

Ash pretreatment of pine and biosolids produces biochars with enhanced capacity for organic micropollutant removal from surface water, wastewater, and stormwater

Journal:	Environmental Science: Water Research & Technology
Manuscript ID	EW-ART-09-2019-000862.R1
Article Type:	Paper

1	Ash pretreatment of pine and biosolids produces biochars with enhanced capacity for
2	organic micropollutant removal from surface water, wastewater, and stormwater
3	
4	Matthew J Bentley ^{a*} , R Scott Summers ^b
5	
6	A: University of Colorado Boulder
7	Environmental Engineering
8	4001 Discovery Drive – 607 UCB
9	Boulder, CO 80309, USA
10	matthew.bentley@colorado.edu
11	ORCID ID: 0000-0002-8580-7465
12	B: University of Colorado Boulder
13	Environmental Engineering
14	Boulder, CO 80309
15	r.summers@colorado.edu
16	
17	* Corresponding Author: matthew.bentley@colorado.edu
18	

19 Abstract:

An ash pretreatment process was developed and evaluated for improving sorption of 2,4-20 dichlorophenoxyacetic acid (2,4-D) and sulfamethoxazole (SMX) for pine and biosolids based 21 biochars. Pine and biosolids pellets were soaked in a dissolved ash solution and pyrolized at 800 22 °C. The sorption performance of untreated pine biochar, pine ash pretreated biochar, untreated 23 biosolids biochar, biosolids ash pretreated biochar, base pretreated pine biochar, and commercial 24 powdered activated carbon (PAC) was compared in deionized water, lake water, wastewater, and 25 stormwater for 2,4-D and SMX removal. Dose response curves were developed at 3-hour and 7-26 day contact times in continuously mixed batch tests. Ash pretreatment of pine yielded over an 27 28 order of magnitude increase in 2,4-D and SMX sorption compared to untreated pine biochar, making it competitive with PAC. Base pretreatment was the dominant improvement process of 29 ash pretreatment, and the improvement from ash pretreatment was linked to the precursor 30 feedstock inherent ash content. Adsorbent performance was strongly correlated with non-31 micropore (>2 nm) surface area. Background organic matter character significantly impacted 32 sorbent performance. Ash pretreatment of biochar increased organic micropollutant sorption and 33 is applicable in low-cost water treatment scenarios, such as stormwater and wastewater 34 treatment, as well as in low- and middle-income countries. 35

Water Impact Statement

Global chemical production, use, and environmental occurrence are rapidly increasing, 38 leading to both environmental and public health impacts. Biochar is a promising technology for 39 addressing organic chemical pollution in drinking water, stormwater, and wastewater in low-40 resource settings, but its performance is limited under typical production conditions. This study 41 evaluates a novel, low-resource biochar improvement method using ash pretreatment to improve 42 biochar performance by an order of magnitude, making it competitive with commercial activated 43 carbon. The ash pretreatment method described herein has potential to improve water quality and 44 public health in resource limited and financially constrained water treatment scenarios. 45

46 I. Introduction

Expansion of chemical production, use, and disposal increases human and environmental 47 exposure to anthropogenic organic micropollutants (OMPs) such as pesticides, pharmaceuticals, 48 and personal care products.¹⁻⁵ Adsorption with commercial activated carbon (AC) is a prevalent 49 technology for OMP removal from aqueous solutions, and it is often used to control OMPs in 50 drinking water (DW) and wastewater (WW) treatment.^{6–8} Because stormwater (SW) and WW 51 are primary sources of OMPs in surface waters, water resources protection at OMP discharge 52 sources is a key strategy for limiting public and environmental risks associated with OMPs.⁹⁻¹² 53 Unfortunately, in many low-cost water treatment scenarios such as WW, SW, small DW 54 systems, and low- and middle-income countries (LMICs), AC may be unavailable or too costly 55 to implement.^{13–15} 56

To address these limitations, use of biochar, a porous, carbonaceous material produced 57 through biomass pyrolysis, has been investigated. Biochar is a promising alternative adsorbent to 58 AC, as it is produced from waste biomass and maintains similar material and sorptive 59 60 characteristics at much lower cost and energy requirements.^{13,16,17} A wide range of feedstocks 61 have been used to produce biochars for OMP removal in low-cost water treatment scenarios.^{13,18,19} Some studies have focused on the application of biochar as a SW and tertiary 62 WW treatment technology for the removal of nutrients and OMPs; however, biochar often has a 63 significantly lower sorption capacity than AC, requiring larger adsorbers and more frequent 64 replacement in typical water treatment scenarios.^{16,17,20,21} Activation/improvement methods have 65 66 been developed to increase biochar's sorption capacity, but most methods are expensive or impractical for large-scale biochar production, thus undermining biochar's advantages.^{22,23} A 67 68 low-cost, practical method that increases biochar's adsorption performance would increase its

69 competitiveness with AC in water treatment scenarios, such as WW and urban SW treatment, as70 well as water treatment in LMICs.

Some biochar studies have suggested that inherent ash content in the precursor feedstock 71 can have significant positive or negative impacts on OMP sorption, depending on the biochars' 72 production conditions.^{16,24–26} In addition, the presence of calcium, as well as other alkali and 73 alkali-earth metals (AAEMs) present in biomass ash,^{27,28} have been shown to catalyze pore 74 development and alter surface area during pyrolysis of precursor feedstocks, as well as during 75 reactivation of ACs.^{29–33} The impact of feedstock-inherent ash content prior to pyrolysis on 76 biochar sorption of OMPs is not well understood.³³ This study seeks to address this gap by 77 evaluating the impact of a novel method, ash pretreatment, for improving biochar performance 78 on biochar physicochemical characteristics and OMP sorption for pine and biosolids biochars in 79 80 DW, WW, and SW treatment scenarios.

