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In this paper, we analyze the detailed quantum-classical behavior of two alternative approaches
to simulating molecular dynamics with electronic transitions: the popular fewest switches sur-
face hopping (FSSH) method, introduced by Tully in 1990 [Tully, J. Chem. Phys., 1990, 93,
1061] and our recently developed quantum trajectory surface hopping (QTSH) method [Martens,
J. Phys. Chem. A, 2019 123, 1110]. Both approaches employ an independent ensemble of trajec-
tories that undergo stochastic transitions between electronic surfaces. The methods differ in their
treatment of energy conservation, with FSSH imposing conservation of the classical kinetic plus
potential energy by rescaling the classical momentum when a surface hop occurs while QTSH
incorporates a quantum force throughout the dynamics which leads naturally to the conservation
of the full quantum-classical energy. We investigate the population transfer and energy budget
of the surface hopping methods for several simple model systems and compare with exact quan-
tum results. In addition, the detailed dynamics of the trajectory ensembles in phase space are
compared with the quantum evolution in the Wigner representation. Conclusions are drawn.

1 Introduction
Trajectory surface hopping is a simple and efficient method for
simulating the coupled electronic and nuclear dynamics of molec-
ular systems in a quantum-classical framework1–11. The most
popular approach is the fewest switches surface hopping (FSSH)
method, originally introduced by Tully in 19901. Since that origi-
nal work, many researchers have employed and extended the ap-
proach in a range of physical contexts (see, e.g.,9–11 for reviews).
In FSSH, the dynamics of the fully quantum nuclear wavepacket
evolving on coupled electronic surfaces is approximated by an
ensemble of classical trajectories, each of which evolves indepen-
dently. This classical motion is combined with stochastic transi-
tions, or “hops” between the coupled electronic states. To deter-
mine the hopping probabilities, a proxy electronic Schrödinger
equation that evolves under the influence of the time dependent
classical variables is carried by each trajectory. Fewest switches
surface hopping has proven to be a simple and robust method for
the simulation of molecular dynamics with electronic transitions.

Despite its utility and popularity, there are a number of issues
with FSSH that inspire continuing work on developing surface
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hopping methodology. The FSSH approach is based on using an
ensemble of independent trajectories. This is an approximation to
the fundamental nonlocality and indivisibility of quantum states,
and leads to some inaccuracies. One problem is that the inde-
pendent trajectories do not represent quantum coherence—and
especially decoherence—properly, leading to a representation of
the quantum evolution that is overcoherent, in the sense that the
off-diagonal quantum density matrix elements of individual tra-
jectories can be spuriously large in magnitude compared to the
exact quantum coherence. Attempts to improve FSSH have fo-
cused mainly on corrections to this problem; a number of ap-
proaches to incorporating decoherence corrections to FSSH are
reviewed in Ref.10. Another characteristic of FSSH is strict clas-
sical energy conservation imposed on the individual trajectories
when they undergo transitions between electronic states. In par-
ticular, when a hop occurs, the corresponding difference in elec-
tronic state energies at the transition point is accommodated in
the nuclear dynamics by an ad hoc rescaling of the momentum
along the nonadiabatic coupling vector. This algorithm is—quite
reasonably—based on recognizing the importance of classical en-
ergy conservation, but has no rigorous foundation based on first
principles. The FSSH algorithm also results in practical problems,
such as the spurious closing of classically-forbidden channels al-
lowed by the full quantum evolution and the presence of so-called
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“frustrated hops”—transitions that are dictated to occur by the
surface hopping stochastic process but rejected by the imposition
of classical energy conservation. These events degrade the con-
sistency of surface hopping, defined as the agreement between
the evolving quantum density matrix probabilities and the state
populations reflected by the statistics of the hopping trajectory
ensemble. Further, the reliance of the FSSH algorithm on us-
ing the nonadiabatic coupling vector in the momentum rescaling
leads to a theory that is only well-defined in the adiabatic rep-
resentation of electronic states, losing the important property of
representation independence and limiting FSSH to modeling mul-
tidimensional systems in the adiabatic representation.

Recently, we proposed an alternative surface hopping frame-
work, Consensus Surface Hopping (CSH),12,13 which was de-
veloped with the goal of rigorously incorporating the nonclas-
sical effects of nonlocality, uncertainty, and quantum coher-
ence14 in a surface hopping context. The method is based on a
quantum-classical limit of the multi-state quantum Liouville equa-
tion15–21in the framework of a trajectory ensemble representa-
tion of the full density matrix in the Wigner representation. The
advantages of CSH come at a cost, however, and the interdepen-
dence of the trajectories in the ensemble makes the method nu-
merically much more expensive than FSSH.

The greatest value of the CSH formalism, in our opinion, is not
as a numerical method per se but as a framework for developing
additional approximations and more economical methodology in
a well-controlled and rigorous manner.

We recently derived an approximate independent trajectory
limit of CSH, which we call Quantum Trajectory Surface Hopping
(QTSH)13. In the independent trajectory limit, we obtain a sta-
tistical surface hopping algorithm that is equivalent to the stan-
dard FSSH stochastic trajectory hopping result. The main differ-
ence with FSSH is the abandonment of the physically-motivated
but ad hoc momentum rescaling to impose classical energy con-
servation at the individual trajectory level and its replacement
by quantum forces derived rigorously from the semiclassical-limit
quantum-classical Liouville equation. QTSH restores the consis-
tency of surface hopping that is broken by the frustrated hops of
the standard FSSH approach. Unlike FSSH, the QTSH algorithm
maintains the time reversibility of the evolving state on average:
individual trajectories are not time reversible due to their stochas-
tic nature, but the densities that they collectively represent evolve
in a time-reversible manner. In addition, the energetics of the
system are treated correctly: the full quantum-classical energy is
conserved rigorously at the ensemble level. The ensemble aver-
age energy conservation is the correct behavior required by quan-
tum mechanics; individual trajectory conservation of the classical
energy is a constraint that is too restrictive and too classical, and
so precludes important quantum effects. A detailed report on the
QTSH formalism can be found in Ref.13.

In this paper, we present a comparison of the behavior of the
QTSH and FSSH methodologies for several very simple systems.
We examine the time dependent population transfer dynamics of
the surface hopping methods and compare the results with ex-
act quantum wavepacket calculations. The energy budget of the
QTSH method is also analyzed. In addition, we visualize snap-

shots of the trajectory ensembles in phase space and compare
with Wigner functions calculated from the wavepacket results.
General conclusions are drawn from the observed behavior.

2 Theory
We begin by briefly reviewing the the key elements of the FSSH
and QTSH approaches. More detailed discussions can be found
in the papers cited.

