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Abstract

We present two methods that address the computational complexities arising in hydrogen transfer

reactions in enzyme active sites. To address the challenge of reactive rare events we begin with an ab

initio molecular dynamics adaptation of the Caldeira-Leggett system-bath Hamiltonian and apply

this approach to the study of the hydrogen transfer rate-determining step in Soybean Lipoxygenase-

1. Through direct application of this method to compute an ensemble of classical trajectories, we

discuss the critical role of isoleucine-839 in modulating the primary hydrogen transfer event in

SLO-1. Notably, the formation of the hydrogen bond between isoleucine-839 and the acceptor-

OH group regulates the electronegativity of the donor and acceptor groups to affect the hydrogen

transfer process. Curtailing the formation of this hydrogen bond adversely affects the probability

of hydrogen transfer. The second part of this paper deals with complementing the rare event

sampled reaction pathways obtained from the aformentioned development through quantum nuclear

wavepacket dynamics. Essentially the idea is to construct quantum nuclear dynamics on the

potential surfaces obtained along the biased trajectories created as noted above. Here, while we

are able to obtain critical insights on the quantum nuclear effects from wavepacket dynamics, we

primarily engage in providing an improved computational approach for efficient representation

of quantum dynamics data such as potential surfaces and transmision probabilities using tensor

networks. We find that utilizing tensor networks yields an accurate and efficient description of time-

dependent wavepackets, reduced dimensional nuclear eigenstates and associated potential energy

surfaces at much reduced cost.
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FIG. 1. Hydrogen abstraction is the rate determining step in the oxidation of linoleic acid by

SLO-1.

I. INTRODUCTION

Hydrogen transfer reactions1–3 are prevalent in a wide range of chemical, biological and

materials systems. Yet these are some of the most complex and challenging problems to

study from a fundamental perspective. The challenges presented by these problems arise

from the following: (a) While the hydrogen transfer step may itself be expected to proceed on

a pico-second time-scale the reorganizaion of the active-site and other facilitating degrees of

freedom that allow such a transfer may occur on a much slower time-regime which in general

makes the reactive process a rare event.4,5 Computing rare events in such complex reactive

processes is a great challenge. (b) Due to the light nature of the nuclei involved in the reactive

process, on many occasions quantum nuclear effects, including hydrogen tunneling, become

important to consider and these are seen through anomalous H/D (primary and sometimes

secondary) kinetic isotope effects. (c) Furthermore, when these quantum nuclear degrees

of freedom become strongly dependent on the electronic structure, this presents a serious

challenge for computation requiring simultaneous treatment of electronic and nuclear motion.

(d) In addition, the motion of the active site is almost never strictly decoupled from reactive

event. Thus, strictly speaking, both adiabatic and non-adiabatic limits become relevant

in terms of separation of the reactive degrees of freedom, where the coupled dynamics of

neighboring light nuclei can sometimes lead to non-traditional secondary kinetic isotope

effects; in such cases coupled treatment of the dynamics becomes essential.

In this publication we outline recent computational developments towards addressing the

above listed challenges. The paper is organizied as follows: In Section II we present an adap-

tation of ab initio molecular dynamics to allow the treatment of rare events. The method

uses the Caldeira-Leggett6,7 approach from quantum-dissipation, and here we present a form

of the method that is appropiate for studies where a priori information is available with re-

gards to the reactive event (that is, with approximately pre-defined reactant and product
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states which in this case correspond to pre-defined donor and acceptor groups). The method

is applied to the study of the rate determining hydrogen transfer step (Fig. 1) in the oxida-

tion of Linoleic acid by Soybean Lipoxygenase-1 (SLO-1)8–27 and the role of the backbone

carbonyl group in ILE-839 is discussed with respect to contributions to the reactive process.

As noted in Ref. 28, on the hydrogen-transfer donor side, the approach allows one to gauge

the coupled dynamics associated with secondary hydrogen nuclei to provide a qualitative

explanation anomalous secondary isotope effects from Klinman and Rickert29. The discus-

sion in Section IIA is classical in terms of treatment of nuclei and the electronic structure

is treated on-the-fly with DFT. In Section III we probe quantum nuclear effects in this sys-

tem. In a previous publication16 we have treated the problem using quantum wavepacket

dynamics on ab initio potential energy surfaces that depend on the classical coordinates

of the active site atoms, along the biased trajectories discussed in Section IIA. Given the

exponential scaling nature of such calculations, especially when the quantum nuclear di-

mensions are fully correlated with the electronic structure (through a grid based approach

for the quantum dynamics), in Section III we provide a treatment of the quantum nuclear

effects using tensor networks. We have shown this approach to work accurately for smaller

hydrogen transfer systems30 and here we write down the quantum mechanical wavepacket,

eigenstates and potential energy surface as matrix-product-states30–32 and the transmission

probabilities are recovered through the action on such matrix-product-states to provide

lower scaling methods in agreement with previous wavepacket studies. Furthermore, tensor

network descriptions for the potential surface greatly reduce the computational effort and

will in future be used for quantum nuclear wavepacket dynamics in such complex systems.

Conclusions are given in Section IV. Appendices A and B complement the discussion in

Sections IIA and III.

II. COMPUTING RARE EVENTS IN COMPLEX ASSEMBLIES THROUGH AB

INITIO MOLECULAR DYNAMICS

We introduce a Caldeira-Leggett-type6,7 system-bath Hamiltonian for a collective electron

nuclear system coupled to a set of bath degrees of freedom. We use this to compute rare-

events in the hydrogen transfer step of the catalytic oxidation of Linoleic acid by SLO-

1. We begin our discussion by introducing a Car-Parrinello-like33 extended Hamiltonian
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with Lagrangian constraints, that uses atom-centered electronic basis functions and single

particle density matrices and is hence based on the atom centered density matrix (ADMP)

formalism34–40:

HS =
1

2
Tr
[

VTMV
]

+
1

2
Tr

(

[

µ
1

4Wµ
1

4

]2
)

+ E (R,P) + Tr [Λ(PP−P)] . (1)

Here M, R, V are the nuclear masses, atomic positions and velocities. The single-particle

electronic density matrix, density matrix velocity, and the fictitious inertia tensor35 for the

electronic degrees of freedom are P, W, and µ respectively. The function E (R,P) is the

ab initio potential energy function assumed here to have a QM/MM form where the QM

portion is at a single particle level of theory such as DFT. The potential energy, E (R,P),

is a function of the single-particle electronic density matrix, P and nuclear positions, R.

The last term in Eq. (1), imposes constraints on the total number of electrons and on the

idempotency of the density matrix using a Lagrangian multiplier matrix Λ. See also Refs.

