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The accurate description of long-range electron correlation, most prominently including van der
Waals (vdW) dispersion interactions, represents a particularly challenging task in the modeling
of molecules and materials. vdW forces arise from the interaction of quantum-mechanical fluctu-
ations in the electronic charge density. Within (semi-)local density functional approximations or
Hartree-Fock theory such interactions are neglected altogether. Non-covalent vdW interactions,
however, are ubiquitous in nature and play a key role for the understanding and accurate descrip-
tion of the stability, dynamics, structure, and response properties in a plethora of systems. During
the last decade, many promising methods have been developed for modeling vdW interactions in
electronic-structure calculations. These methods include vdW-inclusive Density Functional The-
ory and correlated post-Hartree-Fock approaches. Here, we focus on the methods within the
framework of Density Functional Theory, including non-local van der Waals density functionals,
interatomic dispersion models within many-body and pairwise formulation, and random phase
approximation-based approaches. This review aims to guide the reader through the theoretical
foundations of these methods in a tutorial-style manner and, in particular, highlight practical as-
pects such as the applicability and the advantages and shortcomings of current vdW-inclusive
approaches. In addition, we give an overview of complementary experimental approaches, and
discuss tools for the qualitative understanding of non-covalent interactions as well as energy de-
composition techniques in this self-contained work. Besides representing a reference for the
current state-of-the-art, this work is thus also designed as a concise and detailed introduction to
vdW-inclusive electronic structure calculations for a general and broad audience.
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1 Introduction

The basic challenge when modeling molecules or materials from
first principles of quantum mechanics is that it is impossible to
exactly solve the many-body problem for a system with many
electrons. The vast majority of practical methods in electronic
structure theory approaches this problem by reformulating the
N-electron problem to N effective independent-particle prob-
lems. Examples of this are the Hartree-Fock (HF) equations in
wavefunction-based methods or the Kohn-Sham (KS) reference
system in density functional theory (DFT). This seminal reformu-
lation paves the way to first-principles modeling of molecules and
materials and already captures, depending on the system, 99 per
cent or more of the total electronic energy.† Unfortunately, the re-
maining fraction of the total electronic energy can be crucial for
various observables and properties of interest, such as relative en-
ergies1–4, binding properties5–9, and structural features3,4,10,11

as well as the mechanical12,13, thermodynamic4,14, kinetic15–17,
and electronic 18,19 signatures of a given system. In the simple
case of an Argon dimer for instance, KS-DFT calculation with the
hybrid PBE0 functional captures about 99.95 % of the total en-
ergy, but it gives no more than roughly 15 % of the interaction
energy. HF does not even bind an Argon dimer. The major part of
the missing electronic energy is due to the correlated motion of
electrons, or correlated quantum-mechanical fluctuations of the
average electron distribution in the DFT picture. It is thus re-
ferred to as (long-range) electron correlation energy.‡ In partic-
ular, the long-range correlation energy represents a challenging
task in electronic structure calculations due to its highly non-local
character. The main component of this long-range contribution is
what is known as the van der Waals (vdW) dispersion interaction.
As such, vdW interactions are inherently quantum-mechanical
and many-body (“collective”) in nature and, moreover, they are
ubiquitous in molecular systems and materials. The strongly non-
linear scaling with size in polarizable systems2,23 presents further
challenges for modeling such long-range correlation forces.

Describing (long-range) electron correlation has been a cen-
tral topic in the quantum chemistry community, which since the
early days mainly focused on wavefunction-based methods typ-
ically starting from the HF mean-field picture. Thanks to ex-
tensive methodological developments a number of asymptotically
correct and to some extent practical methods have been devised.
Among those the coupled cluster technique has established itself

† Even though the KS equations in DFT are, in principle, exact, the universal
exchange-correlation functional is yet unknown and the (semi-)local approxima-
tions to it based on the uniform electron gas give rise to similar shortcomings.

‡ For completeness: Electron correlation is often divided into dynamic and static
(or non-dynamic) correlation 20,21. The dynamic correlation energy, to which vdW
interactions can be assigned, represents the energy difference due to approximat-
ing the instantaneous interaction of electrons by the interaction of each electron
with the average field due to all other electrons (mean field formalism) 20. The
energy difference arising when a system cannot be described by a single, pure elec-
tronic state e.g. due to (near-)degeneracies of electronic states, is referred to as
static (non-dynamic) correlation energy. Proper description of this effect requires
so-called multi-reference methods and is beyond the scope of this work, see Ref. 22,
for instance. In this work, correlation energy shall refer to dynamic correlation only.

as one of the most prevalent post-HF methods in quantum chem-
istry. Coupled cluster theory starts from a Slater determinant
based on the mean-field HF orbitals and includes excitations by
the use of the exponential cluster operator. Such intrinsic elec-
tronic excitations represent the analogue of electron density fluc-
tuations in a perturbation picture. Accounting for up to double
excitations together with a perturbative treatment of triple ex-
citations, labeled as CCSD(T), is usually referred to as the gold
standard and often relied upon as a reference method for more
approximate models. However, CCSD(T) and comparably accu-
rate methods are still limited to small- and medium-sized systems
(typically less than ∼200 atoms) due to the immense computa-
tional costs characterized by a scaling of the computation time
with the number of electrons to the power of 7. A quite dif-
ferent, yet similarly accurate, approach is Quantum Monte-Carlo
(QMC). Here, one solves the many-body Schrödinger equation in
a stochastic manner. The most relevant flavors of QMC in the con-
text of modeling molecules and materials are: Variational Monte-
Carlo, Green’s Function Monte-Carlo and Diffusion Monte-Carlo,
which exploits the similarity between Schrödinger’s equation and
a diffusion equation in imaginary time. Thanks to its stochas-
tic character one can even estimate the expected deviation from
the exact solution. Parallelization of this approach is straightfor-
ward and tractable system sizes have reached a few hundreds of
atoms24, which has boosted its use as a benchmark method in
recent years. In the end, both CCSD(T) and QMC are typically
only used to benchmark (interaction) energies based on a given
structure, as force evaluation can become extremely intricate as a
result of their perturbative or stochastic character.

In contrast to accurate quantum-chemical methods, density
functional approximations (DFAs) require less computational
workload and offer access to atomic forces. Since the first suc-
cessful applications of DFT, however, the lack of explicit electron
correlation has proven itself an important issue when modeling
molecular systems and gave rise to numerous developments. As
of today, a vast number of possible remedies has been proposed.
Thereby, an a posteriori inclusion of long-range correlation forces
is the most widely used approach. Nevertheless, it is worthwhile
to point out that long-range correlation is, in principle, part of
the electronic Hamiltonian and can thus also affect the solution
of the self-consistent field procedure18,19.

In this work, we review the origin of vdW forces and particu-
larly focus on practical approaches how to qualitatively under-
stand and quantitatively model dispersion interactions in elec-
tronic structure calculations. We start out by giving an exact for-
mulation based on the non-local electron correlation energy and
the approximate reduction to additive two-body interaction po-
tentials and its fundamental limitations in Section 2. Section 3
gives a brief overview of relevant experimental techniques and
observations. We then present analysis tools for understand-
ing vdW interactions in Section 4 before describing quantitative
and practical approaches for calculating dispersion forces in Sec-
tion 5. In Section 6, we showcase the performance and some
of the strengths and weaknesses of the most widely-used models
and Section 7 gives a summary and conclusion of current meth-
ods and a short outlook on open problems and future develop-
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ments. Throughout this work we will focus on approaches within
the scope of DFT, being the main workhorse in first-principles
modeling of molecules and materials, but we draw connections
to wavefunction-based techniques where applicable.