2.1 Fewest Switches Surface Hopping (FSSH)

The Fewest Switches Surface Hopping (FSSH) method was pro-
posed by John Tully in 19901. The FSSH formalism starts with
the Hamiltonian describing the electronic and nuclear degrees of
a molecular system, given by

Ĥ = T̂q + Ĥo(r,q). (1)

Here, r and q are the electronic and nuclear coordinates, respec-
tively. T̂q is the nuclear kinetic energy operator while Ĥo(r,q)
is the electronic Hamiltonian, which depends parametrically on
the nuclear coordinates q. An electronic basis is chosen, φn(r;q),
which are functions of the electronic coordinates r and may also
depend parametrically on the nuclear coordinates q. In this basis,
the Hamiltonian matrix elements are

Vmn(q) =
∫

φ
∗
m(r;q)Ĥo(r,q)φn(r;q)dr. (2)

In the adiabatic representation, the electronic wavefunctions de-
pend on q, and the derivative coupling matrix element dmn(q)
results from off-diagonal matrix elements of the nuclear kinetic
energy:

dmn(q) =
∫

φ
∗
m(r;q)∇qφn(r;q)dr. (3)

The FSSH formalism uses classical trajectories and ensem-
ble averaging to approximate the nuclear quantum dynamics
of a multicomponent wavepacket. These trajectories repre-
sent the quantum electronic transitions by undergoing stochas-
tic transitions—the “hops” of surface hopping—between the elec-
tronic surfaces. The electronic dynamics in the chosen basis are
coupled to the time-dependent nuclear trajectories q(t) which
appear in the nuclear coordinate dependence of the electronic
Hamiltonian. For a given classical path q(t) the electronic wave-
function can be expanded as

ψ(r, t) = ∑
n

cn(t)φ j(r;q(t)). (4)

Substitution into the time-dependent Schrödinger equation yields
a set of coupled differential equations for the expansion coeffi-
cients:

ih̄ċm(t) = ∑
n
(Vmn− ih̄q̇ ·dmn)cn(t). (5)

In terms of the electronic density matrix amn = cmc∗n the quantum
equations of motion become

ih̄ȧmn(t) = ∑
l
[(Vml − ih̄q̇ ·dml)aln−aml(Vln− ih̄q̇ ·dln)] , (6)

where d∗ln =−dnl and dnn = 0.
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The equation of motion for the population of the nth state, rep-
resented by the diagonal density matrix element ann, is then given
by:

ȧnn = ∑
l 6=n

bnl , (7)

where
bnl =

2
h̄

Im(a∗nlVnl)−2Re(a∗nl q̇ ·dnl). (8)

In the FSSH method, an ensemble of trajectories (q j(t),p j(t))
( j = 1,2, · · · ,N) are sampled from a distribution representing the
initial nuclear quantum state, where p j is the canonical momen-
tum conjugate to the jth trajectory’s nuclear coordinate q j. Each
trajectory so generated is initiated on one of the electronic states
and then evolves independently and classically under Hamilton’s
equations that correspond to the instantaneous occupied state.
Each trajectory carries its own copy of the electronic density ma-
trix amn, j, which is the independent ensemble member’s “proxy”
for the full quantum electronic-nuclear density matrix.

Stochastic transitions occur between these states with a prob-
ability that is proportional to the relative rate of change of the
quantum populations associated with the trajectory’s proxy den-
sity matrix. For instance, for a two state system with the jth tra-
jectory currently occupying surface 1, its probability of hopping
from surface 1 to surface 2 during a time step of duration ∆t is
given by

PFSSH
hop (t) =

∣∣∣∣ 1
a11(t)

b12(t)∆t
∣∣∣∣ (9)

if ȧ11, j is negative and zero otherwise.
The hop is realized or not by generating a random number be-

tween 0 and 1 and comparing it with PFSSH
hop (t). An analogous

procedure is used for a trajectory currently on state 2.
Strict classical energy conservation at level of the individual

trajectory is strictly imposed by rescaling the momentum at the
instant of the hop. In multidimensional systems, the momen-
tum rescaling is performed along the direction of the nonadia-
batic coupling vector d12. If insufficient energy is available for an
upward hop in energy, the event is termed “frustrated” and does
not occur despite the stochastic algorithm dictating the transition.
Such aborted events lead to a breakdown of the consistency be-
tween the density matrix populations and the trajectory ensemble
statistics.

2.2 Quantum Trajectory Surface Hopping (QTSH)
The FSSH approach yields a physically well-motivated but ad hoc
method for simulating nonadiabatic dynamics with trajectories.
Recently, we introduced the Consensus Surface Hopping (CSH)
formalism, which seeks to go beyond this and build a trajectory-
based method for nonadiabatic dynamics simulations with a rig-
orous foundation12,13. The CSH approach focuses on solving the
multistate quantum Liouville equation for coupled electronic and
nuclear dynamics in the semiclassical limit using trajectory en-
sembles to represent phase space densities15–19. From this per-
spective, the density matrix evolves quantum mechanically, and
so the trajectory dynamics must correspondingly become nonclas-
sical. We briefly sketch the derivation of CSH and the additional
approximations underlying the QTSH method under discussion in

the present paper.
CSH and QTSH are based in solving the full quantum density

matrix evolution in the quantum-classical limit using stochastic
trajectory ensembles. We therefore start with the quantum me-
chanical Liouville equation for the density operator ρ̂(t), given
by22

ih̄
dρ̂(t)

dt
= [Ĥ, ρ̂(t)], (10)

where Ĥ is the Hamiltonian of the system. For dynamics on a
single potential surface, the classical limit of Eq. (10) is simply
the classical Liouville equation23,

∂ρ

∂ t
= {H,ρ}, (11)

where ρ(q,p, t) and H(q,p, t) are now functions of the 2 f -
dimensional (for f nuclear degrees of freedom) phase space vari-
ables Γ = (q,p) and time t, and {H,ρ} is the Poisson bracket of H
and ρ: {H,ρ}= ∂H/∂q ·∂ρ/∂p−∂ρ/∂q ·∂H/∂p. This correspon-
dence can be derived systematically from Eq. (10) by performing
a Wigner-Moyal expansion24,25 of the quantum mechanical Li-
ouville equation. To lowest order in h̄, this involves replacing
commutators by Poisson brackets: [Â, B̂]→ ih̄{A,B}+O(h̄2).

The semiclassical limit of Eq. (10) can be generalized to two
coupled quantum states further coupled to classical degrees of
freedom. The approach is general for mixed quantum-classical
problems. Here we first consider the specific case of two quantum
electronic states in the diabatic electronic representation coupled
to classical limit nuclear dynamics. The Hamiltonian and density
matrix are given by 2×2 matrices:

Ĥ =

(
Ĥ11 V̂
V̂ Ĥ22

)
(12)

and

ρ̂(t) =

(
ρ̂11(t) ρ̂12(t)
ρ̂21(t) ρ̂22(t)

)
, (13)

respectively. The elements of these matrices are nuclear op-
erators, which become classical phase space functions in the
quantum-classical limit. The result are coupled classical-like Li-
ouville equations15–19,26–31:

∂ρ11

∂ t
= {H11,ρ11}+{V,α}−

2V
h̄

β (14)

∂ρ22

∂ t
= {H22,ρ22}+{V,α}+

2V
h̄

β (15)

∂α

∂ t
= {H0,α}+ωβ +

1
2
{V,ρ11 +ρ22} (16)

∂β

∂ t
= {H0,β}−ωα +

V
h̄
(ρ11−ρ22) . (17)

The coherence ρ12(Γ, t) = α(Γ, t) + iβ (Γ, t) is expressed above
in terms of its real and imaginary parts, and we have defined
the average Hamiltonian H0 = (H11 +H22)/2 and frequency ω =

(H11−H22)/h̄. All higher order terms in h̄ have been neglected,
leading to a classical-limit formalism that retains only the most
important nonclassical corrections.