81 II. Materials and methods

82 A. Sorbent production

Pelletized pine (Confluence Energy, Kremmling, CO, USA) and dried WW biosolids 83 (Louisville and Jefferson County Metropolitan Sewer District, Louisville, KY, USA) were 84 selected as precursor feedstocks to span the range of typical biochar feedstock inherent ash 85 content and chemical composition.²⁸ These materials were pyrolyzed at 800 °C to produce 86 untreated pine biochar (PUB) and untreated biosolids biochar (BUB). After specific 87 88 pretreatments on the raw feedstocks, pine ash pretreated biochar (PAB), pine ash pH-matched biochar (PAMB), biosolids ash pretreated biochar (BAB), and biosolids ash pretreated biochar – 89 concentrated (BAB-C) were produced under the same pyrolytic conditions. These biochars were 90 91 compared to a commercially available bituminous coal-based granular activated carbon (Cabot

Norit 1240), which, when ground between 200 and 400 standard mesh sizes (35 – 75 micron), is
designated powdered activated carbon (PAC) herein.

To produce ash for ash pretreatment, pine and biosolids pellets were separately heated in a muffle furnace at 550 °C for six hours. Ash leachates were prepared by mixing 2 grams of ash in 1 liter of DI water for PAB and BAB and in 0.26 liters of DI water for BAB-C –

corresponding with the water absorption capacity of 200 grams of pelletized biosolids – with a 97 stir bar in water for 30 minutes. This mixture was filtered through a 1.2-micron glass microfiber 98 filter to remove remaining ash solids. These solutions were characterized by ICP-MS and the 99 results are listed in Table S1. Pine and biosolids pellets were then soaked in the corresponding 100 ash leachate at a 100:1 mass ratio of feedstock to dry ash for 12 hours. PAMB was prepared by 101 soaking pine pellets in a pH 11 NaOH solution, matching the pH of the pine ash leachate. The 102 pH of the biosolids ash leachate was 9. The soaked feedstocks were then dried at 110 °C 103 overnight. 104

The raw and pretreated pine and biosolids feedstocks were then placed in oxygen-limited covered crucibles in a muffle furnace for pyrolysis at 800 °C for two hours. After cooling, all adsorbents were ground with mortar and pestle, washed, wet-sieved with reverse osmosis water between a 200 and 400 standard mesh (35 and 75 micron), and dried to produce the powdered adsorbents used in batch tests.

B. Sorbent characterization

BET surface area and pore size distributions were determined from Quantachrome Autosorb 1 N₂ gas sorption results using the T-plot method, which separates surface area in micropores (<2 nm width) from that in non-micropores. The pH of the point of zero charge (pH_{PZC}) was determined using an indirect titration method.³⁴ C, H, and N content of biochars

115	were measured with a Perkin Elmer 2400 CHNS Analyzer. Ash content was calculated by
116	measuring the mass remaining after heating feedstocks and adsorbents at 550 °C for six hours
117	uncovered in a muffle furnace. Oxygen content was calculated as the mass percentage remaining
118	after considering C, H, N, and ash. Physical characterization results for the adsorbents are
119	provided in Table 2.
120	C. Sorbate selection and measurement
121	2,4-dichlorophenoxyacetic acid (2,4-D) and sulfamethoxazole (SMX) were used as target
122	OMPs because they are very weakly adsorbing compounds, yielding results that are conservative
123	relative to most other OMPs. ³⁵ The target initial concentrations of 2,4-D and SMX were 200
124	ng/L in all waters tested, corresponding to environmentally relevant concentrations. ^{36,37} Tritium
125	labeled 2,4-D and carbon-14 labeled SMX (American Radiolabeled Chemicals, Inc.) were
126	quantified using liquid scintillation counting (Beckman LS 5000); this method was used because
127	of the low cost of analysis, fast analysis time and low detection limit. Each sample vial included
128	4 mL of sample with 10 mL of Ultima Gold [™] scintillation cocktail. For all background matrices,
129	a calibration curve was developed with known concentrations of radiolabeled 2,4-D and SMX
130	ranging from 0 to 200 ng/L. The detection limit was 4 ng/L for 2,4-D and 30 ng/L for SMX,
131	corresponding to 98% removal and 85% removal for 2,4-D and SMX, respectively.
132	D. Waters

To evaluate the impact of background organic matter on 2,4-D and SMX sorption, batch experiments were conducted with four waters: deionized water (DI) phosphate buffered to pH 7.8, water with natural organic matter from Big Elk Meadows (BEM) alpine lake, secondarytreated wastewater (WW), and mixed snowmelt stormwater collected from a storm drain in Boulder, CO (SW). These four waters represent a wide range of background organic matter

character. pH was stable for all waters throughout the sorption process (<0.1 pH change). The
dissolved organic carbon (DOC), ultraviolet absorbance at 254 nm (UVA₂₅₄), and specific
ultraviolet absorbance (SUVA) values are shown in Table 1. BEM at DOC concentrations of 2,
4.5, and 8 mg/L was prepared from a concentrate. BEM at 2 and 8 mg/L was used to evaluate the
impact of initial background organic matter. All other BEM was diluted to 4.5 mg/L DOC as
listed in Table 1.

Water	DOC mg/L	DOC UVA ₂₅₄ mg/L cm ⁻¹		pН
DI	< 0.1	-	-	7.8
BEM	4.5	0.108	2.4	7.9
WW	6.7	0.113	1.7	7.6
SW	7.6	0.114	1.5	7.7

144 **Table 1** Background matrix characteristics

145

E. Batch experiments

Batch sorption experiments were conducted in duplicate 40 mL amber vials filled with 147 the target compound spiked water, to which biochars were dosed from biochar/DI water slurries 148 of 0.1, 1, 10, and 20 g/L concentrations using pipets to improve accuracy of biochar dosing at 149 low concentrations.¹⁶ The overall dose range, 0.1 to 5000 mg/L, was specified by the sorption 150 capacity. The dosed vials were immediately transferred to a 13 RPM rotary mixer for 3 hour and 151 7 day contact times before being filtered through a 1.2 micron glass microfiber filter and 152 analyzed by liquid scintillation counting. Fitting the batch data with standard isotherm models, 153 e.g., Freundlich or Langmuir, did not account for the adsorption competition by the background 154 organic matter, thus dose response curves were utilized.³⁸ The doses required to achieve 25% and 155 75% removal of 2,4-D and SMX were calculated by interpolation between the two closest points 156

