase for
558		immunoactive gliadin peptides: Implications for Celiac Sprue. Biochemistry., 2002, 41, 386-393.
559	44.	M. Pinier, G. Fuhrmann, H. J. Galipeau, N. Rivard, J. A. Murray, C. S. David, H. Drasarova, K.
560		Tuckova, JC. Leroux, E. F. Verdu. The copolymer P(HEMA-co-SS) binds gluten and reduces
561		immune response in gluten-sensitized mice and human tissues. Gastroenterology., 2012, 142,
562		316–325.
563	45.	M. Pinier, E. F. Verdu, M. Nasser-Eddine, C. S. David, A. Vézina, N. Rivard, JC.
564		Leroux, Polymeric binders suppress gliadin-induced toxicity in the intestinal epithelium.
565		Gastroenterology., 2009, 136, 288–98.
566		

567 Figure Captions

568	Figure 1	Formation of insoluble α_2 g/EGCG complexes at pH 6.8 as a function of protein	
569	content. Mark	ers indicate $\alpha_2 g/EGCG$ combinations that were measured by DLS for the presence	
570	of colloidal aggregates (\Box) or turbidity (\blacksquare). The dotted line indicates the one-phase decay of		
571	EGCG excess	required for phase separation as a function of protein concentration.	
572			
573	Figure 2	Titration of EGCG into $\alpha_2 g$ results in a multiphasic interaction as measured by	
574	ITC. (a) Raw	ITC data of EGCG titration (3.2 mM) into $\alpha_2 g$ (12.8 mM). Sections I-IV	
575	correspond to	areas of structural changes as defined by DLS and CD. (b) The raw data	
576	demonstrated	a complex isotherm of both endothermic and exothermic reactions upon injection.	
577	(c) EGCG titr	ation into buffer yielded weak endothermic responses, which were subtracted from	
578	the data.		
579			
580	Figure 3	EGCG/ α_2 g interactions are localized to galloyl moieties on EGCG. The following	
581	descriptions c	orresponds to spectra a-c, which were recorded in 85% H ₂ O, 15% DMSO-d ₆ : (a)	
582	¹ H NMR spec	trum of EGCG (25 mM) and (b) the corresponding difference spectrum. (c)	
583	Relative degree	ee of saturation of EGCG hydrogens upon interaction with α_2 -gliadin (57-89)	
584	normalized to	that of H-9,13. (d) Average relative degrees of saturation per EGCG ring	
585	constituent. D	ifferent letters denote significant differences in relative degree of saturation	
586	between ring	constituents (p \leq 0.05).	
587			

Figure 4 Superimposition of 2D NMR spectra of α₂g before (gray) and after (multicolor)
addition of EGCG recorded in 10 mM sodium phosphate buffer, pH 6.8 with 15% v/v DMSO-d₆.
(a) Full ¹H-¹³C HSQC spectrum; (b) comparison of aromatic crosspeak region demonstrates

591	shifts in phenylalanine and tyrosine; (c) comparison of the aliphatic sidechain crosspeak region
592	demonstrates shifts in proline, leucine and glutamine. (d) Full ¹ H- ¹ H TOCSY spectrum; (e)
593	comparison of the aromatic crosspeak region demonstrating shifting of tyrosine crosspeaks; (f)
594	comparison of sidechain HN and HN-H α crosspeak regions demonstrating changes in glutamine,
595	leucine and phenylalanine chemical shifts; (g) comparison of H α /H β crosspeak regions
596	demonstrating changes in chemical shift of glutamine and proline.
597	
598	Figure 5Relationship between particle size and peptide structure to concentration ratios of
599	EGCG to $\alpha_2 g$. (a) Hydrodynamic radii of EGCG/ $\alpha_2 g$ complexes (\blacksquare , solid line) increase as a
600	function of EGCG: α_2 g. This increase in particle size precedes an increase in peptide helicity (\Box ,
601	dotted line) as measured by $\theta_{222}/\theta_{208}$, which is also dependent on EGCG: $\alpha_2 g$. (b) EGCG/ $\alpha_2 g$
602	aggregate particle sizes (a) increase as a function of EGCG concentration at pH 2.0, 6.8 and 7.5.
603	Particle size is affected by both EGCG concentration and pH ($p < 0.001$) and the interaction
604	between the two parameters (p = 0.004). (c) Circular dichroism of $\alpha_2 g$ upon addition of excess
605	EGCG. Changes in relative helicity of $\alpha 2g$ in the presence of 250 μ M EGCG (EGCG: $\alpha 2g = 10$).
606	
607	Figure 6 Schematic representation of observed interaction and physical implications of
608	EGCG/ α_2 g complex formation based on ITC, DLS, NMR and CD. Initial samples of α_2 g exhibit
609	R _h (represented by dotted lines) that do not change significantly over the course of the
610	endothermic reactions taking place during phase I of the titration. As EGCG stacks onto $\alpha_2 g$,
611	evidence of weak exothermic reactions suggests the formation of hydrogen bonds and

612 crosslinking between protein-polyphenol complexes, supported by increasing R_h. Further

- 613 endothermic reactions coincide with continued increasing R_h up to a point where particle size no
- 614 longer increases, but NMR and CD suggest structural change to the peptide backbone.