The CSH method employs a trajectory ensemble representation
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of the phase space functions describing the density matrix in the
coupled semiclassical Liouville equations. Quantum population
transfer is represented by stochastic trajectory hops between the
diagonal surfaces while quantum coherence is represented collec-
tively at the ensemble level by interrelationships between non-
classical amplitudes and phases associated with each trajectory.
We emphasize that our trajectory ensemble is not a statistical en-
semble representing a mixed state but instead a quantum ensem-
ble that corresponds to a trajectory basis of the evolving pure state
quantum dynamics.

The phase space densities corresponding to the populations of
states 1 and 2 are together represented by a single ensemble of
N trajectories, each of which is characterized by a point in phase
space Γ j(t) = (q j(t),p j(t)) and a binary integer σ j(t), which can
take on the values 1 or 0, indicating whether the trajectory is as-
sociated with quantum state 1 or 2, respectively. In the numerical
implementation involving finite trajetory ensembles, the δ func-
tions are smoothed using phase space Gaussians, as described in
Ref.12. This results in the replacement of the delta functions by
the Gaussian basis g(Γ): δ (Γ−Γ j)→ g(Γ−Γ j).

The coherence ρ12(Γ, t) is also represented in terms of the tra-
jectory ensemble. Unlike the populations, however, the coherence
is a complex quantity and thus the coefficients of the trajectories
are complex numbers. The populations and the real and imagi-
nary parts of the coherence are given in terms of the smoothed
trajectory ensemble as:

ρ11(Γ, t) =
1
N

N

∑
j=1

σ j(t)g(Γ−Γ j(t)) (18)

ρ22(Γ, t) =
1
N

N

∑
j=1

(
1−σ j(t)

)
g(Γ−Γ j(t)) (19)

α(Γ, t) =
1
N

N

∑
j=1

α j(t)g(Γ−Γ j(t)) (20)

β (Γ, t) =
1
N

N

∑
j=1

β j(t)g(Γ−Γ j(t)). (21)

The coefficients σ j(t) are stochastic binary integers, while α j(t)
and β j(t) ( j = 1,2, . . . ,N) are continuous real numbers. (See
Ref.32 for an alternative approach to the general problem of quan-
tum state hopping that represents both populations and coher-
ence in terms of separate stochastic processes.)

In the full CSH formalism, the equations of motion for the
trajectories Γ j(t) and state parameters (σ j(t),α j(t),β j(t)) ( j =
1,2, . . . ,N) are determined by subtituting the trajectory represen-
tations, Eqs. (18)–(21), into the semiclassical Liouville equations
(14)–(17). Two types of nonclassical terms appear. The first are
sink and source terms±2V β/h̄, which are responsible for the pop-
ulation transfer between states. The second type of nonclassical
terms are the Poisson brackets {V,α}, which appear symmetri-
cally in the equations for both ρ11 and ρ22. These interactions
modify the shape of the evolving distributions, but do not change
the total state populations. Conservation of population under
these terms results from the fact that the classical trace (inte-
gral over phase space) of a Poisson bracket vanishes for functions

satisfying appropriate boundary conditions.

The evolution of the dynamical variables is determined by in-
tegrating numerically the ordinary differential equations for the
trajectories and the coefficients. Each time step of duration ∆t
is divided into two parts. First, the coefficients are updated and
then the phase space trajectories are propagated forward in time.

As derived in Ref.12, the CSH stochastic hopping probability for
a trajectory transition from surface 1 to surface 2 is

PCSH
hop =

∣∣∣∣∣ 2
h̄〈ρ11〉 j

V (Γ j)〈β 〉 j ∆t

∣∣∣∣∣ , (22)

where

〈ρ11〉 j =
1
N

N

∑
k=1

σkg(Γ j−Γk) (23)

and

〈β 〉 j =
1
N

N

∑
k=1

βkg(Γ j−Γk) (24)

are the local values of the functions ρ11 and β at the phase space
point Γ j, with an analogous expression for hops from 2 to 1.

The result in Eq. (22) is strongly reminiscent of the FSSH hop-
ping probability given in Eq. (9). But we emphasize the essential
difference between this approach and the FSSH method. Here,
the ensemble collectively determines the stochastic hopping prob-
abilities of each of its members. The local densities 〈ρ11〉 j and
〈ρ22〉 j and the coherence 〈β 〉 j at point Γ j depend on the ensemble
of evolving trajectories Γk(t) (k = 1,2, . . . ,N). They are not inde-
pendent dynamical variables associated with independent trajec-
tories, as in the FSSH formalism. Quantum transitions are thus
determined by a “consensus” among the members of the ensemble
representing the full entangled electronic-nuclear quantum state,
rather than by the independent trajectories of FSSH.

The coherence parameters obey the equations

α̇ j = ω(Γ j)β j (25)

β̇ j = [−ω(Γ j)α j +
1
h̄

V (Γ j)(2σ j−1)]. (26)

These differential equations are integrated numerically using
standard methods.

We emphasize that no artificial decoherence is added to the
evolving system in the CSH formalism. The role played by co-
herence and its decay is treated accurately through the collective
nature of the method as highlighted by Eq. (24). In particular, de-
coherence is represented naturally via cancellation of the signed
terms βk in the summation over Γk in the local vicinity of the hop-
ping trajectory j to yield 〈β 〉 j. If these terms exhibit destructive
interference due to either the nature of the pure state evolution
of the multicomponent nuclear wavepacket or by environmen-
tal fluctuations in the difference potential ω(Γk) over the ensem-
ble, then this summation will be “decayed” by decoherence. The
individual βk values may be quite large; it is only the weighted
sum of their values 〈β 〉 j that becomes small with decoherence. In
contrast, FSSH determines hopping probabilities by using the in-
dependent individual values of each trajectory’s quantum density
matrix. This difference is the origin of the overcoherence problem
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of FSSH.

We now consider the terms in the evolution equations that in-
volve trace-preserving Poisson brackets. These include both the
homogeneous classical phase space evolution terms of the form
{H,ρ} and the inhomogeneous nonclassical terms {V,α} coupling
the density matrix elements.