157	on each dose response curve. Where 25% or 75% removal was not met due to the high sorbent
158	dose required, the dose required is indicated as greater than the maximum dose tested. The
159	overall average absolute difference between duplicates' percent removal was 2.7% (n=1,848).
160	An initial kinetic test at a single sorbent dose was performed for PAC, PAB, and PUB at
161	0.5-, 1-, 3-, 6-, 24-hour, 7-day, and 14-day contact times to establish an adequate contact time for
162	sorbent comparison. For the initial kinetic tests, adsorbent doses for PAC, PAB, and PUB were
163	selected to achieve the same ultimate removal at 14 days, corresponding to a dose of 2.5, 10, and
164	100 mg/L, respectively. 2,4-D and SMX removal in the kinetic test were then normalized to the
165	14-day removal in order to compare the kinetic performance of the materials. For 2,4-D and
166	SMX removal with biochar (PUB and PAB) and PAC, a 3-hour contact time was found to be
167	sufficient to differentiate and rank the kinetic performance of various sorbents, and the results
168	from 7-day (168 hr) contact time approach those of the 14-day test (Figure S1). Results reported,
169	unless otherwise specified, are for the 3-hour contact time, which captures the kinetic
170	performance of the adsorbents that would be relevant in powdered adsorbent applications, such
171	as in a DW or WW treatment plant. ¹⁶ Dose response curves were developed for all sorbents in DI
172	and all background matrices at 3-hour and 7-day contact times, and 2,4-D and SMX removals
173	were related to UVA_{254} removal in order to evaluate the predictive power of UVA_{254} for OMP
174	removal in DW, SW, and WW.

175 III. Results and discussion

176 A. Adsorbent characterization

The sorbent physical and chemical characteristics varied considerably based on precursor feedstock and applied pretreatments (Table 2). The pine feedstock (0.4% ash) and pine biochars had lower ash and higher carbon content than did the biosolids feedstock (20% ash) and 180 biosolids biochars. In addition, the BET surface area, micropore (< 2 nm width) surface area, and

181 micropore fraction were much higher for the pine biochars compared to the biosolids biochars,

182 suggesting that precursor feedstock is an essential consideration for biochar adsorption studies.¹⁶

183 The pine biochars had about half the BET and micropore surface areas compared to the PAC, but

a similar micropore surface area fraction ~80-90%.

Table 2 Physical characterization of adsorbents. Pine and biosolids raw ash content are

Material	С	C O H N Ash		BET Mi Surface Area Surf		pore e Area	Non-Micropore Surface Area		pHpzc		
	%	%	%	%	%	m²/g	m²/g	%	m²/g	%	1 120
Powdered Activated Carbon (PAC)	79	14	0.37	0.43	6.8	1080	850	79	230	21	9.7
Ash Pretreated Pine Biochar (PAB)	85	12	0.70	0.19	2.8	510	420	82	90	18	9.0
Pine-Ash pH-Matched Biochar (PAMB)	86	11	0.71	0.13	1.8	443	370	84	73	16	8.1
Untreated Pine Biochar (PUB)	90	6.9	0.67	0.22	1.7	424	380	90	44	10	9.0
Ash Pretreated Biosolids Biochar – Concentrated (BAB-C)	40	2.0	0.72	3.5	54	30	7	23	23	77	7.9
Untreated Biosolids Biochar (BUB)	38	5.7	0.71	3.1	53	46	19	41	27	59	7.4
Ash Pretreated Biosolids Biochar (BAB)	31	6.7	0.25	2.2	60	76	42	55	35	45	8.4

186 0.4% and 20% respectively.

187

Ash pretreatment increased the ash content of pine biochar by 50% and biosolids biochar by 2-10%, indicating that inorganic uptake is occurring through the pretreatment process.²⁷ The base pretreatment, however, had an insignificant effect on the ash content of pine. Both ash and base pretreatment raised the oxygen content and slightly lowered the carbon content of the pine biochars, indicating slightly higher hydrophilicity (by increasing the H:C ratio by 10%) and increased surface functional groups (by increasing O:C ratio by 90% and 70% respectively).¹⁶ Ash pretreatment did not change the pH_{PZC} of pine, but base pretreatment slightly lowered it.

195	While ash and base pretreatments increased the BET surface area of pine biochar by 20% and
196	5%, respectively, the percentage of micropores in PAB and PAMB decreased, indicating a shift
197	toward pores larger than 2 nm (non-micropore surface area). Ash and base pretreatment
198	increased non-micropore surface area by 105% and 66%, respectively. This is likely due the pre-
199	pyrolysis addition of base and metals, which have been shown to catalyze biomass
200	decomposition reactions ³⁹ and increase pore development and pore size of carbonaceous
201	adsorbents through intercalation ³⁹⁻⁴¹ and gasification reactions. ^{29,42}
202	Ash pretreatment of biosolids showed smaller relative changes in ash content, chemical
203	composition, surface area, and pore size distribution compared to pine biochars. For biosolids
204	biochars, it is likely that the high inherent ash content in the feedstock reduced the impact of ash
205	pretreatment, and the high amount of ash could be causing over-catalyzation of the material,
206	leading to the lower BET surface area observed for BAB-C. The surface area of BAB-C was
207	nearly all non-micropore (> 2nm) surface area, which is indicative of overcatalyzation. ³¹
208	B. Adsorbent performance
209	Dose response curves for 2,4-D removal at a contact time of 3-hours for all seven
210	sorbents in each background matrix (DI, BEM, WW, and SW) are presented in Figure 1. The
211	estimated doses required to achieve 25% and 75% percent removal of 2,4-D and SMX are listed
212	in Table 3. Results from the 7-day tests are shown in Table S2 and Figure S2 and exhibit the
213	same relative adsorption behavior as the 3-hour test results.

Table 3 Dose (mg/L) to achieve 25% and 75% removal of 2,4-D and SMX for all

Commonwed	Conhort	Ľ	DI	BI	BEM		WW		SW	
Compound	Sorbein	25%	75%	25%	75%	25%	75%	25%	75%	
	PAC	3.4	22	6.4	26	14	64	21	90	
	PAB	8.5	36	13	70	36	190	84	360	
	PAMB	22	81	34	110	73	320	130	480	
4-Γ	PUB	77	330	170	590	390	1600	1000	3300	
	BAB-C	160	690	310	1300	-	-	1400	4200	
	BUB	230	1200	550	1800	460	1800	2300	>5000	
	BAB	420	1500	510	2400	790	2800	2000	>5000	
	PAC	4.3	23	8.6	43	21	85	26	140	
	PAB	10	48	27	88	68	330	130	470	
	PAMB	31	90	60	150	120	440	230	840	
WX	PUB	95	450	440	940	880	2800	2100	>5000	
	BAB-C	330	1400	550	1300	-	-	2200	4800	
	BUB	440	1500	1000	2600	1000	4400	4100	>5000	
	BAB	660	2000	1500	>2300	1300	>4500	3352	>5000	

adsorbents in DI, BEM, WW, and SW after a 3-hour contact time.