2 Van der Waals Interactions: Formulation
from Non-local Electron Correlation

The electron correlation energy, Ecorr, is typically defined as the
difference between the exact (non-relativistic) solution of the
Schrödinger equation and the effective mean-field description
such as the HF or KS reference system. Hence, it depends on the
definition of the mean-field description and can be rigorously for-
mulated in multiple ways21. In this work, we rely on the so-called
adiabatic-connection fluctuation-dissipation (ACFD) theorem, as
it provides a common basis for the majority of methods presented
in this article. The ACFD theorem provides an exact formulation
of the non-relativistic (non-retarded) exchange and correlation
energy of a system in terms of the Coulomb-coupled density re-
sponse on top of an independent-particle framework such as the
HF or KS reference system. Relativistic effects such as retarda-
tion and scattering as well as thermal field fluctuations can play
an important role for extended, mesoscopic systems (cf. Casimir
forces), but will not be covered in this work. For reviews on this
topic, see Refs. 25 or 26, for instance.

2.1 Exact Formulation from the Adiabatic-Connection
Fluctuation-Dissipation Theorem

The ACFD formula originates from linear response theory† and
relies on the non-local, time-dependent density-density response
function, χ (r,r′, t, t ′), which describes the response of an electron
density at point r and time t to a perturbation at position r′ at
time t ′. Under the assumption of time invariance, which holds
for stationary states in quantum mechanics, the time-dependent
density response can be Fourier-transformed to the frequency do-
main yielding the non-local, frequency-dependent, and complex-
valued density response, χ (r,r′,ω). Thereby, the imaginary part
describes the contribution due to dissipation28. Hence, integrat-
ing over the Coulomb-coupled imaginary part of χ (r,r′,ω) gives
the energy due to dissipation of a (scalar) perturbation.

In quantum mechanics, any charge density is subject to instan-
taneous fluctuations, which gives rise to intrinsic fluctuations of
the electric field within the system (or vice versa). The electron
correlation energy is the dissipation energy of this fluctuating
electric field. The ACFD theorem states that the energy due to
dissipation of such internal perturbations is the same as for ex-
ternal perturbations and can thus be calculated via the imaginary
part of χ (r,r′,ω). Evaluation of the correlation energy on top of
an independent-particle formalism is then carried out by means
of the adiabatic theorem29,30, meaning via coupling parameter
integration from the non-correlated system to the fully correlated

† We point out, that while the response of a material can be highly non-linear, the
electron correlation energy can be fully recovered solely based on linear response
functions, which allows linear response theory and the ACFD theorem to be exact 27.

density response (atomic units used throughout this work):

Ecorr =−
1

2π

∫
∞

0
dω

∫ 1

0
dλ

∫∫
drdr′

[
χλ

(
r,r′, iω

)
− χλ=0

(
r,r′, iω

)]
VCoul

(
r,r′
) (1)

with λ as the coupling constant, where λ = 1 corresponds to the
real, fully correlated system and λ = 0 to the non-correlated sys-
tem of independent electrons, e.g. the KS (or HF) reference sys-
tem. VCoul = 1/‖r−r′‖ is the Coulomb potential, with ‖r−r′‖ be-
ing the (Euclidean) distance between the points r and r′. For the
integration of the imaginary part of χ (r,r′,ω) we have used28:∫

∞

0
Im χ

(
r,r′,ω

)
dω =

∫
∞

0
χ
(
r,r′, iω

)
dω . (2)

To further simplify the derivation and explanation of the practical
approaches outlined below, we may also reformulate the ACFD
formula (1) in terms of the non-local, frequency-dependent polar-
izability tensor ααα (r,r′, iω), which is connected to the density re-
sponse via χ (r,r′, iω) = ∇r∇r′ααα (r,r′, iω). Introducing the dipole
coupling tensor T(r,r′) = −∇r⊗∇r′ VCoul (r,r′), one can rewrite
eq. (1) as,

Ecorr =
1

2π

∫
∞

0
dω

∫ 1

0
dλ

∫∫
drdr′Tr

{[
αααλ

(
r,r′, iω

)
− αααλ=0

(
r,r′, iω

)]
T
(
r,r′
)}

,

(3)

where Tr{·} denotes the trace operator over Cartesian compo-
nents27. The non-local polarizability within the independent-
particle framework (αααλ=0) can be directly calculated based on
the single-particle states via the Adler-Wiser formula31,32 and the
polarizability tensor of the correlated system can be defined via
the self-consistent Dyson equation,

αααλ

(
r,r′, iω

)
=αααλ=0

(
r,r′, iω

)
−
∫∫

αααλ=0
(
r,r′′, iω

)
×λTxc,λ

(
r′′,r′′′, iω

)
αααλ

(
r′′′,r′, iω

)
dr′′dr′′′

≡ ααα0−
〈
λααα0Txc,λ αααλ

〉
r′′,r′′′

=
∞

∑
n=0

〈
ααα0
(
−λTxc,λ ααα0

)n〉
r′′,r′′′ , (4)

where we have introduced the shorthand 〈·〉r′′,r′′′ for the integra-
tion over spatial coordinates, r′′ and r′′′, and skipped the explicit
notion of the variables of ααα and Txc,λ for clarity. The coupling
tensor Txc,λ is defined for each coupling strength λ as27,

Txc,λ
(
r′′,r′′′,ω

)
= T

(
r′′,r′′′

)
− 1

λ
∇r′′ ⊗∇r′′′ fxc,λ

(
r′′,r′′′,ω

)
. (5)

In practice, the exact exchange-correlation kernel, fxc,λ , in eq. (5)
is not known. Thus, direct evaluation of the ACFD formula, both
in terms of χ and ααα, is not possible. Practical approaches that di-
rectly involve the ACFD formulation therefore involve the neglect
of the explicit dependence on λ and additional approximations
for the exchange-correlation kernel. The most prominent method
among those relies on the random phase approximation and is
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covered in further detail in Section 5.1.

For the purpose of discussing vdW interactions, i.e. long-range
correlation forces, and especially for comparing the various ap-
proaches to describe vdW interactions, it is worthwhile to fur-
ther separate the above exact formulation of the electron cor-
relation energy into short- and long-range contributions as de-
tailed in Refs. 27 and 33. For this, we split the coupling ten-
sors in eqs. (3) and (4) by means of a range-separating function
grs (‖r− r′‖), which satisfies grs (0) = 0 and grs (‖r− r′‖→ ∞) = 1.
This separates the total electron correlation energy into a short-
and a long-range contribution, where the latter can be seen as an
analogue to the original definition of vdW dispersion interactions
based on a perturbative picture of intermolecular interactions27.
In the Dyson equation (4), we may range-separate the full cou-
pling tensor, Txc,λ , into a short- and a long-range screening tensor

(T(sr)
xc,λ and T(lr)

xc,λ , respectively) according to

Txc,λ =
[
1−grs

(∥∥r− r′
∥∥)]Tx,λ︸ ︷︷ ︸ + grs

(∥∥r− r′
∥∥)Txc,λ︸ ︷︷ ︸=

= T(sr)
xc,λ + T(lr)

xc,λ ,

(6)

which in turn account for short- and long-range screening of the
non-local polarizability, respectively. Inserting this into eq. (4)
and subsequently contracting all short-range screening compo-
nents lets us define an effective, non-local polarizability, ααα(sr),
which already includes short-range screening. By the use of this
definition, eq. (4) becomes

αααλ =
∞

∑
n=0

〈
ααα
(sr)
(
−λT(λ )

xc,lr ααα
(sr)
)n〉

r′′,r′′′
. (7)

Finally, combining eq. (7) and the long-range part of the ACFD
formula (3) gives the long-range electron correlation energy,

E(lr)
corr =−

∞

∑
n=1

1
2π

∫
∞

0
dω

∫ 1

0
dλ (8)

〈
Tr
{[〈

ααα
(sr)
(

λT(lr)
xc,λ ααα

(sr)
)n〉

r′′,r′′′

]
Tlr
(
r,r′
)}〉

r,r′
,

where Tlr is the long-range part of the bare dipole coupling ten-
sor and the n = 0 term cancels out. Note that we have not intro-
duced any approximations up to this point and the sum of eq. (8)
and its short-range analogue still equals the exact total correla-
tion energy as defined by eq. (3). In this work, we use the above
definition of the long-range correlation energy (8) as the vdW
energy for all non-perturbative approaches to dispersion interac-
tions and as we shall see, many widely-used vdW models can be
traced down to this form of the ACFD formula, where each fla-
vor involves a given approximation for the effective polarizability
after short-range screening, ααα(sr), and the exchange-correlation
kernel in T(lr)

xc,λ or combinations thereof.