We consider the total nuclear density ρ = ρ11 +ρ22:

ρ(q,p, t) = ρ11(q,p, t)+ρ22(q,p, t) =
1
N

N

∑
j=1

g(Γ−Γ j(t)). (27)

This quantity is independent of the stochastic parameters σ j(t).
The total nuclear density ρ(q,p, t) obeys the partial differential
equation obtained by adding Eqs. (14) and (15):

∂ρ

∂ t
= {H11,ρ11}+{H22,ρ22}+2{V,α}. (28)

The terms ±2V β/h̄ responsible for population transfer between
states 1 and 2 cancel from the evolution equation. Equation (28)
conserves the total population, given by the phase space trace of
ρ, as it should.

The equations of motion for q j(t) and p j(t) ( j = 1,2, . . . ,N) are
derived by substituting Eq. (27) into Eq. (28). As described in
Refs.12,13, we obtain modified classical equations of motion for
the trajectory ensemble:

q̇ j =
p j

m
(29)

ṗ j =−∇U j(q j)−2α j∇V (q j) (30)

for j = 1,2, · · · ,N, where U j(q) is the diabatic potential of the state
currently occupied by the jth trajectory and ∇≡ ∂/∂q. In addition
to the classical diabatic force acting on the jth trajectory an ad-
ditional quantum force appears. This nonclassical force depends
on both the gradient of the off-diagonal diabatic coupling V (q j)

and the real part of the coherence α j(t) corresponding to that tra-
jectory and contributes to the dynamics whenever coupling and
coherence are present. In the present formalism, these replace
the sudden impulsive momentum rescalings of FSSH. Each tra-
jectory does not conserve the classical energy H j(t). Rather, the
total energy expectation value E(t) = Tr(Ĥρ̂(t)) is conserved on
average over the ensemble14, as we discuss in detail below. (We
have considered the energetics and other issues of general quan-
tum trajectory methods in previous publications33–36.)

The CSH method can be implemented equally well in the adi-
abatic representation, where electronic state coupling appears
through off-diagonal terms in the kinetic energy17,37,38. The
quantum mechanical Hamiltonian and density matrix in the adi-
abatic representation are given by

Ĥ =

(
Ĥ++ Ŵ

Ŵ † Ĥ−−

)
(31)

and

ρ̂(t) =

(
ρ̂++(t) ρ̂+−(t)
ρ̂−+(t) ρ̂−−(t)

)
, (32)

respectively. The adiabatic eigenstates {|+〉 , |−〉} are defined in

terms of the diabatic basis {|1〉 , |2〉} as

|+〉= |1〉cos(φ/2)+ |2〉sin(φ/2) (33)

|−〉=−|1〉sin(φ/2)+ |2〉cos(φ/2), (34)

where the mixing angle φ(q) is given by

tanφ(q) =
2V (q)

U1(q)−U2(q)
. (35)

Here, U1(q) and U2(q) are the diagonal diabatic state potentials
and V (q) is the off-diagonal diabatic coupling.

In terms of these states, the off-diagonal nonadiabatic cou-
plings are

Ŵ = 〈+| T̂ |−〉= ih̄
2m

∇φ(q) · p̂+
h̄2

4m
∇

2
φ(q) (36)

and
Ŵ † = 〈−| T̂ |+〉=−Ŵ . (37)

The nonadiabatic coupling vector matrix element d(q) is defined
as

d(q)≡ 〈+|∇ |−〉=−1
2

∇φ(q). (38)

By evaluating the Wigner transform of the quantum Liouville
equation in the adiabatic representation, Eq. (10), to lowest order
in h̄ we obtain the corresponding semiclassical Liouville equations
in the adiabatic representation12,17,37:

∂ρ++

∂ t
= {H++,ρ++}− h̄

{
d · p

m
,β
}
−2d · p

m
α (39)

∂ρ−−
∂ t

= {H−−,ρ−−}− h̄
{

d · p
m
,β
}
+2d · p

m
α (40)

∂α

∂ t
= {Ho,α}+ωβ +d · p

m
(ρ++−ρ−−), (41)

∂β

∂ t
= {Ho,β}−ωα− h̄

2

{
d · p

m
,ρ+++ρ−−

}
, (42)

where H++(Γ) = p2/2m+E+(q), H−−(Γ) = p2/2m+E−(q), Ho =
1
2 (H++ + H−−), and ω(Γ) = (E+(q) − E−(q))/h̄; here E+(q)
and E−(q) are the adiabatic potentials—the position-dependent
eigenvalues of the diabatic potential matrix. The density matrix
elements ρmn(Γ, t) are now phase space functions, and we have
written the coherence ρ+− = α + iβ in terms of its real and imag-
inary parts.

The phase space generalized densities in the adiabatic repre-
sentation are again written in terms of an ensemble of N trajecto-
ries as:

ρ++(Γ, t) =
1
N

N

∑
j=1

σ j(t)g(Γ−Γ j(t)) (43)

ρ−−(Γ, t) =
1
N

N

∑
j=1

(
1−σ j(t)

)
g(Γ−Γ j(t)). (44)

α(Γ, t) =
1
N

N

∑
j=1

α j(t)g(Γ−Γ j(t)) (45)

β (Γ, t) =
1
N

N

∑
j=1

β j(t)g(Γ−Γ j(t)). (46)
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A similar analysis to the one performed above for the diabatic
case then yields the CSH equations of motion for the quantum
state parameters and phase space trajectories.

The stochastic parameters {σ j} ( j = 1,2, . . . ,N) are updated
as follows. For the jth trajectory at phase space point Γ j =

(q j(t),p j(t)) currently occupying state |+〉, the probability of hop-
ping to state |−〉 at time t during a time interval ∆t is given by

PCSH
hop =

∣∣∣∣ 2
〈ρ++〉

d(q j) ·p j

m
〈α〉 j ∆t

∣∣∣∣ (47)

with an analogous expression for hops from |−〉→ |+〉. The equa-
tions of motion for the coherence parameters yield the differential
equations

α̇ j = ω(Γ j)β j +
d(q j) ·p j

m
(2σ j−1) (48)

β̇ j =−ω(Γ j)α j(t). (49)

The trajectory equations of motion for q j(t) and p j(t) can be de-
rived from the equation of motion for the total nuclear density
ρ = ρ+++ρ−− using the same procedure employed above in the
diabatic case. The result is

q̇ j =
p j

m
−2h̄β j

d(q j)

m
(50)

ṗ j =−∇U j(q j)+
2h̄
m

β j
(
p j ·∇

)
d(q j) (51)

for j = 1,2, · · · ,N. The quantum forces acting on the classical tra-
jectories in the adiabatic representation are in the form of Hamil-
ton’s equations in the presence of a vector potential A(q,β (t)):

H(Γ,σ ,β ) =
(p−A(q,β (t)))2

2m
+Uσ (q), (52)

where A(q,β (t)) = 2h̄β (t)d(q) (neglecting terms of order h̄2 ).
This vector potential depends on the quantum subsystem dynam-
ics through the appearance of the imaginary part of the coher-
ence, β j(t). Interesting geometric phase effects resulting from
these nonclassical forces may result in systems with two or more
dimensions in the presence of, e.g., conical intersections39–43.
This will be explored in future work.