Figure 1 Dose response curves in DI, BEM, WW, and SW for removal of 2,4-D with all
sorbents after a 3-hour contact time.

The same sorption capacity ranking of sorbents was evident in all four background 222 matrices. PAC outperformed all of the biochars, and the biochars were grouped in two 223 performance categories. The lower-performing biochars were the untreated pine biochar, PUB, 224 and all biosolids-based biochars, BUB, BAB, and BAB-C; these biochars required doses around 225 two orders of magnitude higher than PAC to equivalently remove 2,4-D and SMX. However, the 226 two higher-performing biochars, the ash pretreated pine, PAB, and the base pretreated pine, 227 PAMB, outperformed the other biochars by around an order of magnitude. Thus, these 228 pretreatment methods yielded biochars that are much more competitive with PAC for 2,4-D and 229 SMX removal. PAB was the highest performing biochar, requiring only 2 to 4 times the PAC 230

dose to achieve the same level of removal in all background matrices, while the PAMB requiredabout 4 to 5 times the PAC dose to achieve the same removal.

BAB-C exhibited higher performance than BUB and BAB in all background matrices 233 where it was tested, indicating the importance of concentration and water absorbing capacity of 234 the precursor feedstock in the ash pretreatment process. BAB was indistinguishable from BUB in 235 all background matrices, likely because the raw biosolids pellets were not able to absorb all of 236 the biosolids ash leachate, leading to observable precipitation of metals on the surface of the 237 biosolids and glassware during the drying process, where it was unable to catalyze pore 238 development in the material during pyrolysis. In addition, the lower pH(pH = 9) and lower 239 concentration of catalytic metals (Ca²⁺ excepted, Table S1) of the biosolids ash leachate should 240 lead to decreased decomposition/catalyzation of the material prior to and during pyrolysis. The 241 higher performance of the BAB-C was presumably because it was able to absorb all of the 242 concentrated biosolids ash leachate solution, thereby taking up all of the base and metals into the 243 material prior to pyrolysis.^{33,43} 244

The ash pretreatment of pine biochar yielded significant improvement in sorption 245 performance, while for biosolids the performance improvement was not as great nor as 246 consistent. It is hypothesized that pine exhibited a greater improvement during ash pretreatment 247 because of the 50% increase in biochar ash content, while the biosolids exhibited less 248 improvement because of the lower 2-10% increase in biochar ash content. Other studies have 249 250 shown ash content to have great influence during the pyrolysis process of biomass, and the interaction between inherent ash and additional ash added through ash pretreatment is likely the 251 cause of varied levels of improvement from the ash pretreatment process when comparing raw 252 pine and biosolids.^{33,44,45} 253

1.

254	To elucidate insights into the improved performance observed for ash pretreated pine, the
255	performance of PAB and PAMB were compared, since PAMB isolates the base pretreatment
256	effect originating from the high initial pH of the ash soaking solution (pH=11). Both PAB and
257	PAMB required significantly lower adsorbent doses when compared to PUB, suggesting the
258	importance of the base pretreatment component of the ash pretreatment process. Base addition
259	alone, PAMB, improved performance by 5 to 9 times compared to untreated pine, PUB, but the
260	pH-matched biochar was unable to account for all of the improvement observed through ash
261	pretreatment, PAB, which performed 8 to 19 times better than PUB. The positive impact of base
262	pretreatment on adsorbent performance is supported by other studies showing that base addition,
263	as a pretreatment, improved adsorption performance of biochars and activated carbons by
264	increasing surface area and pore size. ^{33,43,46–50} The results of this study suggest that base
265	pretreatment dominates improvement in performance for ash pretreated biochars.
266	Because base pretreatment cannot account for all of the improved performance observed
267	for PAB, another process – alkali and alkali-earth metal (AAEM) catalysis – is believed to
268	further increase the ash pretreated biochars' performance. AAEM presence and addition to raw
269	biomass prior to pyrolysis has been shown to influence biomass thermal degradation, and some
270	of the metals present at high concentrations in the ash leachates (Table S1) are catalytic in
271	pyrolysis processes. ^{32,33,41} Metal catalysis during pyrolysis has been shown to generate
272	micropores and expand the size of micropores through gasification and intercalation reactions,
273	which could explain the additional improvement in performance between PAB and PAMB. ^{33,41,43}
274	This hypothesis is supported by both the higher micropore (<2 nm) and non-micropore (>2nm)
275	surface area of PAB compared to PAMB (Table 2).

276

Figure 2 Dose required for 75% removal of 2,4-D for 3-hour contact time correlated with
non-micropore surface area in DI, BEM, WW, and SW for all six biochars and PAC (see Table
1).

281 C. Impact of adsorbent physicochemical properties

Correlations were developed between dose required for 75% removal of 2,4-D and BET 282 surface area, as well as the micropore and non-micropore fractions of the BET surface area 283 (Table 1), as shown in Figure S3. Non-micropore surface area was strongly correlated with 284 performance (adsorbent dose to 75% removal) in all background matrices, as shown in Figure 2, 285 286 while total BET and micropore surface area were not, which is similar to what others have reported.⁵¹ An increase in non-micropore surface area from about 25 m²/g to 200 m²/g yielded a 287 288 decrease in the dose required for 75% removal by nearly two orders of magnitude in all background matrices. Of all physicochemical factors measured in this study, only non-micropore 289 surface area could account for performance of both pine and biosolids biochars, PAC, and all 290 pretreatment methods. This result indicates that non-micropore surface area – as measured by the 291

T-plot method – could prove a valuable measure for screening biochars for use as powdered
adsorbents in water treatment scenarios. Future studies should evaluate the viability of nonmicropore surface area to predict performance across a wider range of biochar feedstocks and
OMPs.