2.2 Approximate Reduction to Interaction Coefficients

As can be seen from the definitions in Section 2.1, the polariz-
ability and the electron correlation energy have a highly complex,

non-local character. As of today, numerous experimental and the-
oretical works have clearly shown the many-body nature of dis-
persion forces. Nonetheless, one of the most common approaches
to model vdW interactions is by the use of pairwise-additive po-
tentials. In this section, we sketch the approximations and basic
steps leading to the fundamental form of pairwise potentials for
long-range correlation forces based on the long-range ACFD for-
mula (8). At this point, we would like to note that the functional
form derived below can be, and was obtained, in multiple ways
including (many-body) perturbation theory and other approxima-
tions to the ACFD formula.

One of the most successful and common approximations is
the so-called random phase approximation (RPA), which corre-
sponds to the neglect of the unknown exchange-correlation kernel
( fxc,λ = 0). Within the range-separated ACFD formula, we may
apply that approximation only in the long-range part, where fxc,λ

indeed barely contributes, such that T(lr)
xc,λ in eq. (8) no longer

explicitly depends on λ and reduces to Tlr. This allows us to
analytically carry out the integration over the coupling strength,
which leads to the series

E(lr,RPA)
corr =−

∞

∑
n=2

(−1)n

n
1

2π

∫
∞

0
dω

〈
Tr
{〈(

ααα
(sr)Tlr

)n〉
r′′,r′′′

}〉
r,r′

(9)

where the index n is shifted by +1 due to integration over λ .

Next, we approximate the non-local polarizability by a sum of
point-like, local polarizabilities situated at the N atomic positions,
{RA}, by the use of the three-dimensional Dirac delta-function,
δ 3 (r):

ααα
(sr) ≈

N

∑
A=1

ααα
(sr)
A (iω) δ

3 (r′′−RA
)

δ
3 (r′′′−RA

)
≡

N

∑
A=1

ααα
(sr)
A . (10)

Inserting this into the long-range RPA correlation energy gives,

E(lr,RPA)
corr ≈−

∞

∑
n=2

(−1)n

n
1

2π

∫
∞

0
dω

〈
Tr


〈(

N

∑
A=1

ααα
(sr)
A Tlr

)n〉
r′′,r′′′


〉

r,r′

.

(11)

It can be seen that we get ααα
(sr)
A Tlr ααα

(sr)
B Tlr for n = 2,

ααα
(sr)
A Tlr ααα

(sr)
B Tlr ααα

(sr)
C Tlr for n = 3, and so on. Thus, the expansion

series (11) is a series of all the nth-order correlation terms. As
such, the order n does not represent a pure n-body (in this work,
body refers to atom) vdW interaction term, as for instance de-
fined in the perturbational approach. For example, n = 3 contains
non-vanishing terms with C = A, which correspond to screened
two-body interactions.

n= 2, on the other side, only involves non-vanishing terms with
two different polarizability centers A and B and is therefore a pure
(yet incomplete) two-body vdW interaction. If we limit ourselves
to this second-order term, E(2)

corr, we can carry out the integration
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over spatial coordinates to arrive at,

E(2)
corr =−

1
2

1
2π

∫
∞

0
dω Tr

{
∑
A,B

ααα
(sr)
A T(lr)

AB ααα
(sr)
B T(lr)

BA

}
, (12)

where T(lr)
AB ≡ Tlr (RA,RB). As a final approximation, we assume

the point polarizabilities to be isotropic, i.e. ααα
(sr)
A = α

(sr)
A 1, with

1 being (3× 3) unity. As a result, the polarizabilities and dipole
tensors commute and

E(2)
corr =−

1
2 ∑

A,B

3
π

∫
∞

0
α
(sr)
A α

(sr)
B dω

1
6

Tr
{

T(lr)
AB T(lr)

BA

}
. (13)

The integral in the above equation is known as the Casimir-
Polder integral34 and corresponds to the so-called C6-interaction
coefficients (Hamaker constant for macroscopic spherical bod-
ies35). Noting that T(lr)

AB = grs (‖RA−RB‖)TAB, TAA = 0, and
Tr{TABTBA}= 6/‖RA−RB‖6 leads to

E(2)
corr =−

1
2 ∑

A6=B

3
π

∫
∞

0
α
(sr)
A α

(sr)
B dω︸ ︷︷ ︸

grs (‖RA−RB‖)2

‖RA−RB‖6

=−1
2 ∑

A6=B
C(eff)

6,AB
fdamp (RAB)

R6
AB

,

(14)

where we have used RAB = ‖RA−RB‖ and introduced the damp-
ing function fdamp (RAB) = grs (RAB)

2. This is the well-known for-
mula for the vdW dispersion interaction between two microscopic
bodies within the dipole approximation as first derived by Lon-
don36. As of today, a manifold of pairwise-additive vdW models
has been devised and widely used37–45. The general difference
between those models lies in the damping function, fdamp, and
how effective, short-range screened interaction coefficients are
obtained. It is worthwhile to point out that the same functional
form can be derived based on a full-range RPA of eq. (3), by in-
voking the so-called full potential approximation, i.e. αααλ =ααα1,46

from a model system of Quantum Drude Oscillators47 or in var-
ious ways from (second-order) perturbation theory invoking a
multipole expansion and subsequent dipole approximation for the
interaction potential47.

2.3 Non-additive Aspects of van der Waals Interactions

The above derivations show the theoretical foundation of vdW
dispersion interactions and with eq. (14) we have derived an ap-
proximated expression. However, no seamless way of obtaining
the damping function, the short-range screened polarizabilities,
or the resulting C6-interaction coefficients has been put forward
as of the time of this article. In addition, the expansion (or cor-
responding perturbation) series is truncated at second order and
one has to invoke an additional approximation for the – at least
long-range part of the – coupling potential, Txc, to arrive at the
pairwise formula (14). As classified by Dobson, effects beyond
this pairwise-additive expression for vdW interactions can, in gen-
eral, be understood in terms of three types of non-additivity48,

• Type A: The effect of the local chemical environment on the
polarizability apart from short-range screening. One often

relies on partitioning the system into its constituent atoms
for the construction of the polarizability of the (sub)system.
Type A non-additivity can be understood by the fact that
the polarizability in the KS reference system does not corre-
spond to a superposition of ααα0 of isolated atoms. This type
of non-additivity is accounted for in almost all modern vdW
models.

• Type B: Electron correlation and screening are defined by
multi-center integrals. This enters the ACFD formalism both
in form of the electrodynamic screening in the Dyson-like
equation (4) as well as in the expansion series of the (long-
range) correlation energy to finite orders of n in eq. (8), i.e.
many-body interactions and higher-order correlation terms.
The difference of coupled N-center interactions and a sum
of pairwise terms is illustrated in Fig. 1: In the pairwise
formula, the energy arises as the sum of the interaction of
pairs of instantaneous dipoles, which fluctuate in ideal align-
ment. However, all fluctuations are coupled simultaneously
(multi-center interaction), which does not necessarily cor-
respond to a sum of ideally correlated dipoles as shown by
select collective density fluctuation patterns for the simple
example of an Argon trimer in Fig. 1 (right). This type of
non-additivity manifests itself particularly in (sub)systems
with strong anisotropy, complex geometrical arrangements,
or reduced symmetry (1D, 2D materials) and can substan-
tially alter the scaling laws for vdW interactions2,23,27,48–50.

