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Water Impact Statement

New technologies create the opportunity to control the sewer system as an extension of the treatment 
plant. By dynamically controlling water in existing collection system infrastructure, flow management and 
treatment can benefit system performance while reducing potential adverse impacts (flooding, sediment 
accumulation) across the system. We present an open-source control algorithm for combined sewers and 
show how benefits at the treatment plant do not always have to come with major drawbacks for the 
operation of the collection system.
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A new generation of smart and connected stormwater and sewer systems is being enabled by
emerging wireless technologies and data algorithms. Stormwater and combined sewer systems
can be autonomously controlled (gates, valves, pumps) to allocate storage and adapt to changing
inputs. As a result, there is an opportunity to begin viewing the collection system as an extension
of the Water Resource Recovery Facility (WRRF), whereby flows in the collection system are
dynamically controlled to benefit downstream treatment. The dynamic control of collection system
storage will allow peak flows to be minimized and solid loads to the plant to be tuned in response
to real-time WRRF states as they relate to treatment operation and performance. To that end, this
paper presents a formulation of a real-time load-balancing algorithm to control distributed storage
assets in the collection system, with objectives of improving flow and water quality dynamics
at inflow to a treatment plant. We illustrate that this load-balancing approach can successfully
attenuate wet-weather peaks and minimize dry-weather oscillations. The parameterization of the
control algorithm is assessed in the context of competing objectives at the downstream WRRF and
broader collection system (e.g. sediment loads, peak flows, flooding, and solids accumulation in
the sewer system). By applying this control algorithm and analysis to an established case study,
we identify a range of parameter values that provide most desirable performance across a number
of system-wide objectives. Specifically, we discover a band of desirable performance, which not
only improves inflow into the WRRF, but simultaneously reduces flooding and sedimentation in
the collection system.

1 Introduction
New technologies and data algorithms show promise of enabling
a new generation of smart and connected stormwater and sewer
systems. These systems process distributed sensor data to predict
flows, levels, and other relevant states to control valves, gates,
and pumps. This enables entire collection systems to be adapted
to changing storms and inputs in real-time, promising to reduce
flooding and improve water quality by making more effective use
and achieving high performance out of existing infrastructure.
Most studies evaluating real-time control technologies have fo-
cused on water quantity objectives, in particular the reduction of
overflows and flooding. Comparatively little emphasis has been
placed on the role of smart stormwater systems in controlling wa-
ter quality. While not regulated explicitly, controlling water qual-
ity within the collection system stands to reduce effluent loads
at WRRFs by improving treatment operations, which should ulti-
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mately lead to improved water quality in receiving waters.
In the case of combined sewer systems, the same pipes are used

to convey stormwater and wastewater. Water Resource Recovery
Facilities (WRRFs), also known as wastewater treatment plants
(WWTPs), receive these combined flows. This challenges treat-
ment efficiency due to fluctuations in flows and pollutant loads
during storm events. Given the advent of smart stormwater sys-
tems, there is an opportunity to begin viewing the collection sys-
tem as a tool for assisting the treatment plant by providing de-
sirable inflows. By dynamically controlling flows in these com-
bined sewer systems, peak flows to the plant can be minimized,
while solids loads to the plant, for example, can be controlled
in response to real-time WRRF states, such as nutrient loading
or treatment capacity. In this paper, we evaluate the potential
benefits of such an approach by investigating how the collection
system can be controlled methodically in a real-time and coordi-
nated approach to shape inflows and loads going to a receiving
WRRF.

The specific contributions of this paper are:

• The formulation of a real-time load-balancing algorithm to
control distributed storage assets in the collection system, to
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improve wet-weather flows and water quality at a receiving
point, and

• An evaluation of this algorithm under simulated conditions,
with an analysis of trade-offs arising during the balancing of
flows and total suspended solids (TSS) going to a WRRF.

We also provide a fully open-sourced implementation of the al-
gorithm, with all code, model of the study, and results shared to
promote transparency, reproducibility, and broader adoption.

1.1 Background

1.1.1 Water quality and combined sewer systems

Combined sewers integrate stormwater and wastewater flows
into the same pipe network, which is connected to the down-
stream WRRF. Thus, the WRRF often experiences abrupt wet-
weather impulses on top of more regular dry-weather wastew-
ater inflows. WRRF treatment processes are sensitive to sudden
changes in influent dynamics, as these can adversely affect treat-
ment efficacy1. For instance, peak flows received at WRRFs can
cause washout of settled solids and microorganisms present in
preliminary, primary, and secondary treatment units2. Beyond
wet-weather dynamics, variations in pollutant loads (mass of pol-
lutant per time) received by the WRRF can be driven by seasonal
and diurnal wastewater generation patterns, and other factors1,
further challenging efficiency of WRRF treatment processes2,3.
One of the most notable and variable pollutant loads includes
particulates, such as total suspended solids (TSS). Highly variable
TSS inflows can drastically affect treatment performance, either
due to lack of treatment capacity or the time required to adjust
to inflow variability2. It is not surprising, as such, that many
research efforts have been dedicated to investigating WRRF re-
siliency under highly variable loads4.

An ideal WRRF influent is one of constant flow and pollutant
loads5. However, this is not trivial to achieve in the real world,
even with the construction of a large equalization basin at the
inlet of the WRRF6, particularly with large and/or flashy storm
events. These large storage structures receive inflow and pump
it out at regulated rates so as to not overwhelm the WRRF1,3,7.
Equalization basins often require extensive footprints (not to
mention capital investments), which does not make them a vi-
able option for many communities. In lieu of the construction
of expensive storage assets at the inlet of the WRRF, we con-
tend that there is an opportunity to look further upstream, by
evaluating the feasibility of using storage capacity that already
exists in the sewer network as a means of equalizing inflows to
the WRRF. As already demonstrated, control of the collection sys-
tem can be achieved by controlling already existing assets, such
as storage basins, in-line storage dams, gates, valves, and pump
stations8–12.