These equations of motion are closely related to those ap-
pearing in the Miller-Meyer treatment of coupled electronic-
nuclear dynamics44–46. In Ref.46 Cotton et al. introduce a non-
Hamiltonian “kinematic momentum”, given in our notation by
pkin, j = p j−2h̄β jd(q j), and show that its use simplifies numerical
calculations by avoiding the appearance of ∇d. This approach is
applied in our numerical application of the present method.

The CSH method is based on a systematic derivation of the
equations of motion for a trajectory ensemble representation of
the nonadiabatic dynamics from the underlying quantum Liou-
ville equation in the semiclassical limit. CSH eliminates the ad hoc
instantaneous momentum rescaling and strict energy conserva-
tion of FSSH by incorporating continuous state-dependent quan-
tum forces into the trajectory equations of motion. In addition,
the inclusion of quantum coherence and decoherence emerges
naturally in the CSH formalism through the collective and inter-
dependent nature of the trajectories across the ensemble in deter-

mining hopping probabilities.

The numerical implementation of the method can be quite ac-
curate for model systems12. However, the interdependent na-
ture of the trajectories greatly increases the numerical cost of the
method in direct implementations. For multidimensional systems,
the CSH method quickly becomes prohibitively expensive with in-
creasing size. Further, the complexity of the method can lead to
errors if conditions and parameters such as the Gaussian smooth-
ing width are not chosen carefully. The main value of CSH is not
as a practical method per se, but as a theoretical framework for
introducing further approximations in a well-controlled manner

In Ref.13 we described a new surface hopping method, Quan-
tum Trajectory Surface Hopping (QTSH), an approximate ap-
proach based on an independent trajectory limit of CSH. The QTSH
stochastic hopping algorithm is identical to that of FSSH, but the
ad hoc impulsive momentum jumps of FSSH are abandoned and
replaced by the continuous quantum forces that emerge from the
CSH formalism. This involves replacing the ensemble-level quan-
tities appearing in the CSH formalism by proxy quantities, as in
FSSH. in our notation, the connection between the ensemble level
quantities and the density matrix probabilities ann is

〈ρ11〉 j =
1
N

N

∑
k=1

σ jg(Γ j−Γk)' 〈σ〉 j 〈ρ〉 j ≡ a11, j 〈ρ〉 j (53)

with a similar expression relating ρ22, j with a22, j, and

〈β 〉 j '
1
N

N

∑
k=1

β jg(Γ j−Γk)' β j 〈ρ〉 j . (54)

Here, 〈ρ〉 j is the local value of the total nuclear density ρ =

ρ11 + ρ22 at point Γ j. The local average value of the stochastic
binary numbers representing state occupation is equated with the
continuous proxy density matrix probability: 〈σ〉 j ' a11, j. For the
second expression, we make the simplifying assumption that the
system is fully coherent, in the sense that the parameters βk are
slowly varying in the vicinity of Γ j. With these approximations,
we arrive at the QTSH hopping probability expression

PQT SH
hop (t) =

∣∣∣∣ 1
a11, j

2V (Γ j)

h̄
β j∆t

∣∣∣∣ , (55)

which is identical to the corresponding FSSH result, Eq. (9). The
consistency assumption of FSSH further assumes that the akl(t)
parameters can be computed by solving the auxiliary quantum
equations of motion for each trajectory, Eq. (6).

A similar line of reasoning gives the QTSH hopping probability
in the adiabatic representation:

PQT SH
hop =

∣∣∣∣ 2
a++, j

d(q j) ·p j

m
α j∆t

∣∣∣∣ . (56)

The numerical implementation of the QTSH method uses the fol-
lowing procedure (given here for the adiabatic representation):
The continuous equations, Eq. (6), for the quantum subsystem
of each trajectory is integrated to determine the smoothly vary-
ing quantities a++, j, a−−, j, α j, and β j. In addition, the stochas-
tic variable σ j is propagated using the probabilistic algorithm
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in Eq. (56). The classical variables are propagated under the
influence of the instantaneous Hamiltonian H j = σ jH++ + (1−
σ j)H−− augmented by the CSH nonclassical terms derived above,
Eqs. (50) and (51). The classical forces in the equations of motion
change discontinuously at the points of transition while the non-
classical forces are continuous there. The resulting phase space
path (q j(t),p j(t)) is continuous, unlike in the FSSH method, as we
do not rescale the momentum to impose energy conservation.

The FSSH method for surface hopping imposes strict conser-
vation of the classical energy of each independent trajectory:
H j(Γ j(t), t) = E j, where in our notation H j(Γ, t) = σ j(t)H++(Γ)+

(1− σ j(t))H−−(Γ) and E j is the initial classical energy. This is
accomplished by the ad hoc rescaling of the individual trajectory
momentum at the time of each hop, which imposes energy con-
servation on each trajectory by hand.

Quantum mechanics of course requires energy conservation as
well, but at the state level. Further, the full Hamiltonian Ĥ and
density matrix ρ̂ are involved, not just the diagonal elements.
The total conserved energy of the quantum system is the operator
trace E = Tr(Ĥρ̂) and its quantum-classical limit is given by the
corresponding classical trace

E(t) = TrHρ =
∫

H(Γ)ρ(Γ, t)dΓ, (57)

where the integral is over the 2 f -dimensional phase space. Here,
both H(Γ) and ρ(Γ, t) are 2× 2 matrices of the corresponding
classical-limit phase space functions. Writing this out in terms
of the matrix elements in the diabatic representation gives

E(t) = Tr(H11ρ11)+Tr(H22ρ22)+2Tr(V α). (58)

The total energy consists of three terms:

E = E1 +E2 +Ecoh. (59)

In terms of the trajectory representation, this becomes

E =
1
N

N

∑
j=1

σ jH11(Γ j)+(1−σ j)H22(Γ j)+2V (Γ j)α j, (60)

The diagonal energy is the sum Ediag =E1+E2. It should be noted
that the total energy E is not equal to Ediag. This diagonal energy
is the quantity that FSSH rigorously conserves at the individual
trajectory level by momentum rescaling. When coherence α j 6= 0
and the coupling V (Γ j) is present, a third coherence energy term
Ecoh is required to balance the energy budget14.

The QTSH method conserves this energy on average at the level
of the consistency of the surface hopping approach:

Ė(t) =
1
N

N

∑
j=1

Ė j(t) = 0, (61)

where

Ė j(t) = ṗ j ·
p j

m
+ σ̇ j

[
U1(q j)−U2(q j)

]
+ q̇ j ·

[
σ j∇U1(q j)+(1−σ j)∇U2(q j)+2∇V (q j)α j

]
+2V (q j)α̇ j.