Fig. 1 Illustrative comparison of the (assumed) physics behind pairwise-
additive (left) and many-atom (right) van der Waals interactions in an
interatomic picture for an Argon (cyan) trimer. The arrows of a given
color each depict an “eigenmode” of simultaneous electron density fluc-
tuations. In the dipole-limit, these represent the alignment of fluctuating,
instantaneous dipoles. See text for further discussion.

• Type C: Assigned to systems with extremely large delocal-
ization lengths, basically corresponding to intrinsic electron
hopping between atomic centers. Such phenomena cannot
fully be described within an atom-centered framework of
polarizability and electronic fluctuations. Understandably,
type C non-additivity almost exclusively appears in systems
with a (near-)zero band (or HOMO-LUMO) gap, which al-
low for quantum-mechanical fluctuations to cause instanta-
neous electron hopping48.
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3 Van der Waals Forces in Experiment

3.1 Experimental Assessment

As a result of the non-additive and non-pairwise effects outlined
above, the simplified additive description in eq. (14) has been
found to be insufficient for a variety of systems and an increasing
number of experiments showcase the non-local and non-additive
character of vdW dispersion interactions. In this regard, it has
to be mentioned that direct experimental assessment of vdW in-
teractions is intrinsically difficult as they are typically intertwined
with several other (non-covalent) interactions and appear on all
scales including intra- as well as intermolecular forces. This, ob-
viously, complicates a clear-cut direct analysis from experimen-
tal observables. A very successful approach to disentangle non-
covalent interactions is via competition methods (see e.g. Refs.
51,52), where one relies on a comparison of the binding ener-
gies among well-controlled complimentary systems or interaction
mechanisms. Such complimentary systems include structural mu-
tations, varying binding partners, or different solvents. This, how-
ever, has the disadvantage that the molecule or material must not
exhibit significant structural distortions or different interaction
mechanisms among the modifications, which is mostly not given
for complex systems like biopolymers, for example. In addition,
measurements require highly accurate force measurements under
well-defined experimental conditions on a microscopic level26,
which ideally involves accurate control over position and bal-
ancing potentials on the level of individual atoms or molecules.
For instance, Chemical Force Microscopy (CFM)53, which relies
on chemical functionalization of Atomic Force Microscopy (AFM)
probes, represents a very promising technique to directly measure
non-covalent interactions, but requires special position control of
one of the binding partners54.

The common experimental techniques to study vdW interac-
tions can be categorized into measurements of binding affinities
and kinetics of vdW-bound systems and spectroscopy. Among oth-
ers, the former group includes AFM/CFM, Surface Plasmon Reso-
nance experiments, as well as (spectroscopic) titration techniques
and sublimation experiments like (micro-)calorimetry. On the one
side, these methods by now undoubtedly provide highly accurate
results and vital insights into the properties and behavior of the
system under consideration. On the other side, the computational
costs of most electronic structure methods prohibit a sufficiently
complete description of the thermodynamics to be directly com-
pared to these experiments. Comparisons to this kind of experi-
ment therefore usually rely on “experimentally derived” interac-
tion energies, where approximate models are used to estimate the
effect of experimental conditions such as finite temperature and
solvent (see e.g. the S12L and X23 benchmark set introduced in
Section 6.1). Of course, this can introduce considerable uncer-
tainties in the experimental reference8,55.
Spectroscopic techniques like Nuclear Magnetic Response mea-
surements, Terahertz (THz) experiments, or X-ray spectroscopy,
for example, mostly provide information on the system’s struc-
ture and (roto-)vibrational response. THz spectroscopy thereby
represents a versatile and particularly promising approach in our
view as it probes more collective vibrations, for which long-

range interactions naturally play a pivotal role. Non-linear, i.e.
multi-dimensional, THz spectroscopy then even allows to inves-
tigate long-range dynamics and non-local response properties as
shown in Ref. 56, for instance. In general, multi-dimensional ap-
proaches, also including 2D electronic spectroscopy, can provide
insights into long-range and long-timescale (relaxation) dynam-
ics, where we expect an important role of non-local interactions
for the dynamics and dissipation channels of a system. Disen-
tangling the spectroscopic features for complex systems beyond a
few atoms usually poses a very challenging task, however. The in-
creased population of rotationally and vibrationally excited states
due to temperature further complicates this problem. To limit
this aspect, spectroscopic measurements are typically combined
with jet-cooling techniques57. In addition, the analysis of exper-
imental spectra is usually performed in conjunction with compu-
tationally demanding simulations and thus limited to small- or
medium-sized systems54. This, of course, limits the exploration
of the highly non-trivial behavior of electron correlation at in-
creased system size and complexity.

Despite or maybe even due to the challenges and limitations,
the experimental assessment of vdW forces represents a rapidly
progressing field, in which probably three classes of systems have
emerged as main work horses: hybrid inorganic-organic systems
(non-covalent surface bonding), supramolecular complexes, and
layered materials (multiple two-dimensional systems bound by
vdW forces – often even referred to as vdW materials). Ob-
viously, the main characteristic is that within these classes one
can realize systems that are predominantly or almost exclusively
vdW-bound. In addition, hybrid inorganic-organic systems are
naturally predestined for AFM/CFM measurements and therefore
allow for accurate and direct probing of non-covalent interac-
tions. (Synthetic) Supramolecular complexes are most often sta-
ble over a wide range of conditions including varying tempera-
ture and solvents and can easily be mutated, which enables re-
liable competition methods54. Layered materials offer a wide
range of hetero- and homo-structures, which can be realized on
various length scales. This allows to observe interlayer (vdW)
interactions for a variety of mono-layer properties and differ-
ent contact areas through mechanical or chemical exfoliation, for
instance. This feature, which is also true for hybrid inorganic-
organic systems, enables studies on the scaling behavior of vdW
forces with increasing “interaction area”. Additionally, the inter-
layer interaction is almost exclusively due to dispersion forces,
which reduces the otherwise complicated disentanglement from
other non-covalent contributions.

Ultimately, vdW forces play a significant role for the stability,
dynamics, and response of a molecular system or material. Thus,
they can be readily observed indirectly from a variety of experi-
mental measurements in combination with complimentary vdW-
inclusive modeling. Deviations from an experimental reference in
terms of such (indirect) manifestations of vdW interactions, how-
ever, represent a conglomeration of potential errors and a seam-
less conclusion about dispersion forces is often very limited. For
further details on the experimental assessment of vdW interac-
tions and non-covalent forces in general, we refer the interested
reader to the rich set of reviews on this topic54,57,58.
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3.2 Non-additivity in Experiment

Following up on the discussion of effects beyond pairwise addi-
tivity in Section 2.3, we will conclude this section by highlighting
some of the experimental observations of the non-additive na-
ture of dispersion forces. One of the most well-known deviations
from pairwise additivity thereby appears when a single atom or
molecule is interacting with a metallic surface. Since the early
theoretical works by Lifshitz59 and Zaremba and Kohn60 it is
known that, at larger separations, the interaction energy follows
a D-3 power law, where D is the distance of the atom or molecule
to the surface. AFM measurements by Wagner et al.61 confirmed
this scaling law and quantified the non-additivity. Also between
adsorbed molecules, several experiments observed strongly non-
additive long-range interactions62–64.