Control of the collection system for broader water quality ben-
efits, especially at the WRRF, poses a number of new challenges.
It is critical to examine not only the potential of creating close-
to-steady-state influent conditions (similar to an equalization
basin)2, but also to evaluate the impacts that these control ac-
tions have on the conveyance and performance of the combined

sewer system itself. For instance, the control of upstream com-
bined sewer storage to achieve downstream objectives should not
place the storage assets at greater risk of overflowing and local
flooding. Further, the storage of combined sewer flows within
sewer assets could promote the settling of solids across the col-
lection system2,13, a challenge for which many upstream assets
are often not prepared. In particular, upstream assets are not tra-
ditionally designed to accumulate solids, which can require sig-
nificant effort to resuspend, flush, or remove, and often have no
on-site mechanism for solids removal, handling, or treatment. As
such, any local benefits of real-time control must consider the
system in which it is being deployed and weigh against potential
drawbacks, which is a core motivation of this paper.

1.1.2 Benefits of real-time control

Given the recent ubiquity of sensors and connected technologies,
the real-time control of urban stormwater systems has witnessed
a surge in studies and adoption14,15. The idea of autonomously
controlled stormwater systems is not necessarily very recent it-
self; indeed, real-time control for sewer systems has been inves-
tigated for some time11,16–19. Many of these important studies
have laid the groundwork for today’s ideas — especially for the
control of flooding and overflows — and it is arguably the emer-
gence of readily-available and cost-effective technologies that is
fueling efforts to deploy and study smart stormwater systems.
Presently, a number of operational systems and test beds ex-
ist, including model predictive control (MPC) implementations
in Spain20–22 and Denmark23, as well as notable market-based
approaches in the USA24. The control of separated stormwater
systems has also been evaluated, including the deployment of
new open-source technologies that can be used to retrofit existing
stormwater sites with internet-connected valves25,26. These and
other studies highlight the potential of real-time control to reduce
flooding and overflows. However, much more research is needed
to close knowledge gaps underpinning scalable and reliable con-
trol algorithms.

Despite progress on real-time flow-based monitoring and con-
trol, only a few studies have investigated the benefits of real-
time control on water quality. Studies of individual stormwater
basins have shown that TSS can be captured in retention basins by
strategically controlling retention time using a valve27–29. Simi-
lar results have been obtained for dissolved pollutants30 and bac-
teria31. While highly promising, existing studies have focused
on site-scale benefits and were not carried out in the scope of
system-scale analysis, which leaves much to be discovered with
real-time water quality control of entire systems. As a first step
toward a bigger goal, we address this knowledge gap in this paper
by formulating a control methodology that coordinates an entire
network of storage assets to achieve desired downstream TSS ob-
jectives.

1.1.3 Existing control methodologies

A number of system-level control methodologies have risen to
prominence for the real-time control of stormwater systems. One
of the most studied involves MPC, a mathematical approach
grounded in dynamical systems theory10,32–37. MPC approxi-
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mates the flows in a collection system using linearized dynamical
equations, which often take the form of mass-balance reservoirs.
It has shown great potential to reduce overflows and flooding in
combined sewer systems33,34,36,37. However, given that the ap-
proach assumes linear dynamics both for flows and water quality
— which is a considerable simplification of nonlinear water qual-
ity dynamics — this approach has been applied to the control of
water quality in a limited capacity33. Further, there has still been
little focus on the influence of weighting between water quantity
and quality objectives.

An alternative to MPC is provided in the form of market-based
control methods24. These approaches treat storage assets in a
system (e.g., basins, pipes) as buyers and sellers of a commod-
ity (e.g., pipe or storage capacity). In these formulations, agents
trade the commodity as part of a market, where the most stressed
assets are allowed to release water via “purchases” of capacity. An
appealing aspect of this approach is its lack of reliance on explicit
system dynamics for the determination of control actions. Rather
it only requires measurements of system states (e.g., water level,
flow, pollutant concentration). While this does not allow it to be
analytically studied like MPC, it does allow for easier implemen-
tation and decentralized application. A market-based approach
can be viewed as an extension of the “Equal Filling Degree” ap-
proach38–42, which seeks to balance the filling degree, defined as
the actual stored volume relative to the maximum storage volume
in a storage structure, among all storage assets in a collection sys-
tem. This is done at each time step by triggering control actions
that increase (or decrease) the stored volume in a particular as-
set if it is below (or above) the average filling degree among all
assets. Borsányi et al. 38 extended and compared Equal Filling
to include a downstream structure with a capacity related to the
WRRF. The control of all other structures was inversely related
to the filling degree of this downstream asset. For example, if the
filling degree of this downstream asset increases, the upstream as-
sets decrease their releases to the downstream. Other approaches,
such as dynamical systems, neural network-based, and reinforce-
ment learning-based controls have also been proposed as inter-
mediate complexity alternatives to MPC and market approaches,
showing good potential to remedy flooding and overflows43–45.

Given the general emphasis of these methods on controlling
flows and flooding, it is unclear — regardless of actual control
methodology — what water quality benefits can be achieved with
them when applied with real-time control at the scale of the col-
lection system. Integrating water quality optimization into exist-
ing real-time flow control approaches requires significant compu-
tational overhead, especially when considering the need to for-
mulate, linearize, and analyze dynamics with approaches such
as MPC. We contend that before exploring more complex control
implementations, a more general analysis of the trade-offs and
benefits of controlling system-level water quality is warranted.
To that end, we introduce a control technique — coined Load
Balancing — of relatively low complexity but of high flexibility
to simulate a broad range of conditions focused on controlling
drainage systems for water quality. We formulate the technique
in a model-free context that allows us to specify flow and water
quality objectives by tuning a small number of intuitive parame-

ters. By evaluating the range of trade-offs that exist when both
water flows and water quality are controlled, this study provides
an assessment of real-time control benefits that can be expanded
in the future using more complex control formulations.