Ash and base pretreatment caused primarily an increase in non-microporous surface area (Table 2) by 105% and 66% respectively, which best explains their improved performance. This increase in non-micropore surface area is likely due to base and AAEM catalysis of biomass, which have both been shown to widen micropores and increase mesoporosity, increasing the surface area that is accessible to organic micropollutants.^{32,33} Correlations between other physicochemical factors (chemical composition, H:C, O:C, pH_{PZC}, etc.) of the 7 adsorbents and performance were not significant.

Figure 3 Normalized dose required to achieve 75% removal (D-75%) of 2,4-D in BEM (TOC = 4.5 mg/L), WW (TOC = 6.7 mg/L, and SW (TOC = 7.6 mg/l) normalized to that in DI for all adsorbents. a) Values listed above bars denote dose, mg/L, required in DI. (* denotes maximum dose did not reach 75% removal, and corresponding bars are calculated using maximum dose tested) b) impact of DOC concentration in BEM (DOC = 2, 4.5, and 8 mg/L) and

309 DOC character between BEM, WW (DOC = 6.7 mg/L), and SW (DOC = 7.6 mg/L) on PAC,
310 PAB, and PUB.

311

312 D. Impact of the background matrix

The performance of all adsorbents was negatively impacted by the presence of dissolved 313 organic matter (DOM), as higher doses were required to achieve 25% and 75% removal in all 314 background matrices, increasing from DI to BEM, WW, and SW. This is shown in Figure 3a, 315 where the sorbent dose in each background matrix is normalized to that in DI. The ash 316 pretreatment process, PAB, while increasing the performance by an order of magnitude, did not 317 reduce the relative impact of background OM competition compared to untreated pine biochar, 318 PUB. Base pretreatment of pine, PAMB, however, did slightly reduce the relative impact of OM 319 competition. 320

The relative impact of the background matrix on OMP sorption was feedstock and 321 pretreatment dependent, indicating that adsorbent characteristics influence the magnitude of 322 competition between the target micropollutants and background DOM (Figure 3a). Of the 323 higher-performing adsorbents at the 3-hour contact time, PAC was least-impacted by the 324 325 background matrix, followed by PAMB, followed by PAB and PUB, which were impacted similarly. For these adsorbents, the dose required to achieve 75% removal in the background 326 matrix relative to the dose required in DI was 1-2x for BEM, 3-5x for WW, and 4-10x in SW. 327 328 The lower-performing biosolids biochars were impacted similarly by the background matrices, with BEM and WW performing similarly, and SW requiring around 6x the dose required in DI 329 water for 75% removal of 2,4-D and SMX. These results indicate that background matrix 330 impacts must be considered for adsorbents using conditions as similar to the treatment scenario 331

as possible, because the performance is dependent on the feedstock, production methods,background matrix, and contact time.

In some treated drinking waters, DOC concentration has been shown to be a good 334 predictor for adsorption of organic micropollutants.^{52,53} This was the case for PUB, PAB, and 335 PAC in BEM, a DOM representative of unimpacted drinking water sources, as shown in Figure 336 3b. The relative background matrix impact was independent of sorbent type in the DOC 337 concentration range 2 to 8 mg/L in BEM, shown by the correlation between DOC and 338 background matrix impact across the three adsorbents. However, the character of the WW and 339 SW background matrices negatively impacted the performance more than would be predicted by 340 the correlation developed for BEM. This indicates that the character of the background matrix is 341 more significant than the magnitude of the DOC across these background matrices. 342

343

344

346 matrices

Page 20 of 27

E. Kinetic performance of adsorbents

Understanding the kinetic performance of adsorbents is important for many practical water treatment scenarios, such as the application of powdered adsorbents (e.g., PAC), in nonplug flow reactors. PAC is often added as a slurry to control taste and odor or remove micropollutants during episodic events at water treatment plants, and adsorbent kinetics are important in these applications where contact time is limited and adsorption capacity is not exhausted.

The 2,4-D removal in 3-hour tests relative to removal in 7-day tests is shown in Figure 4. 355 PAC, while the highest performing adsorbent (Figure 1), shows the lowest relative removal in 3-356 hour tests, indicative of slower kinetics. Of the three higher performing pine biochars, PAB and 357 PUB displayed the fastest kinetics, achieving 40-50% of the 7-day removal in the first 3 hours, 358 compared to 25% for PAC. Base pretreatment, while improving capacity, reduced the relative 359 kinetics of the pine biochar to ~35%. This could be due to an increase in surface area without 360 increasing pore connectivity or mesopore surface area, which have been shown to increase rate 361 362 of micropollutant sorption.54,55

While biochars were more negatively impacted by background OM in WW and SW in 363 the 3-hour contact times, PAC was more negatively impacted in the 7-day sorption tests (Figure 364 S4). In the 7-day tests, the relative dose required for PAC was the highest, followed by PUB and 365 366 PAB, suggesting that the mechanism and/or extent of adsorbent fouling changes based on contact 367 time. 7-day contact times allow for both direct competition and pore blockage fouling 368 mechanisms, while 3-hour tests allow for primarily the direct competition fouling mechanism.⁵⁶ 369 These results suggest that the PUB and PAB exhibit higher direct competitive fouling, but 370 reduced pore blockage fouling compared to PAC in terms of ultimate removal.

 $F. UVA_{254}$ as a surrogate for micropollutant removal

In order to predict and track adsorbent performance in various water treatment scenarios, 372 UVA₂₅₄ has been studied as a potential surrogate for micropollutant removal.⁵⁷⁻⁵⁹ For 2,4-D and 373 SMX removal in BEM, WW, and SW, the UVA₂₅₄ removal was both biochar and background 374 matrix dependent, as shown in Figure S5. General trends between UVA₂₅₄ and micropollutant 375 376 removal are weak when considering all biochars and PAC together across background matrices (Figure S5a); however, removing the weakly adsorbing biosolids biochars and evaluating each 377 background matrix separately (Figure S5b) produced good correlations between UVA₂₅₄ and 378 micropollutant removal for the remaining four adsorbents (R²>0.8 for WW and SW, and R²>0.6 379 for BEM). In nearly all cases, the 2,4-D and SMX removal was at least 15 to 25% greater than 380 the UVA₂₅₄ removal, thus making UVA₂₅₄ a good conservative surrogate for 2,4-D and SMX 381 382 removal for PAC and pine biochars.