In a study on the adsorption of gold nanoparticles on multi-
walled carbon nanotubes, Rance et al. showed that the ad-
sorption affinity scales quadratically with the accessible surface
area of the nanotubes and is highly non-linear for more complex
nanostructures65. In constrast, pairwise-additive vdW models,
neglecting molecular anisotropy and collective behavior, predict
a simple linear dependence in those cases. Batista et al. empha-
size that the non-additivity of interactions, including dispersion
forces, arise particularly at the nanoscale66 due to complex geo-
metrical arrangements and the resulting polarizability anisotropy.
Such behavior beyond pairwise additivity, however, also extends
from the nano-scale to the meso- and macro-scale as shown by
the interaction range of proteins, bacteria, and gecko feet with
bulk silicon. By separating the respective adhesive partner and
the silicon substrate with an increasing layer of silicon dioxide,
Loskill et al. showed that the interaction extends up to a sep-
aration of 10–20 nm67,68, while a pairwise formalism predicts
only 1 nm. On the other side, covering dielectric bulk materi-
als with strongly anisotropic monolayers can also screen the vdW
interaction between the surface and an adsorbed molecule. Us-
ing AFM, it has been shown that the D-3-dependence predicted
by Lifshitz-Zaremba-Kohn theory holds for the interaction of the
metallic AFM tip with pristine silicon dioxide. When the surface
is covered by a 2D-material, such as graphene or molybdenum
disulfide, the tip seems to only interact with the adsorbed 2D-
material69. This unexpected behavior could be explained by in-
plane electronic fluctuations within the 2D-material being decou-
pled from the fluctuations at the surface and within the bulk and
with that screening electronic fluctuations perpendicular to it, i.e.
those responsible for the interaction of the AFM tip with the sur-
face through the adsorbed monolayer.

As most of our experience and understanding of vdW inter-
actions is based on rather small systems, where a pairwise ap-
proximation tends to be qualitatively sufficient, many of the phe-
nomena arising at larger length-scales are still not entirely un-
derstood. This and the growing interest in nano-structured and
low-dimensional materials motivate on-going studies including a
quantum-mechanical many-body treatment of vdW interactions.
The ability to reliably model and understand the interactions in
such systems is of utmost importance for the design of composite
nanostructures65 and future (nano)technological developments.

4 Qualitative Description and Analysis of
Non-covalent Interactions

In the field of covalent and electrostatic interactions, conceptual
understanding of molecules and materials has largely benefited
by the aid of qualitative models, ranging from the basic concept of
chemical bonding dating back to Frankland, Kekulé, Erlenmeyer,
and Lewis structures70 to more advanced, electronic structure-
based descriptions like the quantum theory of atoms in molecules
(QTAIM),71 the electron localization function72,73, the orbital-
free single exponential decay detector (SEDD)74,75, or electro-
static potential maps76. As of today, also a few insightful models
for the description and analysis of non-covalent interactions have
been devised to aid our understanding. These models can, in
general, be separated into two main categories: electron density-
based approaches and energy decomposition methods. Below we
will shortly outline the most prominent examples from both cate-
gories and showcase how they can help to analyze, illustrate, and
understand non-covalent interactions.

4.1 Density Descriptors

According to the seminal work by Hohenberg and Kohn77, the
electronic charge density, ρ (r), provides all chemical information
of a system. It, thus, represents the starting point for DFT and
numerous qualitative and quantitative a posteriori analysis mod-
els. For non-covalent interactions, the (reduced) density gradi-
ent, as also utilized in advanced density functionals and some
QTAIM approaches, is particularly useful. Electron density-based
approaches are usually employed to obtain a spatial illustration
of the relevant interactions, which can be vital to understand
supra- or macro-molecular systems and to design novel com-
pounds. However, these models typically do not discriminate be-
tween vdW interactions and other (intermolecular) forces.

The first approach filling the gap of the abovementioned mod-
els to characterize physical interactions, was put forward by
Johnson et al. and termed non-covalent interaction index
(NCI)78,79. In their study, the authors realized that the predomi-
nant region of non-covalent interaction is characterized by a peak
in the regime of low electron densities and a low reduced denisty
gradient, which is a unit-less measure for the deviation from an
homogeneous electron gas77 given by

s =
‖∇r ρ (r)‖

2ρ (r)
[
3π2 ρ (r)

] 1
3
=
‖∇r ρ (r)‖
2ρ (r)kF

, (15)

where ‖ · ‖ is the (L2-)norm and kF is the Fermi wave vector in
the homogeneous electron gas. This can be explained by the fact
that density tails are mainly responsible for intermolecular inter-
actions and the reduced gradient approaches zero upon formation
of a bond. This feature is also used to identify atomic fragments
in the QTAIM approach by Bader71.

To further characterize the type of interaction occurring in
such low-density, low-reduced gradient regions, Johnson et al.
found an intriguing connection between the sign of the second-
largest eigenvalue of the Hessian of the electron density and
bonding/non-bonding interactions. This connection initially
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Fig. 2 Intermolecular interactions within the non-covalent interaction index (NCI) approach. Left: visualizing the hydrogen bond between hydrogen
(white) and fluorine (ocher) and weak van der Waals interactions between functionalized benzene molecules. Right: Correctly describing the repulsive
character of intermolecular interactions illustrates a so far unnoticed importance of using self-consistent densities.

seems ad hoc, but can be rationalized by concepts from the anal-
ysis of chemical bonds78. Combining their approach to locate
non-covalent interactions together with the discriminator for at-
tractive and repulsive interaction with the absolute value of the
electron density as a measure of the strength of the interaction,
ultimately yields an insightful tool to analyze intermolecular in-
teractions. Curiously, both a self-consistently obtained electron
density from DFT and a crude promolecular density (superposi-
tion of atomic densities) lead to qualitatively the same results in
most cases. Hence, the NCI approach often does not necessarily
require a full DFT calculation78 and has been successfully applied
also to large-scale systems including porous crystalline materi-
als, metal and guest-host complexes, OH–π interactions, and pro-
teins78–83. Especially regarding repulsive interactions, we would
like to point out that care must be taken when using a non-self-
consistent density. In a promolecular density there is no Pauli-
repulsion between the atomic densities to cause charge depletion.
As a result, the NCI approach does not capture the repulsive char-
acter in those cases and in absolute contrast to the authors origi-
nal conclusion78 relying on a self-consistent density can in fact be
essential (see the simple case of a water dimer in Fig. 2). The nec-
essary level of theory in obtaining the self-consistent density and
the resulting limitations for the applicability of the NCI method
to large-scale systems remains to be investigated.

The connection between the geometric signatures of the elec-
tron density and the energetic features of the corresponding sys-
tem is also exploited in the SEDD approach and its adaption to
reliably illustrate also non-covalent interactions called Density
Overlap Regions Indicator (DORI)84. Being a modification of
the SEDD, the DORI model by construction provides a description
of both covalent and non-covalent interactions within the same
framework and thanks to renormalization within the same scalar
range. The basic idea behind DORI and SEDD is to identify areas,
where the electron density shows a (nearly) singly exponential
decay, which is characteristic of electrons close to nuclei and in
the long-range limit85,86. Based on this idea, de Silva et al. pro-

posed the unitless descriptor

DORI(r) =
θ (r)

1+θ (r)
, θ (r) =

∥∥∥∇r ‖k‖2
∥∥∥2

‖k‖6 and k =
∇r ρ (r)

ρ (r)
, (16)

which can be interpreted in terms of the local wave vector, k.
In fact, DORI(r) approaches 1 in bonding regions, where the
reduced density gradient (15) goes to 0, i.e. at the zero curl
of (overlapping) densities. Close to nuclei and far from any
atom in the molecule, on the other side, the electron density
shows (nearly) singly-exponential decay and DORI(r) approaches
0. Combining this approach with the sign of the second-largest
eigenvalue of the Hessian of the electron density to distinguish
attractive and repulsive interactions and the absolute magnitude
of the electron density as a measure for the strength of the inter-
action as done for the NCI (vide supra), allows for a comprehen-
sive description of both covalent and non-covalent interactions
within the same framework and on the same scale. It has been
shown to provide conceptual insight into the relevant interactions
in molecular dimers, complex organic molecules, supramolecular
complexes84,87–89, and an adaptive QM/MM approach making
use of both SEDD and DORI to tessellate the system into QM and
MM regions90.