40–44 where Eq. (1) has been generalized to include post-Hartree-Fock (CCSD) accuracy,

on-the-fly, thus providing a Car-Parrinello-like dynamics method with CCSD40 and MP243

accuracy, along with on-the-fly basis set extrapolation44.

If we now introduce a family of harmonic bath variables, R̃, external to the system

variables, R, with quantities M̃, R̃, and Ṽ representing the masses, positions and velocities

of the bath variables, and if we further assume that these bath variables are linearly coupled

to the system variables R, we obtain a system-bath Hamiltonian,

HSB = HS +
1

2
Tr[ṼTM̃Ṽ] +

1

2
Tr

[

(

R− R̃
)T

κ
(

R− R̃
)

]

(2)

where we have introduced the bath kinetic energy, 1
2
Tr[ṼTM̃Ṽ] and the system-bath

coupling is captured by the second term,

1

2
Tr

[

(

R− R̃
)T

κ
(

R− R̃
)

]

=
1

2
Tr
[

R̃TκR̃
]

− Tr
[

RTκR̃+ R̃TκR
]

+
1

2
Tr
[

RTκR
]

.

(3)

Here, κ is a 3N × 3N matrix and both R and R̃ are 3N length vectors. Thus, there is

potentially one set of bath variables to “drive” each system variable and as noted above,

we have combined the harmonic bath term, 1
2
Tr
[

R̃TκR̃
]

, the linear system-bath coupling

term, Tr
[

−RTκR̃− R̃TκR
]

, and the so-called “counter-term”6,7, 1
2
Tr
[

RTκR
]

together

into Eq. (2). This provides the picture of harmonic force-constants κ that connect the
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(a) (b)

FIG. 2. Figure (a) shows the hydrogen bond between the acceptor-OH and and ILE-839 backbone

carbonyl group, whereas Figure (b) shows the hydrogen transfer donor acceptor groups.

system variables, R to the bath variables, R̃. The quantities, κ, also determine the spectral

density of the bath degrees of freedom. Equation (2) represents an ADMP generalization

to system bath coupling using the Caldeira-Leggett theory. It is possible to have different

values for the three κ terms in Eq. (3) but we have found this not to be necessary in our

benchmarks in Refs. 45.

In Refs. 28 and 45 we used Eq. (2) to discover the role of active site amino acid groups,

specifically ILE-839, in facilitating the hydrogen transfer process. In addition, Eq. (2) has

also been used in Ref. 16 to compute minimum energy paths in the hydrogen transfer step

of the oxidation of Linoleic acid within SLO-1. In Section IIA we summarize the critical

features of ILE-839 participation in the H/D-transfer processes. The precise rationale used

in these studies is as follows. The starting point is the hypothesis that it is the fluctuations

in the bath variables, R̃, Ṽ, that are in general responsible for rare-events being sampled

as part of the system subspace dynamics. As a result, in Refs. 16, 28, and 45, we bias

the initial conditions on R̃, Ṽ so as to nudge the system along a reaction barrier. Yet

again, it is critical to sample over a wide variety of initial conditions before one can compute

measurables and infer mechanistic conclusions. This aspect is carefully dealt with in Ref.

45.

In Section IIA the role of Isoleucine-839 on the H/D transfer proccess is discussed. In

Ref. 28 and 45, through the rare events sampling protocols that follow along the lines of

ideas discussed above, we find that there exists a positive correlation between a hydrogen-

bond between ILE839 and the acceptor hydroxyl group, and the hydrogen transfer event.

6
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(a)Model-I (b)Model-II (c)Model-III

FIG. 3. Model systems of SLO-1 used for the computational validation and predictions obtained

from both classical trajectories calculated using Eq. (2) and quantum wavepacket studies con-

structed on biased trajectories obtained from Eq. (2). In Ref. 45, Model-I, Model-II and Model-III

are used to validate the choice of κ as well as initial conditions applied on R̃ and Ṽ. See Appendix

A. Furthermore, in Refs. 16 and 46, quantum wavepacket dynamics trajectories on the biased

trajectories obtained from Eq. (2) on Model-III are constructed, using ab initio potential surfaces

obtained using efficient sampling methods47–50, to recover the anomalous kinetic isotope effects

noted by Klinman and coworkers51. But the complexity of the quantum dynamics calculations

reported in Ref. 16 are expensive due to the accurate depiction of electron-proton correlations in

these studies. Here, in Section III, we present a new method, that utilizes tensor networks to com-

press this correlation and accurately depict quantum dynamics data such as quantum wavepackets,

eigenstates, and potential energy surfaces.

In Figure 2 we depict hydrogen bond between the acceptor-OH and and ILE-839 backbone

carbonyl group. In Section III we briefly highlight our previous results on probing quantum

nuclear effects along these enhanced sampling AIMD trajectory pathways and then use

tensor networks30 to effectively compute the time-dependent quantum nuclear wavepacket

and reaction coordinate dependent potential surfaces to efficiently represent the associated

quantum wavepacket dynamics data. This, we believe will have a critical role in future steps

in studying such problems in large complex assemblies in an efficient manner.
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FIG. 4. Figure (a) provides the minimum energy reaction profile for the rate determining hydrogen

abstraction step and the critical tunneling region, highlighted within a box, to be discussed in

Section III. Figure (b) shows the range of initial kinetic energies examined during the 400 different

B3LYP/6-31+G** AIMD trajectories, where the number of reactive trajectories in each case is

highlighted in blue. Furthermore, for these 400 simulations, Figure (c) summarizes the role of the

ILE839-acceptor-OH hydrogen bond in promoting the hydrogen transfer process. The hydrogen

bond distance distribution is shorter and narrower for the reactive simulations. The figure is

obtained from a set of 400 AIMD simulations constructed across SLO-1 active-site primary and

secondary (acceptor-OH) isotopologues. (See Figure 2 for an illustration of this secondary hydrogen

bond.)

A. Participation of ILE839 in the hydrogen transfer process: Insights from rare-

events sampling

We summarize the critical features that deal with ILE839 participation in the hydrogen

transfer process. Critical simulation details are summarized in Appendix A. Additional

details may be found in Refs. 28 and 45. Two sets of extensive simulations were conducted.