2 Methods
We present a load balancing control methodology built around
a set of core parameters, the analysis of which will provide in-
sight into upstream and downstream trade-offs when controlling
a system in real-time. The control algorithm is evaluated on an es-
tablished case study46, based on a real world-inspired combined
sewer system.

2.1 Load balancing control algorithm

Consider a collection system with n total network storage assets
(e.g., tanks, in-line storage facilities) distributed into a set of con-
trollable assets, IC, and a set of uncontrollable assets IU . At time
step t, each asset i is described by a vector of states of interest

Si(t) =


S1

i (t)
...

Sd
i (t)

 ,
where the d elements of the vector include relevant states that de-
scribe the asset (e.g. water level, outflows, TSS concentration).
Each asset also has a corresponding setpoint vector S∗i (t), which
describes the desired states of the asset (e.g. overflow conditions,
maximum desired flows, desired loads). The state vector for each
asset is user-specified and includes those states that are most rel-
evant to any given application. In simple applications, one may
only seek to control water levels (e.g. flooding), but in more com-
plex scenarios one can expand the state vectors to include water
quality or other factors.

Some assets may be considered more critical in the system than
others. For example, operators may want to release water sooner
or avoid overflows at one location more than others due to spe-
cific preferences or regulations. To capture this user preference,
we introduce the system importance factor αi for each asset and
state

αi =


α1

i
...

αd
i

 .
This captures a relative weight of one asset’s state over another
in the system — with a higher number reflecting relatively larger
importance in the system. For controllable assets (i ∈ IC), the
importance of each asset is also extended to include an instan-
taneous component. For example, a storage tank that is close to
capacity or overflowing, should be considered briefly more impor-
tant than those that are not full, so as to minimize overflows or
flooding. To capture this notion, we introduce an instantaneous,
or short-term, importance for each asset and state

γi(t) =


γ1

i (t)
...

γd
i (t)

 , γ
1
i (t) =

eρS1
i (t)−1

eρ −1
.
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This exponential factor is computed element-wise for each time
step and state within the state vector Si and can be tuned to reflect
user preferences. Given the state of the asset, the instantaneous
importance weight ρ can be tuned to reflect how stressed an asset
is at any given point in time. By analogy, ρ could encapsulate the
comfort level of an operator (e.g., release proportional to water
level vs. prioritize an asset only if it is close to full). For exam-
ple, if storage capacity is used as an indicator of importance, with
ρ = 1 the instantaneous importance of the asset increases nearly
linearly with water level (Figure 1). With ρ = 100 the asset would
be considered important only if it is close to capacity. If asset i is
uncontrollable (i ∈ IU ), its importance is not discounted in this
state-dependent manner because, regardless of state, uncontrol-
lable assets will passively release flows (thus γi = 1). Finally, the
overall importance βi(t) is calculated by simply multiplying the
system importance with the instantaneous importance of each as-
set:

βi(t) = αi� γi(t),

where � indicates the Hadamard, or entrywise, product between
αi and γi(t) (that is β 1

i (t) =α1
i γ1

i (t), etc). At any point in time, this
overall importance factor is used to determine how much water
is released from each controllable asset. This is accomplished
by computing the importance-weighted average, which compares
the state of each asset to its desired setpoint

C̄(t) =
1
n

n

∑
i=1

βi(t)> (Si(t)−S∗i (t)) .

Note that this C̄, the importance-weighted average, includes all
n assets, both controllable and uncontrollable. At each time step
t, the set of controllable assets that will release water, J ⊆ IC,
is determined as those whose importance-weighted deviation is
greater than the average; that is,

J =
{

j : β j(t) ·
(
S j(t)−S∗j (t)

)
> C̄(t)

}
.

Assets below this average (e.g., storage tanks with available ca-
pacity) do not release flows. Furthermore, the amount of water
released from each of these assets in set J is computed as a rela-
tive allotment factor R j(t) for asset j. This relative allotment fac-
tor is defined as the importance-weighted deviation normalized
within set J; that is,

R j(t) =
β j(t)>

(
S j(t)−S∗j (t)

)
−C̄(t)

∑k∈J
(
βk(t)>

(
Sk(t)−S∗k(t)

)
−C̄(t)

) ,
where ∑k∈J is the summation of the importance-weighted devi-
ation over all assets that will release water (i.e., each asset k in
set J). This allotment factor R j simply assigns the fraction of a
downstream asset’s capacity that will be allotted to an upstream
asset j and is then multiplied by available downstream capacity
to determine how much to release from each upstream storage
asset.

This procedure is summarized in Algorithm 1.

Algorithm 1 Load balancing control

Inputs: Si (states), S∗i (setpoints), αi (system importances), ρ

(instantaneous importance weight), IC (controlled assets), IU
(uncontrolled assets)

1: for t ∈ T do
2: for i ∈ (IC ∪ IU ) do
3: if i ∈ IC then
4: γi(t)← eρSi(t)−1

eρ−1
5: else
6: γi(t)← 1
7: βi(t)← αi� γi(t)
8: C̄(t)← 1

n ∑
n
i=1 βi(t)>

(
Si(t)−S∗i (t)

)
9: if i ∈ IC and βi(t)>

(
Si(t)−S∗i (t)

)
> C̄(t) then

10: J← J∪{i}
11: for j ∈ J do

12: R j(t)←
β j(t)>(S j(t)−S∗j (t))−C̄(t)

∑k∈J(βk(t)>(Sk(t)−S∗k (t))−C̄(t))

2.2 Case study
2.2.1 Scenario and implementation

All code for implementation of the above algorithm is provided
open-source in a public web repository (https://github.
com/stroutm/LBCsewer). The algorithm is applied to Sce-
nario epsilon of the Open-Storm.org pystorms Python pack-
age (open-storm.org/pystorms)46. This package uses
PySWMM47, a Python wrapper for the popular U.S. Environmental
Protection Agency Stormwater Management Model (SWMM), to
run and dynamically control a sewer model throughout a simu-
lation. In PySWMM’s step-by-step execution, specified states (e.g.,
depths, inflows, pollutant concentrations) are collected, calcula-
tions for control actions can be performed in Python, and control
asset settings (e.g., gate positions) are set before the next simula-
tion step is run.