The biosolids biochars, compared to the pine biochars and PAC, removed less 2,4-D and SMX at a given UVA₂₅₄ removal, likely due to a lower surface area in pore ranges relevant for micropollutant sorption compared to the pine biochars and PAC. This finding supports the importance of feedstock selection in biochar water treatment applications.

387 Because each background matrix has different mixes of hydrophobic, hydrophilic, large, 388 and small DOM, correlations for one background matrix often can't be used to predict 389 performance in other background matrices. The strong UVA₂₅₄ correlations for all pine biochars 390 and PAC in a single background matrix (Figure S5b) suggest that once a relationship has been 391 developed for an adsorbent in a target background matrix, it can then be used to predict 392 micropollutant removal for long-term monitoring in DW and WW treatment plants as long as the 393 source water quality is reasonably consistent over time.

Page 22 of 27

394 G. Compound-specific differences

395	Across all biochars and all background matrices, 2,4-D was slightly more strongly sorbed
396	than SMX, and all impacts for 2,4-D from background matrices, biochar pretreatments, and
397	contact time are similarly represented in the removal of SMX. This is likely due to the
398	physicochemical similarities between 2,4-D and SMX. 2,4-D and SMX are similar in size and
399	should be able to access similar fractions of surface area on each adsorbent due to size exclusion
400	effects. ⁵¹ In addition, both 2,4-D and SMX are negatively charged at the target pH, so
401	electrostatic interactions should be similar for both compounds. Despite this, SMX was more
402	impacted by the presence of a background matrix than 2,4-D across all background matrices and
403	adsorbents, as shown in Figure S6a. This is most likely due to the lower log K_{ow} value for SMX,
404	which would make it more susceptible than 2,4-D to competition with background OM. There
405	was not a significant difference in the sorption kinetics of 2,4-D and SMX in the presence of a
406	background matrix, indicating that competition and fouling effects were not time-dependent
407	(Figure S6b). The level of improvement observed through ash and base pretreatment of pine for
408	2,4-D and SMX may not be the same for compounds with chemical characteristics
409	(hydrophobicity, functional groups, size, etc.) different than that of these two compounds. Future
410	work should assess performance differences across a wider suite of compound classes.
411	IV. Conclusions

This study shows that biochars can be produced that rival the efficacy of commercial activated carbon in powdered application scenarios, such as continuous flow stirred tank reactors, which are commonly used in water treatment for the control of episodic events such as spills or taste and odor occurrences in DW and OMP removal in WW. The biochars produced by the ash and base pretreatment processes described herein provide viable alternatives to

417	commercial AC in source water protection and resource-limited treatment scenarios, as they are
418	inexpensive, require low energy input, and are highly effective for OMP removal. In the
419	presence of diverse background OM (DW, WW, and SW), ash and base pretreated biochar were
420	found to be competitive with AC and greatly exceed the performance of untreated biochar. The
421	background matrix character was found to be more important than the DOC concentration across
422	background matrix types (DW, WW, and SW), and UVA_{254} can be used as a surrogate for OMP
423	removal once a relationship has been established between an adsorbent and the background
424	matrix. Non-micropore surface area was strongly correlated with performance, and ash and base
425	pretreatments increased the non-micropore surface area of the adsorbents, thereby improving
426	OMP sorption. Feedstock ash content is a significant factor affecting biochar performance, and
427	future work should continue to evaluate the impacts of ash across a broader range of materials
428	and treatment scenarios to produce high performance, appropriate adsorbents relevant for source
429	water protection as well as water treatment in LMICs.
430	
431	
432	Conflicts of Interests: The authors have no conflicts of interests to declare.
433	
434	Acknowledgements: This work was supported by the National Science Foundation Graduate
435	Research Fellowship. Dr. Joshua Kearns at North Carolina State University provided the BET
436	surface area and T-plot data for the adsorbents used in this study.

438 **REFERENCES**

- F. T. Weiss, M. Leuzinger, C. Zurbrügg and R. I. L. Eggen, Chemical Pollution in Lowand Middle-Income Countries, 2016.
- J. Sun, Q. Luo, D. Wang and Z. Wang, Occurrences of pharmaceuticals in drinking water
 sources of major river watersheds, China, *Ecotoxicol. Environ. Saf.*, 2015, 117, 132–140.
- 4433J. M. Philip, U. K. Aravind and C. T. Aravindakumar, Emerging contaminants in Indian444environmental matrices A review, *Chemosphere*, 2018, **190**, 307–326.
- 4 K. Balakrishna, A. Rath, Y. Praveenkumarreddy, K. S. Guruge and B. Subedi, A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies, *Ecotoxicol. Environ. Saf.*, 2017, 137, 113–120.
- J. P. Kearns, M. J. Bentley, P. Mokashi, J. H. Redmon and K. Levine, Underrepresented
 groups in WaSH the overlooked role of chemical toxicants in water and health, *J. Water*, *Sanit. Hyg. Dev.*, DOI:10.2166/washdev.2019.059.
- M. Boehler, B. Zwickenpflug, J. Hollender, T. Ternes, A. Joss and H. Siegrist, Removal
 of micropollutants in municipal wastewater treatment plants by powder-activated carbon, *Water Sci. Technol.*, 2012, 66, 2115–2121.
- K. Zoschke, C. Engel, H. Börnick and E. Worch, Adsorption of geosmin and 2methylisoborneol onto powdered activated carbon at non-equilibrium conditions:
 Influence of NOM and process modelling, *Water Res.*, 2011, 45, 4544–4550.
- F. Zietzschmann, G. Aschermann and M. Jekel, Comparing and modeling organic micropollutant adsorption onto powdered activated carbon in different drinking waters and
 WWTP effluents, *Water Res.*, 2016, **102**, 190–201.
- N. Chèvre, S. Coutu, J. Margot, H. K. Wynn, H. P. Bader, R. Scheidegger and L. Rossi,
 Substance flow analysis as a tool for mitigating the impact of pharmaceuticals on the
 aquatic system, *Water Res.*, 2013, 47, 2995–3005.
- 463 10 S. Zgheib, R. Moilleron and G. Chebbo, Priority pollutants in urban stormwater: Part 1 464 Case of separate storm sewers, *Water Res.*, 2012, 46, 6683–6692.
- J. Gasperi, S. Garnaud, V. Rocher and R. Moilleron, Priority pollutants in wastewater and combined sewer overflow, *Sci. Total Environ.*, 2008, 407, 263–272.
- 467 12 H. Birch, P. S. Mikkelsen, J. K. Jensen and H. C. Holten Lützhøft, Micropollutants in stormwater runoff and combined sewer overflow in the Copenhagen area, Denmark, *Water Sci. Technol.*, 2011, 64, 485–493.
- J. P. Kearns, L. S. Wellborn, R. S. Summers and D. R. U. Knappe, 2,4-D adsorption to
 biochars: Effect of preparation conditions on equilibrium adsorption capacity and
 comparison with commercial activated carbon literature data, *Water Res.*, 2014, 62, 29–
 28.
- 474 14 J. Margot, Micropollutant removal from municipal wastewater From conventional
 475 treatments to advanced biological processes, Swiss Federal Institute of Technology
 476 Lausanne, 2015.
- 477 15 B. A. Ulrich, E. A. Im, D. Werner and C. P. Higgins, Biochar and activated carbon for
 478 enhanced trace organic contaminant retention in stormwater infiltration systems, *Environ*.
 479 *Sci. Technol.*, 2015, **49**, 6222–6230.
- 480 16 K. K. Shimabuku, J. P. Kearns, J. E. Martinez, R. B. Mahoney, L. Moreno-Vasquez and
- 481R. S. Summers, Biochar sorbents for sulfamethoxazole removal from surface water,482stormwater, and wastewater effluent, *Water Res.*, 2016, **96**, 236–245.
- 483 17 M. Inyang and E. Dickenson, The potential role of biochar in the removal of organic and