The first being a set of QM/MM (B3LYP/lan12dz:CHARMM) simulations using HSB as the

governing Hamiltonian. This set of calculations included the full enzyme within a QM/MM

AIMD studies, but with asymptotic boundary conditions. Here an enzyme pocket of size 14

Å, from the iron-cofactor, was allowed to evolve freely as per AIMD; atoms between 14 Å and

16 Å were harmonically constrained; and beyond 16 Å the system was frozen in dynamics. In

all there were 2174 atoms in the QM/MM region that were allowed to evolve freely and this

system is shown in Figure 3(a). Furthermore, Figure 3(b) shows the QM/MM classification

of the system. Here all parts shown using ball and stick model are treated with the QM

8

Page 8 of 34Faraday Discussions



level of theory; whereas everything shown with lines are treated at the MM level. In the

next set of simulations a smaller 50-atom system was carved out from the QM/MM studies

for DFT-based AIMD. Through this study, the critical nature of the ILE-839-acceptor-OH

hydrogen bond was discovered. This system is shown in Figure 3(c). We conducted28 over

400 different classical B3LYP/6-31+G** AIMD biased trajectories spanning a wide range of

initial conditions as depicted in Figure 4(b). For the collection of trajectories in Figure 4(b),

we also note the number of reactive simulations that result in a hydrogen-transfer event, and

by extension, the number of non-reactive simulations as well. From the associated collection

of hydrogen transfer trajectories we are able to obtain a traditional minimum energy path

which is shown in Figure 4(a). This path is also confirmed16 through standard techniques

available in most electronic structure packages52. It may also be noted that while the range

of kinetic energies in Figure 4(b) do coincide with regions of energy above the barrier in

Figure 4(a), the transfer probability does not appear to progress in a monotonic fashion, a

reaffirmation of the rare events nature of the reactive process. Furthermore, while some of

these effects may arise also from the limited number of AIMD trajectories used here (400

rare-events AIMD simulations, each roughly 1 picosecond in length), it is also critical to

note from Figure 4(c), that there exists a sharp divide in the hydrogen bonding propensity

between Isoleucine-839 and the acceptor OH for productive versus non-productive events.

Indeed, there appears to be a direct correlation between the propensity of the Isoleucine-839-

acceptor-OH hydrogen bond and the hydrogen transfer event. This effect, to our knowledge,

was shown for the first time in Ref. 28 through the set of computationally challenging AIMD

simulations using the biased approach discussed in Section II. Furthermore, this result holds

across four different isotopic substitutions studied in Ref. 28 and appears to indicate that

the hydrogen bond between the backbone carbonyl belonging to ILE839 and the acceptor

OH may act as a switch in promoting the hydrogen transfer process.

We also find that, when such a hydrogen bond is formed, the acceptor oxygen becomes

more electro-negative by a Mulliken charge of about -0.1 a.u. and the donor carbon becomes

more electro-positive by about 0.3 a.u. The additional charge is distributed between the

transferring proton and the carbonyl oxygen of ILE839. The evolution of all these charges,

averaged over the entire set of productive and non-productive simulations is given in Figure

5. This net change in charge creates an electric field that appears to drive the transfer

process. The extent of this associated perturbative electric field is similar in magnitude to

9
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FIG. 5. Evolution of Mulliken charge of active site atoms for a typical set of productive and

non-productive AIMD simulations: (a) top panel: transferring hydrogen (H), bottom panel: donor

carbon (C11); (b) top panel: acceptor oxygen (O), bottom panel: Ile839-oxygen (IleO). As may be

noted, for the productive simulations (red) the acceptor oxygen acquires a slightly greater negative

charge and the donor carbon simultaneously acquires a greater positive charge. The transferring

hydrogen, with the acquired greater positive charge, then proceeds towards the acceptor oxygen

that is better position to accept the hydrogen as a result of its perturbative increase in neagtive

charge. All this, as may be clear from Figure 4(c) is correlated with the hydrogen bond formed

with the backbone oxygen of ILE839 and hence the associated change in its charge is also noted

here.

that noted by Boxer and coworkers to power the catalysis in other enzymes53.

In the next section we gauge the quantum dynamics of the transferring proton on potential

surfaces that are computed along the transfer path (Figure 4(a)). Furthermore, we present

a new approach to compress such quantum dynamics information with the goal of reducing

the scaling of such calculations.
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III. REPRESENTATION OF ELECTRON-PROTON CORRELATION USING

TENSOR NETWORKS FOR NUCLEAR EIGENSTATES, TIME-DEPENDENT

WAVEPACKETS AND POTENTIAL ENERGY SURFACES

In Ref. 16, we studied the quantum dynamical evolution of the shared hydrogen/deuterium

nuclear degrees of freedom as part of the rate-determining step in the catalytic cycle of the

enzyme SLO-1 (Fig. 1). We computed the hydrogen tunneling probabilities for a model

system (Figure 2(c)) constructed from the active site atoms in close proximity to the iron

cofactor in SLO-1. This simplification of the active site is based on the assumption that

only the immediate environment exerts an electronic influence on the hydrogen transfer. We

described the tunneling hydrogen nucleus (proton or deuteron) as a three-dimensional nu-

clear quantum wavepacket16,47,48,54–59 coupled to the change in electronic structure that was

computed using hybrid density functional theory, benchmarked through MP2 calculations16.

At each step of the quantum dynamics, the potential surface was obtained by including all

electrons in our model system. As a result, the method in Ref. 16 is not restricted to a spe-

cific mode of transfer such as proton coupled electron transfer11,60, proton transfer, hydrogen

transfer or hydride transfer. In addition, the transferring nuclear wavepacket is propagated

via the time-dependent Schrödinger equation, using an efficient and accurate “distributed

approximating functional” propagator.16,54,55,61,62 Hence all quantum effects pertaining to

the quantized H/D nucleus as well as those arising from the electronic degrees of freedom

within the model were included. The kinetic isotope effect in Ref. 16 was computed by

considering a constrained ensemble average of the ratio of transmission probabilities for

hydrogen and deuterium. The constraint limits the ensemble average to the portion of the

phase space that is sampled during the reactive process. The transmission for each case

(H or D) was computed from explicit quantum wavepacket dynamics of the transferring

nucleus on potential surfaces obtained from the active site geometry dependent electronic

structure as highlighted above. Thus, the electronic and quantum nuclear components are

both active site geometry driven, dynamical quantities. Details regarding these quantum

dynamical aspects are provided in Appendix B.

The resultant transmission probabilities are shown using the curves in Figure 6. The

black vertical line represents the classical transition state, and as noted both hydrogen and

deuterium nuclei show substantial probability transfer prior to the classical transition state.
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Here, the potential surfaces are computed on a coordinate-space grid, x̄, depicting the hydro-

gen nuclear degrees of freedom, and the propagated wavepacket Ψ (x̄; t) ≡ Ψ (x̄, {RC} ; t), is
explicitly a function of the quantum-nuclear grid representation, x̄, but is also parametrically

a function of the classical coordinates of atoms belonging to the reaction coordinate, RC. As

a result, the quantum nuclear degrees of freedom are completely correlated with the change

in electronic structure57. In this section we provide a method where such correlation can

be tailored as required and this approach leads to enormous compression in the amount of

quantum nuclear wavefunction data and potential surface data, and hence has the potential

to greatly reduce the complexity of such quantum dynamics calculations in large systems.