The NCI as well as the DORI rely on identifying bonding re-
gions based on the (reduced) gradient of the electronic charge
density. As a result, they do not capture electrostatic interactions
of non-overlapping fragments nor secondary effects like accumu-
lation and especially depletion of electron density or its intrinsic
quantum-mechanical fluctuations. For this matter it is sometimes
useful to combine these qualitative techniques with electrostatic
potential maps (for electrostatic interactions) or differences in
the electron density between the full system and its fragments
(charge accumulation/depletion, i.e. charge transfer and induc-
tion/polarisation). For the visualization of both NCI and DORI
the MULTIWFN package91 can be used. For the NCI approach
there also exists a separate program NCIPLOT79,92, which has
been used here together with VMD93 to create Fig. 2.
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4.2 Energy Decomposition Analysis

The second category, in its idea, is rooted in the description of
intermolecular interactions in terms of the various energy con-
tributions as formulated in perturbation theory. The aim is to
decompose the total interaction energy into contributions from
electrostatic interactions, induction (also referred to as polari-
sation), exchange-repulsion, dispersion interactions, and higher-
order terms. So, in contrast to the models outlined in Section 4.1,
these methods do not provide a spatial representation of the rele-
vant interactions, but rather give a measure of how much a given
type of interaction contributes. This can also provide essential in-
sights for the development of force field approaches94,95. It has to
be mentioned that there is no unique way of decomposing inter-
action energies and albeit qualitative agreement different models
yield different numerical results. In general, energy decomposi-
tion techniques can be classified according to two fundamental
approaches: variational or perturbational. In principle, energy
decomposition methods provide a quantitative analysis of inter-
molecular interactions. Variational approaches, however, repre-
sent a decomposition of energies calculated within a given frame-
work, contrary to explicit modeling of vdW interactions. The ma-
jority of perturbational approaches are highly limited in terms of
tractable system sizes and rarely used in the modeling of molec-
ular systems and materials. Thus, we do not consider energy de-
compositions among the practical methods for vdW modeling de-
scribed in Section 5.

4.2.1 Variational Energy Decomposition Techniques

Variational energy decomposition approaches, as first developed
by Morokuma and Kitaura96,97 and Ziegler98, are formulated
within a molecular orbital picture of intermolecular interactions:
First, the independent-particle states of the individual monomers
are obtained at a given level of theory and then a variational space
is constructed on those to obtain the intermolecular interaction
between the monomers. The original formalism was based on
the HF reference system, but has been adapted to the KS picture
of DFT. The different energy contributions are finally obtained
by calculating the interaction energy via constrained SCF calcu-
lations, keeping some of the monomer states frozen (unchanged)
during the SCF procedure. Depending on which states are frozen
or which terms in the Fock operator are neglected, one can extract
the individual contributions to the total interaction energy94.

The variational category involves methodologies such as
Constrained Space Orbital Variation99, Restricted Variational
Space100, or the self-consistent field method for molecular inter-
actions101–103. The different flavors are distinguished by which
integrals or elements in the construction of the KS equivalent of
the Fock operator from the monomer states are neglected or by
which number of monomer orbitals are kept frozen throughout
the calculation. This approach has also been employed using in-
termediate single-particle states based on the natural bond or-
bital approach to avoid problems with basis set superposition and
the Pauli exclusion principle in the original Morokuma-Kitaura
scheme104,105. The general framework set by Morokuma and Ki-
taura is formulated in terms of only two interacting fragments.
Chen and Gordon106 later extended the original framework to an

arbitrary number of fragments.
In contrast to the above molecular orbital-based models,

Wu et al.107 proposed a purely density-based energy decompo-
sition method, which employs constrained DFT to also account
for charge transfer effects, and allows for a clean decomposi-
tion of the interactions captured by the underlying density func-
tional95,107. This already hints at a very important point: In or-
der to obtain the contribution of vdW interactions, the under-
lying method used for the constrained SCF procedure must ex-
plicitly account for dispersion forces and desirably, higher-order
terms too. Because of this, many schemes have been re-expressed
at higher levels of theory, such as coupled cluster108–110 or
dispersion-corrected DFT111–113. As of today, a vast number of
methodologies and flavors of variational energy decomposition
techniques has been devised and above we only presented a few,
select examples. For a more comprehensive list, see e.g. Ref. 114
and references therein.

4.2.2 Perturbational Energy Decomposition

Perturbational approaches treat intermolecular interaction as a
perturbation to the Hamiltonian of non-interacting subsystems.
With increasing order of the perturbation, one can identify the
classic definitions of the different types of intermolecular interac-
tions including electrostatics, induction, and dispersion interac-
tions. The typically covered terms are given in Tab. 1 and Fig. 3.
As known from basic perturbation theory this expansion reaches
the exact limit at infinite order given that the perturbation, i.e. the
intermolecular interaction, is small. With that, it also represents
a well-defined ab initio method for modeling vdW interactions.
Nevertheless, for practical calculations and especially in the con-
text of DFT, the series is truncated at second order. Due to the still
large computational workload associated with such approaches,
however, they are typically less commonly used in practical elec-
tronic structure calculations. Mostly they serve as a benchmark
for the development and parametrization of more approximate
models and in energy decomposition analysis for a quantitative
understanding of intermolecular interactions.

The main problem when starting from non-interacting sub-
systems is the neglect of anti-symmetry of the total wavefunc-
tion with respect to particle exchange: The total wavefunc-
tion for non-interacting subsystems is the Hartree-product of
the respective subsystem wavefunctions, which does not obey
the Pauli principle. To account for this shortcoming, a variety
of symmetry-forcing methods have been put forward47. The
most successful and well-established approach among those is
the so-called (intermolecular) symmetry-adapted perturbation
theory (SAPT)116,117, which accounts for the Pauli principle in
form of using an anti-symmetrization operator. SAPT has tradi-
tionally been employed in conjunction with wavefunction-based
methods, but has also been formulated in the context of KS-
DFT, which allows to study larger molecular systems118. After
this initial formulation, Heßelmann and Jansen119–121 and Mis-
quitta et al.122–124 independently devised the nowadays practical
methods termed SAPT(DFT)119 and DFT-SAPT122, respectively.
Both approaches are essentially identical and rely on asymptoti-
cally corrected density functionals, e.g. PBE0-AC125, and density-
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term(order) physical interpretation

E(1)
es electrostatics

E(1)
ex exchange-/Pauli-repulsion

E(2)
ind

Eind
typically combined into

induction (“polarization”)E(2)
ex-ind

E(2)
disp

Edisp
typically combined into

(second-order) dispersionE(2)
ex-disp

δHF
estimate of higher-order

contributions to induction

Eint = E(1)
es +E(1)

exch +Eind +Edisp +δHF

Table 1 Interaction terms covered by DFT-based Symmetry-Adapted
Perturbation Theory (SAPT). The order of the perturbation expansion
in which the term appears is indicated as superscript 47.

Fig. 3 Energy contributions along dissociation curve of Argon dimer
as obtained by SAPT when based on CCSD, HF, or DFT description of
monomers. Data taken from Ref. 115.

density response functions (susceptibilities). For the remainder
of this section, we will collectively refer to these methods as
SAPT@DFT.