Figure 1. Formation of insoluble a2g/EGCG complexes at pH 6.8 as a function of protein content. Markers indicate a2g/EGCG combinations that were measured by DLS for the presence of colloidal aggregates (\Box) or turbidity (\Box). The dotted line indicates the one-phase decay of EGCG excess required for phase separation as a function of protein concentration.

82x75mm (300 x 300 DPI)

Figure 2 Titration of EGCG into a2g results in a multiphasic interaction as measured by ITC. (a) Raw ITC data of EGCG titration (3.2 mM) into a2g (12.8 mM). Sections I-IV correspond to areas of structural changes as defined by DLS and CiDi. (b) The raw data demonstrated a complex isotherm of both endothermic and exothermic reactions upon injection. (c) EGCG titration into buffer yielded weak endothermic responses, which were subtracted from the data.

171x165mm (300 x 300 DPI)

Figure 3 EGCG/a2g interactions are localized to galloyl moieties on EGCG. The following descriptions corresponds to spectra a-c, which were recorded in 85% H2O, 15% DMSO-d6: (a) 1H NMR spectrum of EGCG (25 mM) and (b) the corresponding difference spectrum. (c) Relative degree of saturation of EGCG hydrogens upon interaction with a2-gliadin (57-89) normalized to that of H-9,13. (d) Average relative degrees of saturation per EGCG ring constituent. Different letters denote significant differences in relative degree of saturation between ring constituents ($p \le 0.05$).

171x50mm (300 x 300 DPI)

Figure 4 Superimposition of 2D NMR spectra of a2g before (gray) and after (multicolor) addition of EGCG recorded in 10 mM sodium phosphate buffer, pH 6.8 with 15% v/v DMSO-d6. (a) Full 1H-13C HSQC spectrum; (b) comparison of aromatic crosspeak region demonstrates shifts in phenylalanine and tyrosine; (c) comparison of the aliphatic sidechain crosspeak region demonstrates shifts in proline, leucine and glutamine. (d) Full 1H-1H TOCSY spectrum; (e)comparison of the aromatic crosspeak region demonstrating shifting of tyrosine crosspeaks; (f) comparison of sidechain HN and HN-Ha crosspeak regions demonstrating changes in glutamine, leucine and phenylalanine chemical shifts; (g) comparison of Ha/Hβ crosspeak regions demonstrating changes in chemical shift of glutamine and proline.

171x230mm (300 x 300 DPI)

Figure 5. Relationship between particle size and peptide structure to concentration ratios of EGCG to a2g. (a) Hydrodynamic radii of EGCG/a2g complexes (\Box , solid line) increase as a function of EGCG:a2g. This increase in particle size precedes an increase in peptide helicity (\Box , dotted line) as measured by $\theta_{222}/\theta_{208}$, which is also dependent on EGCG:a2g. (b) EGCG/a2g aggregate particle sizes (a) increase as a function of EGCG concentration at pH 2.0, 6.8 and 7.5. Particle size is affected by both EGCG concentration and pH (p < 0.001) and the interaction between the two parameters (p = 0.004). (c) Circular dichroism of a2g upon addition of excess EGCG. Changes in relative helicity of a2g in the presence of 250 µM EGCG (EGCG:a2g = 10).

83x78mm (300 x 300 DPI)

Figure 6 Schematic representation of observed interaction and physical implications of EGCG/a2g complex formation based on ITC, DLS, NMR and CiDi. Initial samples of a2g exhibit R_h (represented by dotted lines) that do not change significantly over the course of the endothermic reactions taking place during phase I of the titration. As EGCG stacks onto a2g, evidence of weak exothermic reactions suggests the formation of hydrogen bonds and crosslinking between protein-polyphenol complexes, supported by increasing R_h. Further endothermic reactions coincide with continued increasing R_h up to a point where particle size no longer increases, but NMR and CiDi suggest structural change to the peptide backbone.

171x23mm (300 x 300 DPI)

(-)-Epigallocatechin-3-gallate interacts with celiac-relevant peptide α 2-gliadin (57-89) in a multi-phase reaction to form protein-polyphenol complexes in physiologically relevant conditions.

79x25mm (300 x 300 DPI)