We demostrated the applicability of this approach in Ref 30, to hydrogen transfer reactions

of significance to atmospheric chemistry and here we utilize this approach for the hydrogen

transfer rate determining step in SLO-1.

A. Tensor decomposition of the nuclear wavepacket, potential and eigenstates

We begin by introducing the multi-configurational form of the quantum mechanical wave-

function

Ψ(x̄) =
∑

k1

∑

k2

· · ·
∑

ki

· · ·
∑

kD

Ck1,k2,··· ,ki,··· ,kD

[

D
∏

i

ψi,ki(xi)

]

=
∑

k̄

Ck̄

[

D
∏

i

ψi,ki(xi)

]

(4)
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and similarly the potential surface. The quantity, k̄ is a vector index, with components

k̄ ≡ {k1, k2, · · · , ki, · · · , kD} with ki being the index to a specific basis function, ψi,ki(xi),

along the ith dimension. Similarly, x̄ ≡ {x1, x2, · · · , xi, · · · , xD}. The sum over k̄ signifies

an independent set of summations over the individual dimensions within {ki} as explicitly

indicated. The quantity Ck̄, in Eq. (4) is a tensor of rank D, comprising of ND elements,

where we have assumed, without loss of generality, that there exists N basis elements per

dimension.

In Ref. 30, Eq. (4) is written as a tensor network31 decomposition, that is,

Ck̄ =
∑

ᾱ

[

C̃1
k1,α1

×
{

ΠD−1
i=2 C̃

i
αi−1,ki,αi

}

× C̃D

αD−1,kD

]

(5)

or in turn,

Ψ(x̄) =
∑

ᾱ

[

χ1
α1
(x1)×

{

ΠD−1
i=2 χ

i
αi−1,αi

(xi)

}

× χD

αD−1
(xD)

]

. (6)

This also applies for the potential energy surface:

V(x̄) =
∑

ᾱ

[

V1
α1
(x1)×

{

ΠD−1
i=2 V i

αi−1,αi
(xi)

}

× VD

αD−1
(xD)

]

(7)

and the specific kind of tensor network used in Eqs. (5)-(7) is called matrix product states

(MPS)31,32,63–65. In Ref. 30, we demonstrated the power of this formalism in the study of

hydrogen transfer reactions of significance to atmospheric chemistry, but we also introduced

additional tensor decoupling approximations30, that exploit the system-bath nature of the

problem. Here we utilize the above approximations in the study of the hydrogen transfer

step in SLO-1. The summation vector index ᾱ ≡ {α1, α2, · · · , αi, · · · } in the expressions

above. Equation (5) represents the decomposition of a rank-D tensor, Ck̄, into a set of lower

rank tensors where, for example, C̃1
k1,α1

is a rank-2 tensor, C̃2
α1,k2,α2

is a rank-3 tensor, and so

on. Similarly in Eqs. (6) and (7) χ1
α1
(x1),

{

χi
αi−1,αi

(xi)
}

, and χD

αD−1
(x0

D
) and in an analogous

manner for the potential surface, V1
α1
(x1), V i

αi−1,αi
(xi) and VD

αD−1
(xD) are lower dimensional

(one-dimensional) functions and hence the approach used here provides an adaptive (through

iterative singular value decomposition30) decomposition of multi-dimensional data into lower

dimensions. Specifically, while the full rank Ck̄ is a tensor of rank D with ND elements, the

lower rank tensors in Eq. (5) include only

O [N × {Nα × [2 + (D − 2)×Nα] ≡ O [N ×Nᾱ]}] (8)
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elements. Here Nα is the maximum value for the summation indices αi and Nᾱ ≡
[2 + (D − 2)×Nα] is the total summation index for all ᾱ. Furthermore, Nα is an adaptive

quantity that is computed on the fly and captures the correlation between dimensions, as

necessary. Equation (8) is potentially linear in N , and in fact as we will see in this paper

this approach certainly greatly compresses the amount of information in quantum mechan-

ical wavepackets and potential surfaces and as we will also see, provides a rationale for

faster quantum dynamical algorithms. This compression of data arises from the so-called

“area-law” of entanglement entropy31,64,65 where it is noted that most practical systems only

occupy a small portion of the exponentially scaling direct-product space that is available

to the fully correlated system. Indeed the span of ᾱ provides us with a measure of the

entanglement entropy captured within this algorithm.

B. Adaptively gauging and compressing the extent of correlation in wavefunctions

and coupled potentials

The sequential singular value decomposition approach provides an adaptive tool to gauge

this correlation. The precise nature in which the decomposition above is performed is il-

lustrated here for Ck̄, but applies to all functions. We begin by treating Ck̄, which is a

rank-D tensor, as a matrix reshaped such that all trailing dimensions are concatenated, i.e.,

Ck̄ ≡ Ck1,(k2×···×ki×···×kD). We next perform a singular value decomposition of Ck̄ to obtain,

Ck̄ =
∑

α1

C1
k1,α1

× σ1
α1

× Cα1,(k2×···×ki×···×kD) ≡
∑

α1

C1
k1,α1

× σ1
α1

× Cα1,k2,k3,··· ,kD (9)

Here,
{

σ1
α1

}

are the singular values with associated left and right singular vectors,
{

C1
k1,α1

}

and
{

Cα1,(k2×···×ki×···×kD)

}

. In performing the operation in Eq. (9) we have recovered a new

dimension, α1, which is interpreted as an internal correlation dimension since the number of

significant α1 values indicates the deviation of the right side in Eq. (9) from a simple product

approximation. The tensor, Cα1,k2,k3,··· ,kD is then interpreted (or reshaped) as a matrix:

Cα1,k2,k3,··· ,kD ≡ C(α1×k2),(k3×···×ki×···×kD) (10)

and carrying out a second singular value decomposition yields,

Ck̄ =
∑

α1,α2

C1
k1,α1

× σ1
α1

× C2
α1,k2,α2

× σ2
α2

× Cα2,k3,k4,··· ,kD . (11)
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Continuing this process D − 1 times results in Eq. (5). (Note that in Eq. (5), we have

absorbed the
{

σi
αi

}

into the C i and C̃ i ≡
√

σi
αi
× C i.)