The case study used for this paper is Scenario epsilon of the
pystorms package46. It represents a combined sewer network
with a subcatchment area of 67 km2 (26 mi2) and eleven in-line
storage assets with controllable orifices (Figure 2). This scenario
was selected due to network topology (i.e., storage assets in series
and parallel) and multiple objectives: regulation of flow and TSS
load at the network outlet (WRRF inlet) and the need to reduce
flooding at each of the upstream storage assets. The collection
system receives rainfall runoff, as well as steady, dry-weather in-
puts to reflect wastewater diurnal patterns (Figure S1). More in-
formation regarding this network can be found in the pystorms
package documentation (open-storm.org/pystorms)46.

There is one downstream WRRF (node 1 in the network)
(IU = {1}), which receives flows from the entire upstream net-
work. Applying the control procedure described above, for this
WRRF we are interested in flow (q) and TSS load (tss) inflow
states:

S1(t) =

[
Sq

1(t)
Stss

1 (t)

]
, S∗1(t) =

[
Sq∗

1 (t)
Stss∗

1 (t)

]
, α1 =

[
α

q
1

αtss
1

]
.

The flow and TSS load states are normalized to the dry-weather
flows in the system. The goal is to maintain all controlled inflows
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Fig. 1 Graphical representation of control procedure. Valves are controlled to release water from controlled assets, relative to an allotment factor that
is assigned to each controlled asset. The instantaneous importance weight ρ can be tuned to determine when water is released from each asset.

Fig. 2 System subcatchments and network topology of the case study collection system. Numbered, circular nodes in network topology represent
upstream storage assets; relative size of circles indicate the diameter of the in-line conduit. Relative areas of the rectangles represent subcatchment
areas that directly contribute to the corresponding storage asset. System physical dimensions are provided in Table S1.

(volume per time) or loads (pollutant mass per time) (both wet
and dry) at the WRRF below the average dry-weather flow. This is
an aggressive strategy that may not be realizable, but it presents
an upper bound on performance. Striving for dry-weather in-
flows during wet-weather conditions should results in benefits
compared to the baseline.

The collection system also contains eleven controllable in-line
storage assets (IC = {2, ...,12}). Each storage asset is a conveyance
pipe, whose outlet is controlled through a valve or inflatable dam.
When closed, the water level in the pipe rises and the available in-

line storage capacity is used to keep flow from going downstream.
The state for each of these assets is the water level, which is nor-
malized to the maximum water depth in each controlled pipe.
The setpoint for these assets is set to zero

Si(t) =
[
Sh

i (t)
]
, S∗i (t) =

[
Sh∗

i (t)
]
=
[
0
]

to reflect the desire to empty the pipes and not keep water in the
system, if possible. The case study considers each of these in-line
storage assets as equally important within the system (the system
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importance for each asset i ∈ IC is αi =
[
1
]
).

The load balancing control algorithm provides the proportion
of downstream capacity to be allocated to each controllable up-
stream storage asset j via the relative allotment factor R j. To
translate this factor into control decisions (e.g., gate positions),
the flow to be released from each upstream asset is determined
as a balance between the downstream objective setpoints, Sq∗

1
and Stss∗

1 , weighted by the system importance values, α
q
1 and

αtss
1 . In this study, since α

q
1 and αtss

1 are the weights assigned
to the downstream states, larger values of α

q
1 and αtss

1 indi-
cate higher importance for these downstream objectives relative
to upstream. Note that for implementation with water quality-
based control, measurements representative of average TSS con-
centrations in each upstream storage asset would be required
to ensure that recommended TSS loads are released. The gate
position is then calculated from the desired flow at each up-
stream asset via orifice and weir equations48. More details for
this implementation can be found in the public web repository
(https://github.com/stroutm/LBCsewer).

2.2.2 System water quality model

In the SWMM model, TSS is modeled using built-in pollutant
model structures49. The build-up of TSS on subcatchments fol-
lows a power structure:

B = min
(

C1,C2 · tC3
)
,

where B is the pollutant build-up (mass per unit area), C1 is
the maximum possible build-up (mass per unit area) (16 kg/ha,
14.275 lbm/ac), C2 is the build-up rate (mass per unit area per
day) (7 kg/ha/day, 6.245 lbm/ac/day), t is the antecedent dry
period length (t−C3), and C3 is the exponent. The subcatchment
wash-off function is exponential:

W = E1 ·qE2 ·B,

where W is the pollutant wash-off (mass per area per hour), E1 is
the wash-off coefficient (0.5 1/mm, 12.7 1/in), E2 is the wash-off
exponent (1.5), q is the runoff rate (in/h), and B is the pollutant
remaining build-up (mass per area). TSS model structure was
taken from49,50 and parameter values from50. TSS removal at
each upstream asset considered both settling, as a function of
depth in the storage pipe, and resuspension, as a function of flow
through the storage pipe:

R = 1− exp
(
− vs ·∆t

DEPT H

)
− exp

(
− a ·b

FLOW

)
,

where R denotes the percent removal of TSS concentration, vs is
the settling velocity (determined by aggregating the solids classes
in Gaborit et al. 50 to yield 0.00419 ft/s), DT is the time step,
DEPT H is the water depth in the storage pipe, a is a ratio be-
tween velocity and TSS resuspension to result in 100% resuspen-
sion for the maximum velocity through the storage pipe, b is a
linear approximation of the ratio between flow and velocity com-
puted for each upstream in-line storage asset, and FLOW is the
flow through the storage pipe. The assumption of a single settling
velocity for all particles is a simplification made here to narrow

the focus of this study. Note that this is a simplification of the
representation of the underlying physical system; it merely serves
as a simulation choice. The control approach described above re-
quires only measured states from the system, not an entire model.
Thus, whether implemented on a more complex simulation model
or on a real-world system with sensors, this control algorithm
would remain the same in structure and implementation.