In the DFT-based SAPT formalism, the monomers are calcu-
lated within DFT and the respective (anti-symmetrized) KS deter-
minants serve as a starting point for the perturbation expansion.
Thereby using asymptotically corrected functionals especially im-
proves the otherwise poorly reproduced exchange-repulsion term
in SAPT@DFT122. The second-order induction (polarization) and
dispersion energies are calculated from charge density suscepti-
bilities, which are obtained by time-dependent DFT. For this, it is
often recommended to also include response effects, i.e. the effect
of the perturbing intermolecular potential on the density-density
response, which ultimately leads to coupled susceptibilities126. In
many cases, the error associated with using uncoupled suscepti-
bilities has been found to cancel out with errors in the charge pen-
etration contribution124,127. Especially at large monomer separa-
tions, however, usage of uncoupled susceptibilities often leads to
larger errors in interaction energies124, while using coupled sus-
ceptibilities yields excellent agreement with accurate results from
coupled cluster theory128. The difference of dispersion interac-
tions from coupled and uncoupled KS theory are also exploited in
the so-called MP2C method based on second-order Møller-Plesset
perturbation theory129. In MP2C, the dispersion energy based
on uncoupled HF of KS states is replaced with the dispersion
components calculated in the corresponding coupled perturba-
tion formalism, which has been shown to significantly improve in-
teraction energies for dispersion bound systems130–132. Another
successful application is the use of SAPT-derived potential energy
surfaces (PESs), where the PES is calculated on a representative
grid using SAPT(@DFT). This PES is then interpolated at runtime
to perform, e.g. extended molecular dynamics simulations with

quantum-chemical accuracy nearly at the cost of molecular me-
chanics, which has been proven a viable tool for studying simple
biomolecular assemblies, vdW complexes, crystal structures, or
condensed phase systems, for instance133–136.

For practical calculations, the wavefunctions are represented
in a basis set. In SAPT@DFT, the monomer wavefunctions can be
described in a monomer-centered basis set or in a dimer-centered
basis. In the former both monomers are represented as if they
were isolated molecules. Perturbed states are then constructed
from the orbitals of each monomer individually. This excludes
excitations from monomer A to monomer B in perturbed states,
which excludes charge transfer – a possible significant contribu-
tion to the interaction energy. To further avoid basis set superpo-
sition errors, one can use the dimer-centered basis, in which both
monomers are described in the full basis set of the dimer includ-
ing ghost orbitals situated on the other monomer in dimer con-
figuration. In addition, so-called mid-point functions placed in
between the monomers can considerably improve accuracy and
convergence by augmenting the representation of the bonding
region124. Besides this fundamental choice of representation,
the actual basis sets are of utmost importance. As intermolec-
ular interactions are particularly sensitive to the outer regions
of the wavefunction, i.e. the density tails, this region has to be
properly described. One measure is using asymptotically cor-
rect density functionals as mentioned above. Another important
point is a sufficiently large basis set to describe the density tails.
Typically, augmentation with additional diffuse basis functions is
recommended47. The need for large basis set sizes is one rea-
son for the high computational work load in SAPT(@DFT). As
an additional ramification, the calculations can be very memory-
demanding and can cause severe limitations in terms of tractable
system sizes. A typical problem when trying to obtain the total
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interaction energy from intermolecular SAPT, and perturbation
theory in general, is the slow convergence of the induction en-
ergy due to consecutive polarization terms at increasing orders47.
The most common approach to deal with this is by obtaining an
estimate for the higher-order contributions to the induction en-
ergy, δHF, from HF calculations for the dimer137,138, which can
however further limit the applicability due to the associated com-
putational costs of a self-consistent dimer calculation.

One of the central drawbacks of the well-established inter-
molecular SAPT approaches is that they are formulated in terms
of two separated, i.e. not covalently-bond, fragments such that
their interaction can be treated as a small perturbation of the in-
dividual fragments. Calculating many-fragment interactions rep-
resents a difficult and especially time-consuming task within such
an perturbational approach. Significant progress has been made
for three-body corrections139,140. This has allowed the investiga-
tion of three-fragment contributions in the benzene crystal, endo-
hedral fullerene complexes, or water clusters, for example141–143.
Three-fragment SAPT calculations considerably increase the al-
ready high computational demands of SAPT and the impact of
many-fragment interactions beyond three is rarely reported. One
approach to go beyond these limitations in terms of system size
and the number of fragments is the Extended SAPT (XSAPT) fam-
ily144,145. While originally accounting only for many-fragment
polarization, the XSAPT framework has recently been extended
to also incorporate many-fragment dispersion via an adaption of
the Many-Body Dispersion formalism (cf. Section 5.4)146.

Another limitation is the modeling of non-covalent intra-
molecular interactions in the perturbational framework. In con-
ventional wavefunction-based SAPT, this is tackled in form of
a three-perturbation expansion, where one is the intermolecu-
lar interaction and the other two are intra-fragment electron
correlation47. In SAPT@DFT, on the other hand, one typically
performs a single perturbation with the intermolecular electron-
electron interaction and the DFT-functional is meant to capture
intra-fragment exchange and correlation. Systems with strong,
yet non-covalent, intramolecular interactions, such as extended
biomolecules for instance, cannot be cut at covalent bonds and
treated as individual fragments, which complicates calculations
in a perturbational framework. Based on the Chemical Hamil-
tonian approach147, this issue has recently been addressed by
Corminboeuf and co-wokers, who devised a SAPT methodol-
ogy for intramolecular interactions148,149. In this intramolecu-
lar SAPT variant, the system under consideration is partitioned
into non-covalently interacting molecular fragments by means of
strictly localized orbitals148,150. The starting wavefuctions for
the fragments are obtained while being embedded in the HF-
wavefunction of a covalent linker, which connects the two frag-
ments. The intramolecular interaction ultimately is obtained in
a perturbation expansion ontop of the fragments starting wave-
functions148,149. This has allowed to accurately decompose in-
tramolecular interactions among functional groups, in hairpin-
configuration of extended alkanes, stacked aromatic residues, and
ionic guest-host complexes148,149,151. It is worthwhile to point
out, that this method remains ill-defined in the complete basis set
limit151 and, to the best of our knowledge, has not been formu-

lated in the context of DFT. For the latter, subsystem DFT with
three-partition frozen density embedding (3-FDE)152–154 might
represent a promising framework to provide the necessary frag-
ment KS determinants.

For SAPT(@DFT), there also exists a derived formalism, known
as A/F-SAPT155, which maps intermolecular forces to the inter-
action of pairs of atoms/fragments. This provides an insightful,
conceptual analysis and also spatial illustration of individual con-
tributions to intermolecular interactions and can help to signifi-
cantly boost the derivation of ab initio-based molecular mechanics
force field approaches.

In general, an accurate, quantitative energy decomposition
analysis for vdW interactions is usually limited to small-sized sys-
tems due to the computational cost given by the required level
of theory or basis set size114. For larger-scale systems, this calls
for more efficient, practical models, which we will present in the
section below (in particular Sections 5.2–5.5).

5 Practical Methods for van der Waals Inter-
actions

In Section 4, we introduced some qualitative and quantitative
tools, which can guide our understanding of vdW interactions and
serve as benchmark reference, but are limited in terms of system
size and complexity due to the associated computational costs. As
discussed above, the inclusion of vdW interactions is essential to
obtain quantitatively and even qualitatively correct results for a
variety of molecular systems and materials. This realization to-
gether with the limitations of higher-level approaches, motivated
the development of more practical methods, that allow us to de-
scribe and understand long-range correlation forces in more re-
alistic and practically relevant systems. In the following section,
we outline some of the currently widely-used vdW models, their
theoretical background as well as some direct consequences for
practical applications connected to the individual methodologies.
A short, but by no means complete, overview of the availability
and usage of each method in electronic structure codes is given
at the end of each subsection.