Following the same ideas as above, the coordinate space wavefunctions and potentials

can be written as

Ψ(x̄) =
∑

ᾱ

[

ψ1
α1
(x1)× σα1

{

ΠD−1
i=2 ψ

i
αi−1,αi

(xi)σαi

}

× ψD

αD−1
(xD)

]

=
∑

ᾱ

[

(

ΠD−1
i=1 σα1

)

ψ1
α1
(x1) ∗

{

ΠD−1
i=2 ψ

i
αi−1,αi

(xi)
}

× ψD

αD−1
(xD)

]

(12)

and similarly,

V(x̄) =
∑

ᾱ

[

V1
α1
(x1)× τα1

{

ΠD−1
i=2 V i

αi−1,αi
(xi)ταi

}

× VD

αD−1
(xD)

]

=
∑

ᾱ

[

(

ΠD−1
i=1 τα1

)

V1
α1
(x1)×

{

ΠD−1
i=2 V i

αi−1,αi
(xi)

}

VD

αD−1
(xD)

]

(13)

From the second expression in Eqs. (12) and (13) it is clear how the computional reduc-

tion and efficiency in storage really materializes. While the coefficients for a fully multi-

configurational (that is completely correlated) scheme are tensorial and contain ND ele-

ments, the coefficients in Eqs. (12) and (13) contain as many terms as in Eq. (8) which

could potentially be linear in N if Nα << N . In practice we find that Nα is a small but

non-neglible fraction of N ; this certainly is the case for the nuclear wavepackets obtained

for the SLO-1 calculations here.

Another interpretation of Eqs. (12) and (13) is one where a family of direct product bases

V1
α1
(x1)⊗ V2

α1,α2
(x2)⊗ V3

α2,α3
(x3)⊗ · · · ⊗ V i

αD−1
(xD) (14)

and

ψ1
α1
(x1)⊗ ψ2

α1,α2
(x2)⊗ ψ3

α2,α3
(x3)⊗ · · · ⊗ ψi

αD−1
(xD) (15)

are found with coefficients that do not appear to possess the complexity of a fully correlated

expansion, since they appear as
(

ΠD−1
i=1 σα1

)

in Eq. (12) and
(

ΠD−1
i=1 τα1

)

in Eq. (13). Fur-

thermore, these direct product bases are adaptively determined and extent of correlation is

determined by the size of the set ᾱ. The quantity, ᾱ, has also been used in the literature as

a measure of the entanglement entropy in the system31,64,65.

The process above is described through illustration in Figure 7. Three dimensions are

considered: x̄ ≡ {x1, x2, x3}, with internal correlator dimensions α1 and α2, that are obtained
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α1

x
1

× α
1

α2 x 2

α
2

x3

×
Ψ(x̄) ψ1

α1
(x1)

ψ2
α1,α2

(x2) ψ3
α2
(x3)=

x
1

x3 x 2

FIG. 7. An illustration of the tensor decomposition in Eqs. (12) and (13).

from SVD. Thus, Figure 7 depicts the transformation:

Ψ(x1, x2, x3) =
∑

α1,α2

[

ψ1
α1
(x1)× σα1

× ψ2
α1,α2

(x2)× σα2
× ψ3

α2
(x3)

]

(16)

The singular values, σα1
and σα1

are absorbed as part of the one-dimensional functions in

the illustration in Figure 7, as done in Eq. (6).

It may also be clear from the above discussion that the decomposition in Eqs. (11)-(13)

are not unique and will change if the dimensions are permuted which may be effected by

the order in which the SVD operations are conducted. Ideas similar to Equations (12) and

(13) have been used to gauge emerging trends in time-series medical image data66 and in

digital signal processing67–69 applications. These ideas have also been exploited towards the

development of faster MCTDH methods70–74, quantum dynamics on a grid much like what

is done here75 and to construct a vibrational approximation to DMRG76.

C. Accuracy of Eqs. (12) and (13) in efficiently representing the SLO-1 potentials,

time-dependent wavepackets and hydrogen nuclear eigenstates

For the remaining part of this paper, we provide numerical benchmarks that compare

the efficiency and accuracy of the scheme presented above with respect to the quantum

wavepacket description in Ref. 16. We begin our discussion by analyzing the hydrogen

nuclear potential energy surfaces obtained as a function of the reaction coordinate. These

potential energy surfaces have a double-well character, where the relative stability of the

donor and acceptor side wells changes as the H/D nuclear wavepacket proceeds from donor

to acceptor. This may be clear upon inspection of Figure 8. Furthermore, the curvature of

the potential changes both along the donor-acceptor direction as well as in the orthogonal

direction. As noted in Ref. 16, it was found that the hydrogen and deuterium nuclear

wavefunctions were affected by the presence of curve-crossings in the nuclear eigenstate

energies along the reaction coordinate. This leads to the dynamics being non-adiabatic16
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FIG. 8. Figure 4(a) is reproduced in Figure (a) for convenience in defining the reaction coordinate

and energy profile. In Figures (b)-(d), hydrogen nuclear potential surfaces are presented at three

different points along the reaction coordinate defined by the horizontal axis in Figure (a), and the

double-well nature of the problem is clear from the relative position and stability of the donor and

acceptor side minima. Here RCO is the donor-acceptor coordinate, RCH is the distance between

the donor C11 and transferring hydrogen and similarly ROH is the distance between the acceptor

oxygen and transferring hydrogen nucleus. The potential surfaces in (b)-(d) are obtained on a grid

containing 408,321 points for the specific configuration of the active site depicted by the reaction

coordinate value. Details are provided in Appendix B.

in terms of coupling between the hydrogen-transfer dimensions and the larger-scale active

site dynamics dimensions. Here we first gauge the accuracy and efficiency of the hydrogen

nuclear potential surface representation as a function of the reaction coordinate. Hence, for

the discussion here, the potential in Eq. (13): V(x̄) ≡ V(x̄;RC), where as noted before, x̄

represents the quantum nuclear grid at a given value of the reaction coordinate, RC.

In Figure 9 we present the relation between accuracy of the potential (horizontal axis) and

data compression (vertical axis). Specifically the horizontal axis is the order of magnitude

17
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FIG. 9. Accuracy and efficiency in representing the potential energy surfaces as tensor network.

Clearly less that 1% of the grid data needs to be stored to obtain a root-mean-squared error per

grid point of 10−2 kcal/mol or a value of ΓNᾱ:Nx̄

Err = −2 (which is the horizontal axis here) from

Eq. (17). All permuted forms of the grid, {x1, x2, · · · , xi, · · · , xD}, are considered in Eq. (13).