2.2.3 Performance evaluation

The performance of the control algorithm was evaluated across an
entire year, using the precipitation time series in Supplementary
Information (Figure S2). The dynamic behavior was evaluated
by plotting the time series of controlled and uncontrolled scenar-
ios. The aggregate performance was also summarized across the
whole year, using a set of performance metrics while varying the
control parameters (ρ, α

q
1 , and αtss

1 ). To reflect real world im-
plementation, control decisions were constrained to a 15 minute
window.

Specifically, six performance metrics are evaluated: WRRF flow
and TSS load variance during dry-weather periods, comparison
of controlled and uncontrolled WRRF flow and TSS load peaks,
TSS mass remaining in the sewer network, and flooding volume.
Dry-weather periods are defined by the precipitation data as be-
ing a full 24 hours after the last occurrence of rain to simplify
evaluation. During these periods, flow variance is computed by

1
T

T

∑
t=1

(
Sq

1(t)− S̄q
1

)2
,

where Sq
1(t) is the WRRF flow at time step t, S̄q

1 is the average
WRRF flow over the dry-weather periods, and T is the total length
of the dry-weather periods51. The WRRF TSS load variance is
computed similarly. Note that these are computed with respect
to absolute, not normalized, flow and TSS load values and so
scale will be indicative of respective units. This dry-weather vari-
ance provides a measure of deviation from the mean dry-weather
flow or TSS load, indicating how “flat” inflow dynamics are, that
is a variance of zero indicates perfect steady-state inflow condi-
tions during dry-weather periods, which is beneficial for steady-
state operation at the WRRF. To focus on wet-weather peaks, peak
height is defined to be the amount of flow or TSS load above the
maximum dry-weather flow or TSS load, respectively. While this
would ideally be evaluated on a storm-specific basis, to automate
this calculation the peak reduction is averaged across each week
of the simulation period. Peak reduction is then computed as a
normalized factor

1−peakcontrolled/peakuncontrolled.

The TSS mass remaining in the sewer network is computed as
the difference between the cumulative TSS load received by the
WRRF, normalized against the uncontrolled cumulative TSS load:

TSS remaining =
∑

T
t=1 TSS loaduncontrolled(t)−∑

T
t=1 TSS loadcontrolled(t)

∑
T
t=1 TSS loaduncontrolled(t)

.

The volume of flooding is calculated in the flow routing statis-
tics by the simulation of the SWMM input file via PySWMM. This
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flooding volume is then expressed as a fraction of total volume
that passes through the network.

3 Results and discussion
This section is split into two parts. First, a number of specific
control scenarios are carried out to evaluate the dynamic perfor-
mance of the algorithm under a set of objectives and constant con-
trol parameters. The Scenario Analysis section is split into three
scenarios, which compare parameterization of the algorithm to
(1) attenuate flows, (2) attenuate TSS loads, and (3) jointly bal-
ance flows and TSS loads at the WRRF. Second, a parameteri-
zation analysis is carried out to determine how specific weight
combinations of the control parameters affect the performance of
the controlled system.

3.1 Scenario analysis

3.1.1 Scenario 1: Flow attenuation

The control algorithm is first implemented with the sole objective
of attenuating downstream flows, wherein the upstream storage
assets are guided to hold water to reduce the peaks of dry- and
wet-weather events. The normalized downstream flow setpoint
Sq∗

1 is 2.5, which was found to correspond with the maximum
dry-weather flow. As such, the control algorithm tries to keep
flow as close as possible to a steady-state without exceeding the
maximum dry-weather flow. In this scenario α

q
1 = 10.0, meaning

that the priority of the downstream flow objective is weighted
as being 10 times more important than the desire to keep each
upstream storage asset empty. For this scenario, αtss

1 = 0.0 since
there is no explicit consideration of water quality load dynamics.

Since the assets are controlled, water levels in the upstream
storage assets are higher than the uncontrolled case, both during
dry- and wet-weather events (Figure 3a). This scenario is able
to considerably attenuate wet-weather flow peaks and equalize
dry-weather oscillations when compared to the uncontrolled case
(Figure 3d). Furthermore, since flows are reduced, the TSS load
exiting the combined sewer system is attenuated as well (Figure
3g). During the first two months of the simulation period, the
wet-weather flow peaks at the outlet of the combined sewer sys-
tem are reduced by an average of 94.17%, while wet-weather
TSS load peaks are reduced by an average of 104.47% (con-
trolled/uncontrolled peaks of 0.0583 and -0.0447, respectively;
Table 1a). The dry-weather flow and TSS load oscillations are
reduced as well; this can be quantified by flow and TSS load vari-
ance during dry-weather days, which is reduced by 78.7% and
78.8%, respectively, from the uncontrolled case (Table 1a).

As expected, the control of storage assets reduces peak inflows
at the WRRF (Figure 3d). The control not only attenuates peak
storm flows, but also reduces the variability of the diurnal flows
(Table 1a). This is due to the utilization of upstream assets, which
now strategically hold back water. Overall, the storage assets with
relatively higher water levels during storms are generally those
with higher contributing and upstream subcatchment areas (in
particular, subcatchments 2, 4, 10). Since these assets are more
stressed during storms, the control algorithm holds water in the
remaining assets to balance storage capacity across the system.