(62)

From the equations of motion for the density matrix elements we
have

σ̇ j ' ȧ11, j =−
2V (q j)

h̄
β j (63)

α̇ j = ω(q j)β j =
1
h̄

[
U1(q j)−U2(q j)

]
β j, (64)

where we have used ω = (H11−H22)/h̄ and have indicated that
the first equation holds on average.

For the phase space variables (q j,p j) we have the quantum tra-
jectory equation of motion

q̇ j =
p j

m
(65)

ṗ j =−
[
σ j∇U1(q j)+(1−σ j)∇U2(q j)

]
−2∇V (q j)α j. (66)

By eliminating q̇ j, ṗ j, σ̇ j and α̇ j from the equation for Ė j, we
can show the time derivative of each term vanishes on average,
Ė j ' 0, so that

Ė(t) = 0. (67)

It should be noted that this energy conservation, which holds
rigorously if σ j(t) evolves continuously, is not strictly obeyed at
the individual trajectory level when a stochastic algorithm is em-
ployed to propagate σ j. A sudden “hop” of σ j(t) = 0 to σ j(t) = 1,
for instance, leads to an instantaneous change in the Hamiltonian
H j = σ jH11 +(1−σ j)H22 from H11 to H22. However, on average,
σ j obeys the smooth differential equation, and so averaged over
the ensemble the energy conservation of the state re-emerges.
The assumptions required for this quantum energy conservation
are equivalent to the consistency assumption underlying the sur-
face hopping method itself.

The same approach can be followed to show the average energy
conservation in the adiabatic representation13,14.

3 Numerical Simulations and Discussion

We now examine the peformance of the FSSH and QTSH methods
in detail for a number of very simple systems and compare with
exact quantum wavepacket calculations. We look at the time-
dependent populations of the coupled electronic states and per-
form an audit of the energy budget for the QTSH and quantum
simulations. In addition, we visualize the evolving trajectory en-
sembles in phase space and compare with the Wigner transforms
of the exact quantum wavepackets.

The coupled state quantum dynamics calculations are per-
formed in the diabatic representation using the Fourier transform-
based method of Kosloff47, and transformed to the adiabatic rep-
resentation when appropriate. The Wigner transforms of the re-
sulting wavepackets are computed numerically as well. For a
wavepacket ψn(q, t) on the (diabatic or adiabatic) state n at time t,
the corresponding Wigner transform representing the phase space
density ρnn(q, p, t) is given by

ρnn(q, p, t) =
1

π h̄

∫
∞

−∞

ψn(q− y, t)ψ∗(q+ y, t)e2ipy/h̄dy. (68)

We treat a number of two state coupled systems, whose Hamil-
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tonians can be written in the diabatic representation as:

Ĥ =

(
T̂ +U1(q) V (q)

V (q) T̂ +U2(q)

)
, (69)

where T̂ = p̂2

2m is the nuclear kinetic energy operator, U1(q) and
U2(q) are state 1 and 2 diabatic potential, respectively, and V (q) is
the off-diagonal diabatic potential coupling. For all cases we take
the mass to be m = 2000, the same as in Tully’s original paper1.
(We use atomic units throughout.) The initial wavepacket is taken
to be a minimum uncertainty Gaussian localized at an initial po-
sition qo with an initial mean momentum po = h̄k. The position
and momentum widths are ∆q = 1.0 and ∆p = 0.5, respectively.
For the QTSH and FSSH simulations ensembles of N = 10000 are
employed. These are sampled randomly from the initial Gaussian
Wigner function in phase space. When visualizing the ensembles,
typically every other point is shown to avoid congestion on the
figure. Each calculation shown is easily done interactively in a
few minutes or less on a laptop.

3.1 Two state constant coupling model

We start with a very simple model of nuclear wavepacket dynam-
ics on two constant parallel diabatic states with constant cou-
pling. For this system, the potential matrix elements are all con-
stant, with values U1 = 0, U2 = 0.01, and V = 0.01.

In this simple system, the exact nuclear wavepacket and elec-
tronic population dynamics decouple, leading to trivial behav-
ior with a free particle nuclear wavepacket evolving and spread-
ing while the electronic state populations undergoes Rabi oscilla-
tions22. The system nonetheless provides a nontrivial test for the
surface hopping methods and illustrates some important features
of each.

In Fig. 1 we show the population dynamics of the two state
constant coupling model for a wavepacket starting initially on the
lower state 1 with mean position qo = −6 and mean momentum
po = h̄k = 10. The results of QTSH (blue dashed lines) and FSSH
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Fig. 1 Lower state 1 population vs. time for the two state constant cou-
pling model. The system starts initially in the lower state 1 with momen-
tum h̄k = 10. QTSH (blue dashed) and FSSH (red dashed) results are
compared with exact quantum calculations (black solid).

(red dashed lines) are presented, along with the exact quantum
results (black solid lines). All the curves are essentially identical,
and exhibit the periodic Rabi oscillation of probability out of and
into the initially populated state 1. The quantum electronic com-
ponent of the dynamics is captured essentially exactly by both
surface hopping methods.

In Fig. 2 we present an accounting of the energy budget for the
system (see Eqs. (59) and (60)). Here, we compare the QTSH
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Fig. 2 The energy budget for the QTSH simulation shown in Fig. 1.
The diagonal (red), coherence (green), and total (blue) energies for the
trajectory ensemble are compared with the exact quantum counterparts
(black).

results with corresponding exact quantum results. We show the
diagonal Ediag (red) and coherence Ecoh (green) contributions, as
well as the total E = Ediag +Ecoh. These are compared with the
corresponding partitioning of the exact quantum energy (black).
The agreement here is nearly quantitative. The Figure clearly
shows that it is the total energy TrĤρ̂ that is conserved by the
evolution. The classical diagonal energy, consisting of the kinetic
plus diagonal potential energies, is not a conserved quantity.

In Figs. 3–5 we investigate in more detail the nature of the
dynamics and its relation to the energy budget from a phase space
perspective. In Fig. 3 we show snapshots of the evolving state 1
a)-d) and state 2 e)-h) wavepackets in the Wigner representation.
The times of each snapshot are indicated in the caption. Fig. 3
a) shows the initial minimum uncertainty wavepacket in phase
space on state 1. The state 2 population is zero initially, and so
the Wigner function vanishes in Fig. 3 e). Subsequent frames
shows the expected motion: free particle translation and phase
space shearing, accompanied by Rabi oscillation of the population
between states. In particular, the wavepacket has a conserved
mean momentum and kinetic energy throughout its evolution.