484 785		microbial contaminants from potable and reuse water: A review, <i>Chemosphere</i> , 2015, 134 , 232–240
405 486	18	D. Mohan, A. Sarswat, Y. S. Ok and C. U. Pittman, Organic and inorganic contaminants
487		removal from water with biochar, a renewable, low cost and sustainable adsorbent - A
488		critical review, Bioresour. Technol., 2014, 160, 191–202.
489	19	R. Ding, P. Zhang, M. Seredych and T. J. Bandosz, Removal of antibiotics from water
490		using sewage sludge- and waste oil sludge-derived adsorbents, <i>Water Res.</i> , 2012, 46,
491	20	4081-4090. K A Thompson K K Shimabuku I P Kearns D P II Knappe P S Summers and S
492	20	M. Cook Environmental Comparison of Biochar and Activated Carbon for Tertiary
495 494		Wastewater Treatment, <i>Environ, Sci. Technol.</i> , 2016, 50 , 11253–11262.
495	21	J. Tian, V. Miller, P. C. Chiu, J. A. Maresca, M. Guo and P. T. Imhoff, Nutrient release
496		and ammonium sorption by poultry litter and wood biochars in stormwater treatment, Sci.
497		<i>Total Environ.</i> , 2016, 553 , 596–606.
498	22	A. U. Rajapaksha, S. S. Chen, D. C. W. Tsang, M. Zhang, M. Vithanage, S. Mandal, B.
499		Gao, N. S. Bolan and Y. S. Ok, Engineered/designer biochar for contaminant
500		removal/immobilization from soil and water: Potential and implication of biochar
501	22	modification, Chemosphere, 2016, 148, 276–291.
502	23	M. B. Anmed, J. L. Zhou, H. H. Ngo, W. Guo and M. Chen, Progress in the preparation
503		wastewater <i>Bioresour Tachnol</i> 2016 214 836–851
504	24	L i N Liang X lin D Zhou H Li M Wu and B Pan The role of ash content on
505	2 -T	bisphenol A sorption to biochars derived from different agricultural wastes. <i>Chemosphere</i>
507		2017. 171 . 66–73.
508	25	N. Yamashita and M. Machida, Carbonization of bamboo and consecutive low
509		temperature air activation, Wood Sci. Technol., 2011, 45, 801-808.
510	26	K. Sun, M. Kang, Z. Zhang, J. Jin, Z. Wang, Z. Pan, D. Xu, F. Wu and B. Xing, Impact of
511		deashing treatment on biochar structural properties and potential sorption mechanisms of
512		phenanthrene, Environ. Sci. Technol., 2013, 47, 11473-11481.
513	27	S. V. Vassilev, D. Baxter, L. K. Andersen and C. G. Vassileva, An overview of the
514		composition and application of biomass ash. Part 1. Phase-mineral and chemical
515	20	composition and classification, <i>Fuel</i> , 2013, 105 , 40–76.
510	28	A. Magdziarz, A. K. Dalai and J. A. Koziński, Chemical composition, character and
5±/ ⊏18	29	F S Cannon V I Snoevink R G Lee and G Dagois Reaction mechanism of calcium-
510	2)	catalyzed thermal regeneration of spent granular activated carbon <i>Carbon N Y</i> 1994 32
520		1285–1301
521	30	D. W. Mazyck and F. S. Cannon, Overcoming calcium catalysis during the thermal
522		reactivation of granular activated carbon - Part I. Steam-curing plus ramped-temperature
523		N2 treatment, <i>Carbon N. Y.</i> , 2000, 38 , 1785–1799.
524	31	D. Mazyck and F. Cannon, Overcoming calcium catalysis during the thermal reactivation
525		of granular activated carbon: Part II. Variation of steam-curing reactivation parameters,
526		<i>Carbon N. Y.</i> , 2002, 40 , 241–252.
527	32	R. Mahadevan, S. Adhıkarı, R. Shakya, K. Wang, D. Dayton, M. Lehrich and S. E.
528		Lignagellularia Diamage A Mianamagetar State France and Frank 2016 20 2045 2056
529		Lignocenulosic Biomass: A wheroreactor Study, <i>Energy and Fuels</i> , 2016, 30 , 3045–3056.