While this scenario does not explicitly control for TSS going to
the WRRF, TSS loads are impacted positively because some TSS
is held back in the upstream assets. As such, it can be expected
that TSS peaks could be reduced even further by weighting TSS
load, which is done in the next scenario.

3.1.2 Scenario 2: TSS load attenuation

Compared to the prior scenario, the second scenario parameter-
izes the control algorithm to focus solely on attenuating TSS load
dynamics (αtss

1 = 10.0), without placing any weight on the flow
dynamics (α

q
1 = 0.0). The normalized downstream TSS load set-

point Stss∗
1 is 2.5, to correspond with the maximum dry-weather

TSS load. As would be expected, this formulation achieves simi-
lar TSS load attenuation relative to the formulation that focuses
on flow only. Compared to the uncontrolled case, TSS load
peaks that result from wet-weather events are reduced by an
average of 103.61% over the first two months of the study pe-
riod (controlled/uncontrolled peaks of -0.0361; Figure 3h and
Table 1b.) Since water is held to regulate solids, flows are natu-
rally attenuated as well, with average reductions of 78.24% (con-
trolled/uncontrolled peaks of 0.2176; Figure 3e and Table 1b).
This is a lesser degree of flow attenuation compared to Scenario
1 since, during wet-weather, TSS concentration is generally di-
luted by stormwater.

This scenario exhibits improved equalization of the dry-
weather TSS load oscillations. During the first two months of
the simulation period, there is a 93.2% reduction in TSS load
variance, as well as an 86.8% reduction in flow variance, during
dry-weather days (Figures 3e and 3h, and Table 1b). Thus, there
is improved TSS performance compared to the first scenario.

While both scenarios perform better than the uncontrolled
case, there is naturally a trade-off when comparing one to the
other. Placing more emphasis on regulating TSS load peaks ad-
versely impacts flow peaks, and vice versa. The equalization of
TSS load is most notable during dry-weather, during which the
control assets are used to buffer daily TSS load oscillations into
the WRRF.

3.1.3 Scenario 3: Balancing flow and TSS load

A natural extension of the prior two scenarios is to combine the
flow and TSS attenuation objectives. This is accomplished by giv-
ing the two system importances equal values (α

q
1 = αtss

1 = 5.0). In
this formulation, wet-weather flow and TSS load peaks are atten-
uated with an average peak reduction of 86.80% and 104.13%,
respectively, during the first two months of the simulation period
(controlled/uncontrolled peaks of 0.1320 and -0.0413, respec-
tively; Figures 3f and 3i and Table 1c). Further, similar to the
above two scenarios, dry-weather diurnal wastewater oscillations
are reduced; there is a reduction of 87.9% and 87.2% in flow
and TSS load variance during dry-weather days, respectively (Ta-
ble 1c). Overall, the equal weighing of flow and TSS objectives
provides a middle ground relative to the first two scenarios, and
perhaps a realistic strategy for real-world implementation. These
weights do not have to be equal values of α

q
1 and αtss

1 , however;
this is explored in the next section.
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Fig. 3 Comparison of three control scenarios during the first two months of the simulation period. Scenario 1 places an emphasis on flow control,
Scenario 2 emphasizes TSS regulation, and Scenario 3 balances both flow and water quality. The top row shows the upstream normalized depth
behind the controlled storage assets in the network. The flow and TSS load at the network outlet are shown in the second and third rows. Dashed and
solid lines in (d)–(i) denote uncontrolled and controlled cases, respectively. Subfigures (a)–(c) only show results from the controlled case for clarity.

Table 1 Summary of results in Figure 3 for the first two months of the simulation period; a summary of results for the one-year period is included in
Figure 4. Negative values for ratio of peak flows indicate that, on average, wet-weather peaks were reduced to below the maximum dry-weather
levels. The scales of variances are indicative of their respective units.

(a) (b) (c)
Uncontrolled Flow Control TSS Control Flow and TSS Control

Attenuation Attenuation Attenuation
α

q
1 = 10.0 αtss

1 = 10.0 α
q
1 = 5.0, αtss

1 = 5.0
Ratio of Peak Flows
(con-
trolled/uncontrolled)

— 0.0583 0.2176 0.1320

Ratio of Peak TSS
Loads (con-
trolled/uncontrolled)

— -0.0447 -0.0361 -0.0413

Dry-weather Flow
Variance

364.7 77.7 48.0 44.2

Dry-weather TSS
Load Variance

9.37×10−2 1.99×10−2 6.37×10−3 1.20×10−2

3.2 Parameterization analysis
3.2.1 Balancing flow against TSS loads

To assess trade-off sensitivity of weighing flow and TSS load ob-
jectives, reduction in wet-weather peaks and dry-weather vari-

ance are averaged over a one-year simulation time period across
various combinations of α

q
1 and αtss

1 values (Figures 4a–4d).
These plots can be interpreted through the ratio of α

q
1 and αtss

1 ,
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which conveys how the relative magnitude of each parameter im-
pacts system-wide performance. Furthermore, the absolute value
of each parameter conveys how upstream assets are weighted
against those downstream: as α

q
1 and αtss

1 increase in magni-
tude, the downstream WRRF objectives are weighed more than
those of upstream assets (Figure 4a). In general, the trend for
wet-weather peak reduction and dry-weather variance reduction
for both flow and TSS load at the sewer network outlet is simi-
lar: larger system importance values result in better downstream
performance by way of greater peak reduction and damped dry-
weather oscillations. This is due to increased priority on main-
taining the downstream flow and/or TSS load below the given
thresholds as compared to the upstream objective of emptying
storage assets. This implies that, when only considering down-
stream objectives, control with larger system importance values
α

q
1 and αtss

1 will result in smoother, more constant sewer network
outflow and TSS load during both dry- and wet-weather periods
compared to an uncontrolled case.