For example, the donor-acceptor (DA) hydrogen transfer direction may be featured as one of the

peripheral directions of the MPS (the keys with DA at the beginning or the end) or the donor-

acceptor direction may be the central MPS dimension. In all cases the two orthogonal dimensions

(OD1 and OD2) may in turn be permuted and for all permuted sets the compression and accuracies

are quite similar.

of the per grid point error where the potential energy is in kcal/mol:

ΓNᾱ:Nx̄

Err ≡ log10

(

1

Nx̄

√

∫

dx̄
[

V(x̄)−VNᾱ:Nx̄

TN (x̄)
]2

)

. (17)

Here
[

V(x̄)−VNᾱ:Nx̄

TN (x̄)
]

is the difference between the grid potential discussed above (and

in Appendix B) and the tensor network representation of the same, Nᾱ is defined in Eq.

(8) and pertains to the total summation index for all ᾱ (that is the requisite amount of

entanglement or correlation between the dimensions of the shared hydrogen nuclear degrees

of freedom) and Nx̄ is the total number of grid points, that is of order of ND. The vertical

axis in Figure 9 is the percentage of the fraction of the three-dimensional grid that is stored,

that is,

Fraction of Data Stored ≡ Nᾱ

Nx̄
≈ Nᾱ

ND

[N ∗ {Nα ∗ [2 + (D − 2) ∗Nα]}]
ND

(18)

Clearly the amount of compression is large and the error is well within the acceptable

range. The statistics in Figure 9 includes all geometries along the reaction coordinate.
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(a) (b)

FIG. 10. In Figure (a) the reduced dimensional hydrogen nuclear potential surface is presented

where the left side of the DA axis represents the acceptor state. Figure (b) only includes the most

significant singular vectors in Eq. (13). That is, if Nα = 1, the compressed potential would look

as in Figure (b) and this would be a direct product function. The respective one-dimensional basis

functions computed from SVD, that is, V1
1 (x1), V2

1,1(x2) and V3
1 (x3) (for α1 = α2 = 1 in Eq. (13)),

are shown along the axes lines in Figure (b). As seen in Section IIIC, including additional SVD

basis functions recovers the potential to high accuracy.

To further elucidate the method that leads to this level of compression, in Figure 7, we

present the precise set of matrix operations present in the tensor network decomposition.

The left side in Figure 7 is the full grid potential, whereas the right side shows the amount

of information that remains after the set of singular value decomposition calculations are

completed. Clearly as noted in Eq. (13) the extent of data compression is governed by the

magnitude of
(

ΠD−1
i=1 τα1

)

since, from Eq. (13), the 2-norm of the error in the expansion is

given by

∥

∥

∥

∥

∥

V(x̄)−
{

Nᾱ
∑

ᾱ=1

[

(

ΠD−1
i=1 τα1

)

V1
α1
(x1) ∗

{

ΠD−1
i=2 V i

αi−1,αi
(xi)

}

VD

αD−1
(xD)

]

}
∥

∥

∥

∥

∥

=

∥

∥

∥

∑Nx̄

ᾱ=Nᾱ+1

[

(

ΠD−1
i=1 τα1

)

V1
α1
(x1) ∗

{

ΠD−1
i=2 V i

αi−1,αi
(xi)

}

VD

αD−1
(xD)

]
∥

∥

∥
(19)

and this is reflected in Figure 9. Figure 10(b) shows the impact of this result. While in

Figure 10(a) we have the full grid potential, Figure 10(b) shows one direct product function

with one-dimensional potentials (see Eq. (13)) that model the full grid potential. Of course,

the number of one-dimensional potentials are adaptively chosen here based on the desired

accuracy.

We now proceed to gauge the behavior of accuracy and efficiency for the ground eigen-
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FIG. 11. Compression of data versus accuracy. Figure (a): Potential energy surface, (b): ground

eigenstate, (c) and (d): real and imaginary parts of the propagated wavepacket. Multiple matrix

product state morphologies have been used and these have the same description as in Figure 9.
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FIG. 12. The transmission probabilities computed using tensor networks.

states and time-dependent wavepackets. Our results are provided in Figure 11. In all cases,

a 10−3 accuracy in the wavepacket and eigenstates can be achieved by only storing 2% of

the grid. The effect of this enormous compression is already seen in Figure 12 where even

when 0.05% of data is stored, the qualitative features of transmission is well recovered.

D. Quantum evolution with tensor networks

To efficiently compute the action of the Hamiltonian and quantum time-evolution opera-

tor on a wavepacket represented using tensor networks, it is required that kinetic, potential

and time-evolution operators independently be described in the same tensor network form.

In the previous section we have shown that the potential energy, quantum wavepacket and

eigenstates can be written in this form. The kinetic energy operator may always be written
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as a direct sum over all dimensions and hence the action of the kinetic energy operator on

the wavepacket represented in tensorial form rigorously preserves this form at every step

according to

∇2
x̄Φ (x̄) =

∑

ᾱ

[(

∑

κ′

K̃(2)(xκ1 , x
κ′

1 )χ
1
α1
(xκ

′

1 )

)

×
{

ΠD−1
i=2 χ

i
αi−1,αi

(xi)

}

× χD

αD−1
(xD)

]

+
∑

ᾱ

[

χ1
α1
(x1)×

(

∑

κ′

K̃(2)(xκ2 , x
κ′

2 )χ
2
α1,α2

(xκ
′

2 )

)

{

ΠD−1
i=3 χ

i
αi−1,αi

(xi)

}

× χD

αD−1
(xD)

]

+ · · ·

=
∑

ᾱ

[

χ1,(2)
α1

(x1)×
{

ΠD−1
i=2 χ

i
αi−1,αi

(xi)

}

× χD

αD−1
(xD)

]

+

∑

ᾱ

[

χ1
α1
(x1)× χ2,(2)

α1,α2
(x2)

{

ΠD−1
i=3 χ

i
αi−1,αi

(xi)

}

× χD

αD−1
(xD)

]

+ · · · (20)

where we have introduced in the second equation, χ
1,(2)
α1

(x1) ≡
(

∑

κ′ K̃(2)(xκ1 , x
κ′

1 )χ
1
α1
(xκ

′

1 )
)

,

χ
2,(2)
α1,α2

(x2) ≡
(

∑

κ′ K̃(2)(xκ2 , x
κ′

2 )χ
2
α1,α2

(xκ
′

2 )
)

and so on, to exemplify the tensor network form

of the second equation. Similarly for free-propagation:

Φ (x̄; t+∆t) =
∑

ᾱ

[(

∑

κ′

K̃(xκ1 , x
κ′

1 ; ∆t)χ
1
α1
(xκ

′

1 ; t)

)

×
{

ΠD−1
i=2

(

∑

κ′

K̃(xκi , x
κ′

i ; ∆t)χ
i
αi−1,αi

(xκ
′

i ; t)

)}

×
(

∑

κ′

K̃(xκ
D
, xκ

′

D
; ∆t)χD

αD−1
(xD; t)

)]

=
∑

ᾱ

[

χ1
α1
(x1; t+∆t)×

{

ΠD−1
i=2 χ

i
αi−1,αi

(xi; t+∆t)
}

× χD

αD−1
(xD; t+∆t)

]

(21)

In light of the successful tensor decomposition of the grid potential along the lines of Eqs.