530	33	S. Wang, G. Dai, H. Yang and Z. Luo, Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review <i>Prog. Energy Combust. Sci.</i> 2017, 62, 33–86
53± 532	34	G Müller C I Radke and I M Prausnitz Adsorption of weak organic electrolytes from
55 4 555	51	dilute aqueous solution onto activated carbon Part II Multisolute systems <i>I Colloid</i>
555		Interface Sci 1985 103 484–492
525	35	A M Kennedy A M Reinert D R U Knappe I Ferrer and R S Summers Full- and
555 556	55	nilot-scale GAC adsorption of organic micropollutants <i>Water Res</i> 2015 68 238–248
53° 577	36	F Islam I Wang M A Farood M S S Khan I. Xu I Zhu M Zhao S Muños O X
528	50	Li and W. Zhou. Potential impact of the herbicide 2 4-dichlorophenoxyacetic acid on
520		human and ecosystems <i>Environ Int</i> 2018 111 332–351
579	37	A Pal K Y H Gin A Y C Lin and M Reinhard Impacts of emerging organic
54° 5/1	57	contaminants on freshwater resources. Review of recent occurrences sources fate and
54± 5/.2		effects Sci Total Environ 2010 408 6062–6069
542 57.5	38	R S Summers D R U Knappe and V L Snoevink Adsorption of organic compounds
545 E/./.	50	by activated carbon <i>Water Qual Treat A Handb Drink Water Sixth Ed</i> 2011
544 575	39	C Di Blasi A Galgano and C Branca Effects of notassium hydroxide impregnation on
545 576	57	wood pyrolysis <i>Energy and Fuels</i> 2009 23 1045–1054
54° 577	40	C A Arampatzidou and A E Delivanni Comparison of activation media and pyrolysis
547 57.8	10	temperature for activated carbons development by pyrolysis of potato peels for effective
540 570		adsorption of endocrine disruptor bisphenol-A J Colloid Interface Sci 2016 466 101–
549		
551	41	I Romanos M Beckner T Rash L Firlei B Kuchta P Yu G Suppes C Wexler and
552		P Pfeifer Nanospace engineering of KOH activated carbon <i>Nanotechnology</i>
553		DOI:10.1088/0957-4484/23/1/015401.
554	42	M. P. Kannan and G. N. Richards. Gasification of biomass chars in carbon dioxide:
555		dependence of gasification rate on the indigenous metal content, <i>Fuel</i> , 1990, 69 , 747–753.
556	43	H. Marsh and F. Rodríguez-Reinoso, Activated Carbon, Elsevier Ltd. 2006.
557	44	L. Jiang, S. Hu, L. shi Sun, S. Su, K. Xu, L. mo He and J. Xiang. Influence of different
558		demineralization treatments on physicochemical structure and thermal degradation of
559		biomass, <i>Bioresour. Technol.</i> , 2013, 146 , 254–260.
555 560	45	X. Xu, Y. Zhao, J. Sima, L. Zhao, O. Mašek and X. Cao, Indispensable role of biochar-
5 561		inherent mineral constituents in its environmental applications: A review, <i>Bioresour</i> .
5 562		<i>Technol.</i> , 2017, 241 , 887–899.
5 563	46	Y. Fu, Y. Shen, Z. Zhang, X. Ge and M. Chen, Activated bio-chars derived from rice husk
5 564		via one- and two-step KOH-catalyzed pyrolysis for phenol adsorption, <i>Sci. Total Environ</i> .
565		2019, 646 , 1567–1577.
566	47	L. Lin, S. R. Zhai, Z. Y. Xiao, Y. Song, O. Da An and X. W. Song, Dye adsorption of
5 567		mesoporous activated carbons produced from NaOH-pretreated rice husks, <i>Bioresour</i> .
568 568		Technol., 2013, 136 , 437–443.
569	48	P. González-García, Activated carbon from lignocellulosics precursors: A review of the
570		synthesis methods, characterization techniques and applications, <i>Renew. Sustain. Energy</i>
571		<i>Rev.</i> , 2018, 82 , 1393–1414.
572	49	A. R. Mohamed, M. Mohammadi and G. N. Darzi, Preparation of carbon molecular sieve
573		from lignocellulosic biomass: A review, Renew. Sustain. Energy Rev., 2010, 14, 1591-
574		1599.
575	50	M. Molina-Sabio and F. Rodríguez-Reinoso, Role of chemical activation in the

576		development of carbon porosity, Colloids Surfaces A Physicochem. Eng. Asp., 2004, 241,
577		15–25.
578	51	P. A. Quinlivan, L. Li and D. R. U. Knappe, Effects of activated carbon characteristics on
579		the simultaneous adsorption of aqueous organic micropollutants and natural organic
580		matter, <i>Water Res.</i> , 2005, 39 , 1663–1673.
581 582	52	M. R. Graham, R. S. Summers, M. R. Simpson and B. W. Macleod, Modeling equilibrium adsorption of 2-methylisoborneol and geosmin in natural waters, <i>Water Res.</i> , 2000, 34 , 2201–2200
503 -07	52	2291-2300. S. D. Summers, M. S. Kim, K. Shimebula, S. H. Chee and I. C. Corwin, Cremular
5°4 585 586	33	activated carbon adsorption of MIB in the presence of dissolved organic matter, <i>Water</i> $P_{ac} = 2013$ 47 3507 3513
500 r 87	54	L P Ding S K Bhatia and F Liu Kinetics of adsorption on activated carbon:
507 F88	54	Application of heterogeneous vacancy solution theory <i>Chem Eng Sci</i> 2002 57 3909
500 589		3928
590	55	R. L. Tseng, Mesopore control of high surface area NaOH-activated carbon, J. Colloid
591		Interface Sci., 2006, 303 , 494–502.
592	56	Q. Li, V. L. Snoeyink, B. J. Mariãas and C. Campos, Elucidating competitive adsorption
593		mechanisms of atrazine and NOM using model compounds, Water Res., 2003, 37, 773-
594		784.
595 596	57	A. D. Ziska, M. Park, T. Anumol and S. A. Snyder, Predicting trace organic compound attenuation with spectroscopic parameters in powdered activated carbon processes,
597		Chemosphere, 2016, 156 , 163–171.
598	58	F. Zietzschmann, C. Stützer and M. Jekel, Granular activated carbon adsorption of organic
599		micro-pollutants in drinking water and treated wastewater - Aligning breakthrough curves
600		and capacities, Water Res., 2016, 92, 180-187.
601	59	T. Anumol, M. Sgroi, M. Park, P. Roccaro and S. A. Snyder, Predicting trace organic
602		compound breakthrough in granular activated carbon using fluorescence and UV
603		absorbance as surrogates, <i>Water Res.</i> , 2015, 76 , 76–87.
604		
605		
606		Table of Contents Entry

Table of Contents Entry