The flow system importance value α
q
1 has more influence on

both flow and TSS load peak reduction than the TSS load sys-
tem importance value αtss

1 (Figures 4a–4b). Further, the TSS load
system importance αtss

1 has more impact than the flow system im-
portance α

q
1 on dampening the dry-weather TSS load oscillations

(Figure 4d).
While the coordinated control of upstream sewer storage assets

can be used to achieve flow and water quality objectives at the
network outlet, this control must be sensitive to its impacts on
other sewer dynamics that are important for the conveyance of
water and pollutants through the network. First, the reduction of
wet-weather flow and TSS load peaks at the combined sewer out-
let can result in over-utilization of in-line storage assets, meaning
that storage assets in the sewer will become fuller as capacity is
allocated to the downstream outlet, and ultimately increase risk
of network flooding. This is particularly pronounced during wet-
weather events, as large volumes of water rapidly enter the sewer
system as the contributing subcatchments drain. Thus, maintain-
ing strict feedback control over storage assets can result in unan-
ticipated flooding if upstream assets are used too liberally to hold
water. Examples of this can be seen in Figures 3a–3c during wet-
weather events. Figure 4e demonstrates how system importance
values, α

q
1 and αtss

1 , impact this over-utilization and the volume of
network flooding by the control algorithm. Both simulation and
intuition confirm that lower system importance values for down-
stream objectives result in a reduction in flooding volume; this is
particularly true for the flow system importance α

q
1 . As discussed

above, due to the settling and resuspension of TSS within the stor-
age assets and the dilution of TSS during wet-weather events, less
upstream storage capacity is required to attenuate TSS load peaks
when compared to flow peaks during wet-weather events. As a
result, even the moderately high values of αtss

1 considered here
result in minimal flooding volume when compared to α

q
1 values

of a similar magnitude.
A second effect of control on the system is the accumulation

of solids in the sewer system. Combined sewer flows have a rel-
atively high concentration of solids resulting from the wastewa-
ter flows; typical untreated municipal wastewater has a TSS con-

centration range of 100–400 mg/L1. As a result, the settling of
solids occurs due to increased and long-duration storage of com-
bined sewer flows behind sewer assets. In order to minimize the
magnitude of flow and/or TSS load peaks, stored flows must be
slowly released, resulting in low velocities from the storage assets
and minimal resuspension of settled solids in the sewer network.
This allows for settled solids to accumulate in the sewer network.
However, most sewers are not designed to manage these solids
in the conveyance network and must employ significant main-
tenance efforts to manually remove these solids or flush them
downstream2. Hence, control algorithms that operate or inform
combined sewer control actions should be designed with solids
accumulation as a key consideration. The impact of system impor-
tance parameters, α

q
1 and αtss

1 , on solids accumulation is shown
in Figure 4f.

When TSS load is more strongly weighted than flow (i.e., below
the 1:1 line), the sewer network retains less solids mass within
the storage assets; this is because flows are released based on the
stored TSS concentrations in order to maintain a TSS load thresh-
old downstream. At storage assets experiencing greater settling,
the suspended solids concentration will be lower, thus requiring
larger volumes to be released, resulting in resuspension. On the
other hand, high flow system importance values (α

q
1 ≥ 12.5) con-

sistently resulted in greater than 10% solids retention within the
upstream assets, regardless of the TSS load weight. This is likely
due to the requirement for flows to be gradually released from the
upstream storage assets to achieve flow attenuation and equal-
ization at the downstream network outlet. However, in achieving
this, flows are released slowly, resulting in little solids resuspen-
sion and thus solids accumulation in the upstream storage assets.

3.2.2 Willingness to hold water

The formulation of the control algorithm presented here also in-
cludes the instantaneous importance weight ρ, which determines
the willingness of an asset to hold water as levels approach stor-
age capacity. For flow and TSS peak reduction, and dry-weather
flow and TSS load variance, a lower ρ value is associated with
better performance (Figure 5, where α

q
1 = αtss

1 = 5.0). However,
for most of these first four metrics, the range of performance does
not vary greatly with the values of ρ considered here, compared
with the range of performance values in Figure 4. The exception
to this is dry-weather flow variance. In this case, lower ρ values
perform considerably better than higher ρ values (Figures 5 and
S3). This is because storage assets fill up with diurnal inflows, and
suddenly release flows when at capacity. Lower ρ values buffer
this variability by more steadily releasing water and reducing im-
pulses to the WRRF.

The impact of the instantaneous importance weight ρ is also as-
sessed for network flooding and solids accumulation (Figure 5).
While all ρ values considered here produce little flooding, flood-
ing volume is inversely proportional to ρ value. To account for
this behavior with respect to flooding, note that upstream storage
assets with higher normalized depths, and thus higher risk for
flooding, will release more water than those that are not prone to
overflowing at that particular time. Further, ρ has little impact on
the solids load remaining in the sewer network, though there is
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(a) (b)

(c) (d)

(e) (f)

Fig. 4 Impact of system importance values on performance metrics. Red, blue, and green boxes indicate selected parameter scenarios highlighted in
Figure 3 for Scenarios 1, 2, 3, respectively. In all figures, a darker color indicates better performance in that particular metric. In Subfigures a–b,
negative values for ratio of peak flows indicate that, on average, wet-weather peaks were reduced to below the maximum dry-weather levels.

minimal improvement in resuspension with higher ρ values (Fig-
ure 5).