(7) and (13), one may also consider the reduced complexity of the action of the potential

energy operator on a wavepacket,

∫

dx̄′δ (x̄− x̄′) Ṽ(x̄′)Ψ(x̄′) = Ṽ(x̄)Ψ(x̄)

=
∑

ᾱ,β̄

{

V1
α1
(x1)× χ1

β1
(x1)

}

×

(

ΠD−1
i=2

{

V i
αi−1,αi

(xi)× χi
βi−1,βi

(xi)
})

×
{

VD

αD−1
(xD)× χD

βD−1
(xD)

}

=
∑

ᾱ,β̄

χ1,V
α1,β1

(x1)×
(

ΠD−1
i=2 χ

i,V
αi−1,αi,βi−1,βi

(xi)
)

∗ χD,V
αD−1,βD−1

(xD) (22)
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It clear upon inspection of this expression that there are [β1 × α1] one-dimensional functions

created in x1. Similarly, there are [βi × αi] one-dimensional functions created in xi, thus

presenting a potential increase in the number of such one-dimensional function. But we

also note, as per Eqs. (5) and (7) that the singular values have been absorbed into the

one-dimensional functions and hence, we expect the contributions from the higher product

singular values to progressively reduce. These aspects will be probed in future publications.

IV. CONCLUSION

We consider the rate determining step in the catalytic oxidation of Linoleic acid by

soybean lipoxygenase-1. This step involves a hydrogen transfer process that shows a large

primary kinetic isotope effect, kH/kD = 81. From a computational standpoint there are

two main bottlenecks that deeply affect the accurate simulation of such processes. On the

one hand, while the hydrogen transfer process may occur in the pico-second time-scale,

the actual reorganization of the enzyme active site that affects this process is, statistically

speaking a rare event. We present two methods in this paper to address such processes.

First, rare events sampling is incorporated into ab initio molecular dynamics by start-

ing from a Caldeira-Leggett system-bath Hamiltonian. Here the proton-transfer system

is linearly coupled to a harmonic bath and this Hamiltonian is also a starting point in

the derivation of other spin-Boson-type Hamiltonians used in quantum dissipative theory.

Using an ab initio molecular dynamics generalization of the Caldeira-Leggett system-bath

Hamiltonian, we probe the reactive hydrogen-transfer event and discuss the role of ILE-839

as a switch in modulating the transfer event. We find that the formation of the hydrogen

bond between the backbone carbonyl group of ILE-839 and the acceptor hydroxyl group is

positively correlated with the hydrogen trasnfer process.

After providing a computationally efficient approach to rare event sampling, that in-

corporates on-the-fly ab initio potentials, we next consider the hydrogen transfer process

using quantum wavepacket dynamics. While the wavepacket dynamics procedure is able to

recover the large isotope effect accurately, using on-the-fly ab initio potentials, the expo-

nential scaling nature of quantum dynamics hinders the routine application of such rigorous

methods. Here we utilize a tensor-netork form of the quantum wavepacket and potential

surface to present the quantum dynamics problem using tensor networks. We gauge the
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accuracy of storage of quantum wavepackets and of potential energy surfaces and find that

tensor networks are an efficient and accurate option for the representation and propagation

of quantum dynamics data.

Appendix A: Simulation details for rare events sampling

Details regarding the parameters used in the rare events dynamics simulations are pre-

sented in Refs. 28 and 45. We summarize the critical aspects here for completeness. In Ref.

45, Model-I, Model-II and Model-III in Figure 3 are used to validate the choice of κ as well as

initial conditions applied on R̃ and Ṽ. In Ref. 45, a monotonic sequence of decreasing values

for κ and initial conditions on Ṽ are used to test the validity of these parameters. In Ref.

28, these parameters are used and in the process the role of ILE839 is elucidated in providing

a control, or a switch, for the hydrogen transfer process. In summary the donor (carbon),

the acceptor (oxygen) and the transferring proton (see Figure 2) were tethered to bath par-

ticles, referred to as R̃ in Eqs. (2), where the respective constraint harmonic force constant

values captured within κ are chosen to be 15570 pN/Å. The force constants used here are

commensurate with those in other rare events sampling studies5,77 and in the atomic force

microscopy literature78. In units more commonly used in chemistry, 15570 pN/Å ∼224.0965

kcal/mol.Å2). This harmonic force constant corresponds to a frequency (ν̄) of about 450

cm−1 on the carbon and oxygen atoms and roughly 1500cm−1 on the transferring hydrogen.

These frequencies are estimated using the relation between force constant and frequency:

κ = 4π2c2mν̄2 where c is the velocity of light, m is the mass of the particle in question and ν̄

is the frequency in cm−1. Consistent with the requirement of heavier bath particles to allow

greater sampling of the system during rare event sampling, the mass for the bath particles

tethered to donor and acceptor are 500 amu whereas the degree of freedom tethered to the

transferring hydrogen have a mass of 100 amu in our study. Detailed benchmarks on these

parameters can be found in Ref. 45.
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TABLE I. Quantum wavepacket grid details.