In Fig. 4 we reproduce the Wigner function snapshots for this
system, but now with the evolving QTSH ensemble overlaid for
comparison (black dots). The agreement between the QTSH and
quantum states of this system are nearly quantitative. For this
system, the coupling V is a constant, and so the quantum force
appearing in Eq. (29) vanishes. The dynamics of the ensemble
between hops is thus simply free classical motion. When a hop
does occur, QTSH does not implement a classical energy conserv-
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Fig. 3 Phase space contour plots of the evolving state 1 (a-d) and state
2(e-h) Wigner functions, for the two state constant coupling model with
initial state as in Fig. 1. a,e) t = 0. b,f) t = 600. c,g) t = 1500. d,g) t = 2400.

ing momentum rescaling, and so the trajectory continues with its
conserved classical momentum.

In Fig. 5 we compare the exact Wigner function snapshots on
state 1 and 2 with the corresponding FSSH ensembles. Clear de-
viations between the classical and quantum densities is observed,
which can be understood by considering the effect of energy con-
serving momentum rescaling. Examining first the oscillating den-
sity transferred to and from the upper state 2 in Fig. 5 e)–h),
we see that the classical density is displaced in both momentum
and position from the exact Wigner function. This error is due
to the imposition of classical energy conservation, which causes
a negative momentum jump that displaces the ensemble to lower
momenta and also delays its dynamical progress in configuration
space. The lower state FSSH density is also shifted from the exact
quantity. Here, the momentum distribution is accurate, with the
error being in the coordinate q. This is the result of the slowed
progress of the trajectories when on the upper surface due to the
momentum rescaling of FSSH.

For the initial momentum h̄k = 10 example shown above, most
of the trajectories in the surface hopping ensembles have suffi-
cient kinetic energy to undergo a FSSH-allowed classical energy
conserving hop to the upper surface. This leads to the agree-
ment of both QTSH and FSSH with the exact quantum population
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Fig. 4 Contour plots of evolving Wigner functions reproduced from Fig. 3
with corresponding QTSH ensembles overlaid (black points).

transfer, shown in Fig. 1.
In Fig. 6 we consider a lower energy state, with h̄k = 6. The

time dependent population of the initially populated lower state
from the QTSH and FSSH simulations are compared with the ex-
act quantum results. The electronic and nuclear dynamics for this
system decouple, and so the behavior should be identical to that
in Fig. 1. The QTSH population dynamics are still in excellent
agreement with the quantum behavior, while FSSH strongly un-
derestimates the extent of transfer. For h̄k = 6, a majority of the
trajectories are classically forbidden to undergo a hop under the
FSSH algorithm. Nonetheless, the quantum nature of the process
allows transfer to occur just as extensively as for the h̄k = 10 case.

This system can be treated in the adiabatic representation as
well. The constant potential matrix is diagonalized by a transfor-
mation that is coordinate independent, leading to zero nonadia-
batic coupling and the (trivial) dynamics of free particle motion
on the initially populated adiabatic state.

3.2 Two state Gaussian coupling model
We consider next a system that is still very simple but where
electronic-nuclear coupling is present. In particular, we take the
same two state constant potential system treated above, with
U1 = 0 and U2 = 0.01, but add coordinate dependence to the off
diagonal diabatic potential coupling: V (q) = cexp(−dq2), where
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Fig. 5 Contour plots of evolving Wigner functions reproduced from Fig. 3
with corresponding FSSH ensembles overlaid (black points).
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Fig. 6 Lower state population vs. time for the two state constant coupling
model. The system starts initially on the lower state 1 with momentum
h̄k = 6. QTSH (blue dashed) and FSSH (red dashed) results are com-
pared with exact quantum calculations (black solid.

c = 0.01 and d = 0.25,
In Fig. 7 we show the lower state 1 population for the two

state Gaussian coupling model, with initial mean position qo =−6
and initial mean momentum h̄k = 10. The QTSH (blue dashed)
and FSSH (red dashed) results are compared with exact quantum
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Fig. 7 Lower state population vs. time for the two state Gaussian cou-
pling model. System starts initially in the lower state 1 with momentum
h̄k = 10. QTSH (blue dashed) and FSSH (red dashed) results are com-
pared with exact quantum calculations (black solid).

calculations (black solid). Good qualitative agreement is seen be-
tween the surface hopping and exact quantum results, with QTSH
being in better quantitative agreement. The coupling between the
diabatic states is localized around q = 0, leading to population
transfer only in that region.

In Fig. 8 we show the energy audit of this system with ini-
tial momentum h̄k = 10. The classical diagonal (red), coherence
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Fig. 8 The energy budget for the QTSH simulation of the two state Gaus-
sian coupling model shown in Fig. 7. The diagonal (red), coherence
(green), and total (blue) energies for the trajectory ensemble are com-
pared with the exact quantum counterparts (black).

(green), and total (blue) energies for the trajectory ensemble are
compared with the exact quantum counterparts (black). The Fig-
ure highlights the strong positive nonconservation of the classi-
cal energy during the transition as probability is transferred to
the upper surface without a decrease in momentum, and the cor-
respondingly large negative coherence energy, which add to a
strictly conserved total E = TrĤρ̂. The QTSH method faithfully
captures these effects.

Figs. 9–11 show the comparisons of the evolving QTSH and
FSSH trajectory ensembles with the exact Wigner functions for
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wavepackets on state 1 and 2 for the two state Gaussian coupling
model, in the same manner as Figs. 3–5 above. Again, the QTSH
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Fig. 9 Phase space contour plots of the evolving state 1 (a-d) and state
2 (e,f) Wigner functions, for the two state Gaussian coupling model with
initial state as in Fig. 7. a) t = 0. b,e) t = 600. c,f) t = 1500. g) t = 2400.
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Fig. 10 Contour plots of evolving Wigner functions reproduced from
Fig. 9 with corresponding QTSH ensembles overlaid (black points).

method faithfully captures the nonclassical nature of the quan-
tum transfer between the states, while FSSH shows a distinct dis-
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Fig. 11 Contour plots of evolving Wigner functions reproduced from
Fig. 9 with corresponding FSSH ensembles overlaid (black points).

placement of the ensemble from the Wigner function due to the
incorporation of momentum jumps (see, in particular Fig. 11 f)).

In Fig. 12 we show the time-dependent population of lower
diabatic state 1 for the two state Gaussian coupling model with a
less energetic initial momentum of h̄k = 6. The QTSH (blue) and
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Fig. 12 Lower diabatic state 1 population vs. time for the two state Gaus-
sian coupling model. The system starts initially on the lower state 1 with
momentum h̄k = 6. QTSH (blue dashed) and FSSH (red dashed) results
are compared with exact quantum calculations (black solid.

FSSH (red) results are compared with the exact quantum results
(black). QTSH again captures the transient population transfer to
and from state 2 nearly quantitatively. As in the example shown
above for the constant coupling model with initial momentum
h̄k = 6, most of the initial trajectories are classically forbidden to
transfer to the upper diabatic state, and so most FSSH hops are
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frustrated. The result of this is a large error in the state population
dynamics.