3.3 Towards implementation

A natural extension from these findings would be the separa-
tion and customization of control schemes for various system
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Fig. 5 Impact of instantaneous importance weight ρ on performance metrics. The right graph demonstrates the relationship between state Si and
instantaneous importance γi for each ρ value for reference. In all scales, a darker color indicates better performance in that particular metric.

states and inputs. The results suggest a benefit in adjusting con-
trol regimes or parameterizations between wet- and dry-weather
periods (Figure 3 and Table 1). Flow attenuation (Scenario
1) resulted in higher flow peak reduction during wet-weather
when compared to TSS load attenuation (Scenario 2) (94.17%
vs. 78.24%, respectively); however, dry-weather flow and TSS
load oscillations were not dampened as successfully via flow at-
tenuation (Scenario 1) as with TSS load attenuation (Scenario
2) (flow oscillation damped: 78.7% vs. 86.8% and TSS load os-
cillation damped: 78.8% vs. 93.2%). Thus, in this case, flow-
driven control during wet-weather events and TSS load-driven
control during dry-weather periods would be a viable strategy
towards improving sewer operation. Indeed, having weather-
dependent regimes is a common strategy in more manual sewer
operations35,37,52. As such, implementations should also look be-
yond one-size-fits-all parameterizations in the case of real-time
control.

Further, while the system importance parameter assignment
has been demonstrated to achieve improved downstream perfor-
mance (e.g., peak reduction and oscillation dampening), beyond
a certain level of weighting, downstream performance plateaus
(α

q
1 ,α

tss
1 ≥ 10, Figures 4a–4d). What should determine system im-

portance parameter values is a balance with upstream or system-
wide performance indicators (e.g., flooding, solids accumula-
tion). In this study, there is an upper limit on downstream system
importance values to minimize network flooding (α

q
1 ,α

tss
1 ≤ 10;

Figure 4e). One approach to mitigate network flooding would
be to build in a heuristic rule for releasing stored water when an
asset becomes too full. However, maintaining a connection with
actual implementation, this strategy would need to ensure that
the emergency release of stored water from upstream assets does
not result in too great a surge of flows at downstream storage
assets or the WRRF inlet.

More interestingly, perhaps, is the presence of a band of higher

performance for solids accumulation across system importance
values (for system importance values such that α

q
1 +αtss

1 ≈ 10;
Figure 4f). To explain this, note that settling and resuspension
are dictated by water depth and velocity of releases. For lower
system importance values, there is shallow upstream storage and
thus less distance for solids to settle, and hence more settling.
However, the shallow storage also results in lower velocity when
water is released, and thus less resuspension. On the other hand,
high system importance values result in large quantities of wa-
ter stored behind upstream assets, requiring small releases due to
the strict control against downstream peaks — and thus minimal
resuspension of settled solids. However, between these ranges is
an area of minimal solids accumulation. This indicates not only
a trade-off between high and low system importance values with
down- and upstream performance, but a desirable range of values
for the control algorithm parameters. In this case study, the most
desirable performance across all considered system-wide metrics
would be achieved with system importance values that satisfy
α

q
1 +αtss

1 ≈ 10 and ρ = 1 (Figures 4 and 5). These parameters
may be case study-specific, and parameter values for other sys-
tems may likely vary based on context and system priorities; this
will be explored in future work so that transferability of results
can be considered. More generally, this illustrates the need for
optimization and parameter analysis in formulating the control
problem and determining priority weights in the objective func-
tion. Similar conclusions can also be found in other studies that
highlight the impact of parameterization on control performance
and stability53,54. Overall, this lends support to trying out a sim-
pler control technique first — such as the one presented in this
paper — before embarking on the application of more complex
algorithms. A first order, simpler analysis may shed insights on
performance bands unique to a given system, which may provide
insight to tuning more complex algorithms.

Complex and interesting dynamics may be missed if control al-
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gorithm formulations fail to account for a breadth of upstream
and downstream performance measures. Namely, optimization of
one parameter may often come at the cost of another. Indeed, the
concern of sewer solids accumulation has been explored in other
works13. While control algorithms for water systems are typi-
cally formulated, tested, and refined in simulation, connection
and communication with real-world system operators is crucial to
the feasibility of real-time control implementation. For instance,
attempting to maintain downstream flow and/or TSS load strictly
below a threshold may be too restrictive given available storage
in sewer assets during high-stress times (e.g., large and/or flashy
storms) and would thus require over-utilization of storage assets
insomuch as they exceed their storage capacity and increase the
risk of flooding in the network and may increase in-line mainte-
nance needs. This study explored this balance between upstream
and downstream objectives using parameters within the control
algorithm, namely system importance values α

q
1 and αtss

1 and in-
stantaneous importance weight ρ. The realizable values of these
parameters will ultimately not be governed solely by physical con-
straints, but also human preferences.

The results illustrated here demonstrate a need for further flex-
ibility to avoid or manage the accumulation of settled solids be-
hind control assets in the sewer network. Extending beyond
the approach discussed here, this flexibility can be incorporated
by introducing dewatering strategies or intentional scour release
events that occur after wet-weather events by releasing water
from upstream to downstream assets, thereby flushing the sys-
tem to encourage resuspension and conveyance of solids to the
downstream WRRF for treatment and management2,55.

4 Conclusion

In this study, we demonstrate the use of a control algorithm, flex-
ible to multiple water quantity and quality objectives, as well
as downstream and upstream objectives. Our parameterization
analysis is used to explore trade-offs among these goals. Our
findings highlight the importance of identifying a range of near-
optimal parameter values for control algorithms. Future work
should investigate how these regions translate to other algorithm
formulations. It is critical to note that what defines “optimal”
will be dependent on the system context, human preferences, and
trade-offs between multiple objectives. Overall, bands of near-
optimally may arise and string a balance between most objectives.
This however, should be evaluated on a case-by-case basis. In
lieu of one optimal point, this may present a range of aspirational
values to appeal to system operators. Sensitivity analyses and
decision maker preferences should be considered in the control
process as early as the formulation of the actual control problem
and objective function.
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