(RCH −ROH)/RCO NGeom
a NGrid

b Grid Length

-0.204 through -0.0586 c 34 81d × 71 × 71 = 408321 2Åd × 2.1Å× 2.1Å

a Represents the number of active site geometries considered in the range given in column 1
b Represents the number of equally spaced proton coordinate grid points utilized to discretize the

quantum wavepacket at each active site geometry.
c The classical transition state occurs at (RCH −ROH)/RCO = −0.0779 as noted in Figure 4(a).
d Donor Acceptor Axis

Appendix B: Simulation details for quantum wavepacket dynamics calculations con-

ducted along the reaction coordiante

In Ref. 16, the quantum dynamics of the H/D transferring nucleus, represented as

a wavepacket, evolves under the influence of reaction coordinate dependent potentials,

V(x̄;RC), where the quantum mechanical free-propagator is approximated in the coordinate

representation using the distributed approximating functional propagator (DAF):55,61,62

K̃k(xi, xj ; t) =
1

σ(0)
√
2π

( −1√
2σ(0)

)k

exp

(

−(xi − xj)
2

2σ(t)2

)

×

M/2
∑

n=0

(

σ(0)

σ(t)

)2n+1(−1

4

)n
1

n!
H2n+k

(

xi − xj√
2σ(t)

)

.(B1)

The terms H2n+k are Hermite polynomials and σ(t)2 = σ(0)2 + ı~t/m.55 Equation B1 rep-

resents a formally exact representation of the quantum dynamical free-propagator55,61,62 for

k=0 and finite t, whereas it also serves as accurate derivative operator functions known on a

grid when k is chosen to be the order of the derivative and t is set to zero. Details regarding

properties of Eq. (B1) are discussed in several publications55,61,62,79–81. The variablesM and

σ(0) determine the accuracy and width respectively of the DAF. It has been shown54,55,61,82

that these parameters are not independent and for a given value of M there exists a σ(0)

that provides optimal accuracy for the propagation. The accuracy of this method in con-

junction with ab initio dynamics has been benchmarked in Ref. 48, 54, 57–59. As discussed

in previous publications54,57,58,61,62, calculations are performed for M=60 and σ(0)
∆x

= 2.5742.

This provides a good compromise between accuracy and efficiency. Furthermore, to allow

efficient calculation of the Hermite polynomials in Eq. (B1), the recursion relations are
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modified to allow the direct evaluation of

H̃2n

(

x√
2σ

)

= exp

{

− x2

2σ2

}

1

n!
H2n

(

x√
2σ

)

, (B2)

using

H̃2n(y) =
2

n

[

(

2y2 − 4n+ 3
)

H̃2n−2(y)− 4(2n− 3)H̃2n−4(y)
]

. (B3)

Equation (B3) only includes the even or odd polynomials as needed in Eq. (??). This

modified recursion allows numerically stable evaluation of the components required in Eq.

(??) even for very large values of M .

The quantum dynamical evolution of the wavepacket is constructed using Trotter

factorization83,84. The grid description for the quantum wavepacket is give in Table I.

The transmission amplitude is computed using the total probability density of the time-

dependent wavepacket on the product-side of the proton potential energy surface at each

time step. Product-side functions are taken as a Heaviside function and these aspects are

along the lines of the calculations discussed in Refs. 30 and 50. Using this approach the

kinetic isotope effect was computed in Ref. 16 with results that agree with the large KIE

reported by Klinman and coworkers85.

The potentials are computed on the grid described in Table I. Details can be found in Ref.

16 and summary is given here. All electrons in the active site model are treated together

using DFT and MP2. In Table I we provide a list of geometries or range of geometries

(column 1) characterized by values of the reaction coordinate described in Figure 4(a), the

number of geometries considered inside each range (column 2) and the number of proton

coordinate grid points utilized to discretize the wavepacket for each active site geometry

(column 3). The origin of the proton coordinate grid space is taken to be the center of the

donor-acceptor distance. The three dimensional Cartesian grid is oriented such that one axis

is along the donor-acceptor line and a second axis is oriented along the plane comprising

the donor carbon, the acceptor oxygen and the hydrogen bonded to the donor carbon. The

third axis is orthogonal to the plane comprising the other axes.

The electronic structure calculations required for constructing the proton potential surface

at each model system geometry were performed using the B3LYP density functional and

lanl2dz Gaussian-type basis set. The choice of functional and basis set was based on a

comparison of the proton potential energy surfaces and eigenstates obtained at different

levels of theory including MP2. The benchmark data for DFT and MP2 are provided in
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the Appendix in Ref. 16. It was found that the B3LYP density functional and lanl2dz

basis provided acceptable accuracy at a limited computational expense. All calculations

are performed using a development version of the Gaussian series of electronic structure

programs86. Furthermore, due to the large computational overhead involved in obtaining

the full potential surface47,48, we enforced the following approximations: We first computed

the proton potential surfaces for seven geometries in the range described in Table I by

performing approximately 5000 B3LYP/lanl2dz electronic structure calculations at each of

the seven geometries. The energies obtained from these calculations were then interpolated

to an extremely fine grid of over a million points via Hermite curve interpolation47,48,87–89.

We then compared these potential surfaces to an approximate surface generated by: (a)

computing the energy, gradients and Hessian for cases where the transferring hydrogen was

donor-bound, acceptor-bound and at the transition state for each of the seven geometries

(b) and then constructing a smooth double well potential by interpolating between two

Harmonic curves centered on the donor and acceptor minima with curvatures determined

from ab initio force constants. The interpolating function is a Gaussian parameterized to

reproduce the ab initio barrier height. The full ab initio surfaces for the seven geometries

described above were compared with the more approximate surface for a description of

the localization properties of the low-lying eigenstates in all three directions. Since the

comparisons were found to be adequate with good qualitative agreement, we chose to use

the approximate surfaces for each geometry described in Table I.
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63 Schollwöck, U. The density-matrix renormalization group in the age of matrix product states.

Annals of Physics 2011, 326, 96 – 192, January 2011 Special Issue.

64 Eisert, J.; Cramer, M.; Plenio, M. B. Colloquium: Area laws for the entanglement entropy. Rev.

Mod. Phys. 2010, 82, 277–306.

65 Accardi, L. Topics in quantum probability. Physics Reports 1981, 77, 169 – 192.

66 Kanjilal, P. P.; Palit, S.; Saha, G. Fetal ECG extraction from single-channel maternal ECG

using singular value decomposition. IEEE Transactions on Biomedical Engineering 1997, 44,

51–59.

67 Hassanpour, H. A timefrequency approach for noise reduction. Digital Signal Processing 2008,

18, 728 – 738.

68 Iqbal, N.; Zerguine, A.; Kaka, S.; Al-Shuhail, A. Automated SVD filtering of time-frequency

distribution for enhancing the SNR of microseismic/microquake events. Journal of Geophysics

and Engineering 2016, 13, 964.

32

Page 32 of 34Faraday Discussions



69 Hu, C.; Lu, X.; Ye, M.; Zeng, W. Singular value decomposition and local near neighbors for

face recognition under varying illumination. Pattern Recognition 2017, 64, 60 – 83.

70 Meyer, H.-D.; Manthe, U.; Cederbaum, L. S. The Multi-Configurational Time-Dependent

Hartree Approach. Chem. Phys. Lett. 1990, 165, 73.

71 Wang, H.; Thoss, M. Multilayer formulation of the multiconfiguration time-dependent Hartree

theory. The Journal of Chemical Physics 2003, 119, 1289–1299.
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