The previous two examples are both characterized by large
nonclassical effects in the coupled electronic-nuclear dynamics.
In addition, the calculations are performed in the diabatic rep-
resentation rather than the more commonly-employed adiabatic
representation. The QTSH formalism has the advantage of being
well-defined in the diabatic and adiabatic (or any arbitrary) rep-
resentation, while the FSSH momentum rescaling relies on the
nonadiabatic coupling vector to define the direction of the mo-
mentum jumps in multidimensional systems.

3.3 Constant plus linear Gaussian coupling model

In the next example, we consider a model of a classically allowed
energy relaxation process, and perform surface hopping calcu-
lations in the adiabatic representation. The model is a coupled
constant and linear potential, with Gaussian diabatic coupling. In
particular, we take U1 = 0, U2(q) = −aq, and V (q) = cexp(−dq2),
with a = 0.005, c = 0.001, and d = 0.25. The adiabatic potentials
are determined by computing the coordinate dependent eigenval-
ues of the potential matrix, while the nonadiabatic coupling d(q)
is found from the coordinate dependence of the electronic adi-
abatic states (see Ref.13 for more details). The relatively small
diabatic coupling leads to a correspondingly strong nonadiabatic
coupling.

In Fig. 13 we show population transfer in the adiabatic repre-
sentation for the constant plus linear Gaussian coupling model.
The system starts initially on the upper adiabatic surface with a
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Fig. 13 Lower adiabatic state populations vs. time for the constant plus
linear potential Gaussian coupling model. Simulations are performed in
the adiabatic representation. System starts initially in the upper adia-
batic state with momentum h̄k = 6. QTSH (blue dashed) and FSSH (red
dashed) results are compared with exact quantum calculations (black
solid.

mean position of qo =−4,0 and mean momentum of po = h̄k = 5.
As the wavepacket passes through the avoided crossing around
q = 0 approximately 80 percent of the population is transferred
to the lower surface. This energy relaxation process is classically
allowed, and both surface hopping methods agree well with the
exact quantum results, with FSSH being in essentially quantita-

tive agreement.
The energy budget for the time evolution of the h̄k = 5 initial

state is shown in Fig. 14. This example shows less contribution
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Fig. 14 The energy budget in the adiabatic representation for the QTSH
simulation of the constant plus linear potential Gaussian coupling model
shown in Fig. 13. The diagonal (red), coherence (green), and total (blue)
energies for the trajectory ensemble are compared with the exact quan-
tum counterparts (black).

from the coherence energy than in the previous cases, but the ef-
fect is still visible. Here, the diagonal energy exhibits a negative
change during the nonadiabatic transition. This corresponds to a
decrease in the potential energy with the nonadiabatic transition,
and the negative sign suggests that this downward hop should
not be compensated for by a positive momentum jump. QTSH
correctly captures his aspect of the dynamics, and the total en-
ergy is conserved well without the intervention of any momentum
rescaling.

In Figs. 15–17 we again give a comparison of the evolving
QTSH and FSSH trajectory ensembles with the exact Wigner func-
tions. Here, the ensembles and the exact Wigner functions
are displayed in the adiabatic representation. Accurate quantum-
classical correspondence between the exact wavepackets in the
Wigner representation and the trajectory swarms is achieved for
both the QTSH and FSSH approaches in this more classical pro-
cess.

4 Conclusions
In this paper, we have presented a detailed investigation of the
population transfer, energetics, and phase space dynamics of the
Fewest Switches Surface Hopping (FSSH) and Quantum Trajec-
tory Surface Hopping (QTSH) methods for simulating molecular
dynamics with electronic transitions. Comparisons were made
between these trajectory ensemble-based approaches and exact
quantum calculations for a number of simple model problems.

Nonadiabatic dynamics of molecular systems is an important
physical process that arises in many practical applications. The
topic is also of fundamental interest, as it challenges theory to un-
derstand deeply the correspondence principle and the semiclassi-
cal limit of quantum mechanics. Successful practical methods re-
sult from finding an amenable cohabitation of quantum mechani-
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Fig. 15 Phase space contour plots of the Wigner functions of the evolving
adiabatic upper (a-d) and lower (e-h) states for the constant plus linear
potential Gaussiancoupling model with initial state as in Fig. 13. a,e)
t = 0, b,f) t = 500, c,g) t = 750, and d,g) t = 1250.

cal and classical descriptions of nature within the same theoretical
framework. The dynamics of coupled electronic-nuclear motion
in molecules spans both sides of the quantum-classical border.

The two state constant and Gaussian coupling models treated
above highlight clearly the role of nonclassical dynamics and en-
ergetics in coupled electronic-nuclear motion. Here, electronic
coherence and off-diagonal coupling work together to play an es-
sential role in the overall energy conservation, allowing the diag-
onal (classical) part of the system to effectively ignore energetic
constraints while undergoing its dynamics. The highly classical
framework of FSSH leads to its failure for processes in this non-
classical regime. On the other hand, the QTSH method treats
energy conservation in a fundamentally different manner via the
quantum forces coupling electronic and nuclear dynamics derived
from the semiclassical limit of the quantum Liouville equation.
The QTSH results for these systems are in essentially quantita-
tive agreement with the exact quantum calculations, showing the
ability of the quantum trajectory-based surface hopping approach
to go beyond the classical limit to capture nonclassical effects.

For the energy relaxation of the constant plus linear Gaussian
coupling model, the dynamics are more classical, exhibiting en-
ergetically allowed downward hops and a small (but nonzero)
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Fig. 16 Contour plots of evolving Wigner functions reproduced from
Fig. 15 with corresponding QTSH ensembles overlaid (black points).

role played by the coherence contribution to the total energy. For
this example, both QTSH and FSSH are in close agreement with
the exact quantum results. In this more classical case, the phys-
ically motivated FSSH algorithm becomes essentially equivalent
to the QTSH method. We have shown in previous work on more
complicated systems that FSSH can be more accurate than QTSH
in some cases13. For QTSH, the energetic boundary conditions
that are contained automatically in FSSH must emerge through
an interplay between the quantum forces and the coherence of
the ensemble. The QTSH method is an approximate independent
trajectory limit of CSH, and so suffers from the same problems
of overcoherence that FSSH has. Apparently, the energy con-
straints resulting from the frustrated hops that FSSH incorporates
“by hand” help to counteract the shortcomings in the treatment
of the collective nature of coherence and energetics suffered by
independent trajectory surface hopping methods in general.

Both QTSH and FSSH have their respective realms of prefer-
ence in practical applications, the former being better for pro-
cesses where nonclassical effect dominate and the latter where
the complexity of the system breaks down approximations in in-
dependent ensemble methods in a way that can be repaired by
strict classical energy accounting. From a fundamental concep-
tual perspective, these differences inspire further work on this
fascinating problem at the quantum-classical border.
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Fig. 17 Contour plots of evolving Wigner functions reproduced from
Fig. 15 with corresponding FSSH ensembles overlaid (black points).
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