5.1 Random-Phase Approximation of the ACFD Formula

A first, rigorous approach to model long-range correlation forces
is to directly evaluate the ACFD formula, for clarity repeated from
eq. (1):

Ecorr =−
1

2π

∫
∞

0
dω

∫ 1

0
dλ

∫∫
drdr′

[
χλ

(
r,r′, iω

)
− χλ=0

(
r,r′, iω

)]
VCoul

(
r,r′
) (17)

where the density-density response for the non-correlated system,
χλ=0 (r,r′, iω), can be obtained from the KS (or HF) independent-
particle orbitals, φi, with corresponding eigenenergies, εi, and oc-
cupation numbers, fi, via the Adler-Wiser formula31,32,

χλ=0
(
r,r′, iω

)
= ∑

i, j

(
fi− f j

) φ∗i (r)φi (r′) φ j (r′)φ∗j (r)
εi− ε j + iω

. (18)
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Just as the definition of the non-local polarizability according to
the self-consistent Dyson equation (4), the interacting density re-
sponse function χλ depends on the exact exchange-correlation
kernel, fxc, which is in general not known. A widely employed
and successful approximation that allows evaluation of the ACFD
formula is the random phase approximation (RPA). In the RPA,
we neglect the exchange-correlation kernel in the Dyson-equation
( fxc = 0). This leads to the RPA-variant of the Dyson equation
(here we skip the notion of the iω-dependency for reasons of clar-
ity),

χ
(RPA)
λ

(
r,r′
)
=χλ=0

(
r,r′
)
+λ

∫∫
dr′′dr′′′

×χλ=0
(
r,r′′

)
VCoul

(
r′′,r′′′

)
χλ

(
r′′′,r′

)
.

(19)

Within the framework of RPA, the ACFD formula (17) is typically
not reformulated in terms of the non-local polarizability as done
in Section 2.1, but stated in terms of the non-local density-density
response, which according to eq. (19) is now fully defined by
χλ=0. Solving eq. (19) and inserting the result into the ACFD
formula (17) allows to analytically integrate over the coupling
constant, λ , and gives the expansion series for the full-range RPA
correlation energy,

E(RPA)
corr =− 1

2π

∫
∞

0
dω

∞

∑
n=2

1
n

∫∫
drdr′

×
[
χλ=0

(
r,r′, iω

)
VCoul

(
r,r′
)]n

.

(20)

In order to get a complete description of a system, the RPA corre-
lation energy is then combined with KS-DFT, usually further aug-
mented by using exact exchange (EXX). This combination of the
RPA correlation energy from the ACFD formula and EXX156,157

is long known as a promising avenue in electronic structure the-
ory and was also adapted158–160 and explored161–169 in combi-
nation with DFT. This combined approach is referred to as “exact
exchange with correlation from RPA” (EXX/cRPA) and the total
energy functional in that case is composed of the kinetic energy
of the non-interacting KS reference system, the external (nuclear)
potential energy, and the Hartree energy just as in conventional
KS-DFT. Exchange and correlation, on the other side, are treated
via RPA of the ACFD formula instead of an approximate exchange-
correlation functional at the Local Density Approximation (LDA),
Generalized Gradient Approximation (GGA), or Hybrid level. In
modern implementations, the RPA approach and many of its fla-
vors discussed below typically scale between O

(
N4) and O

(
N5)

with the number of basis functions N (comparable to canonical,
second-order Møller-Plesset perturbation theory) and are usually
employed in an a posteriori fashion164,170–172. Also, analytical
nuclear gradients, i.e. interactomic forces, and many other first-
order molecular are available in modern codes172.

As can be seen more easily when reformulated in terms of
the non-local polarizability, the RPA essentially corresponds to a
saddle point approximation (cf. eq. (5) in Section 2.1). In ad-
dition, RPA does not rely on a full multi-electron wavefunction
and therefore the resulting correlation energy is not necessar-
ily based on antisymmetric states, which in particular affects the

short-range. As a consequence, the RPA formalism tends to show
significant deficiencies especially in the description of short-range
correlation, where it tends to overestimate the correlation en-
ergy173,174. Despite the shortcomings of the original formulation,
the EXX/cRPA approach has been established as a reliable, yet
computationally demanding, method for total (interaction) ener-
gies within the context of KS-DFT thanks to appropriate reformu-
lations, which we will shortly summarize below after discussing
the connections of the RPA correlation energy and electron corre-
lation in wavefunction-based methods.

5.1.1 ACFD/RPA and Wavefunction-based Methods

Besides forming the basis for the variety of vdW models used
in the context of DFT, the ACFD theorem also allows to con-
nect the two fundamental approaches of describing electron cor-
relation: post-HF methods in the form of coupled cluster the-
ory and the ACFD/RPA formalism including the models derived
thereof. Scuseria et al.164 were able to show that the ground-state
ACFD/RPA correlation energy mathematically equals the result
from a particle-hole ring diagram approximation to the coupled
cluster doubles (rCCD) theory. In the particle-hole ring approx-
imation, one only considers a single excitation with correspond-
ing creation of a hole and subsequent deexcitation into the orig-
inal state, thus representing a ring diagram164,175. This can also
be seen as electron density fluctuations within dipole approxima-
tion, where the dipole is spanned by the particle and the hole and
the fluctuation corresponds to continuous excitation-deexcitation.
It can further be concluded that, in the RPA, the corresponding
fermionic product operator for excitation-deexcitation is approx-
imated by a single effective bosonic excitation operator175. The
equivalence of the resulting correlation energies has been shown
to hold between direct RPA and direct rCCD, i.e. neglecting the
effect of exchange on the correlation energy, as well as for the
full RPA and full rCCD correlation energies164. Based on this
connection a myriad of rCCD-derived RPA flavors has been pro-
posed175–178 and further connections between ACFD/RPA and
rCCD, such as between amplitudes and densities179, can be
drawn. In fact, many of the general extensions to the original
EXX/cRPA formalism outlined below, which particularly address
the improvement of the description of short-range correlation,
have been motivated or can even be expressed in terms of this
connection179.

5.1.2 ACFD/RPA and Density Functional Theory

A first approach to reduce the deficiency in describing short-
range correlation in RPA, was put forward by Perdew and co-
workers180,181. In their scheme, termed RPA+, the short-range
correlation energy is adapted by a local correction via the cor-
responding energy of the homogeneous electron gas as given by
DFT in the LDA or GGA, such that

E(RPA+)
corr = E(RPA)

corr −
(

E(LDA/GGA−RPA)
corr −E(LDA/GGA)

corr

)
, (21)

where E(LDA/GGA−RPA)
corr is the LDA/GGA of the RPA correlation

energy and E(LDA/GGA)
corr is the correlation energy for the sys-

tem as obtained by LDA/GGA-DFT174,180,181. This modified ap-
proach converges to the correct solution for the homogeneous
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electron gas and already significantly improves total correlation
energies162,165,182, but can still show considerable shortcomings
for binding properties183.

Another approach is to avoid spurious one-electron self-
correlation arising from using a not necessarily antisymmetric
many-electron wavefunctions as basis of the RPA treatment. This
can be achieved via the inclusion of second-order screened ex-
change (SOSEX)166,170. Despite being numerically more de-
manding, EXX/cRPA with SOSEX correction usually performs well
for molecules and solids166,170. However, adding SOSEX can lead
to a reduced accuracy of the calculated height of reaction barri-
ers184–186, which can be explained in terms of a less accurate
treatment of static correlation187. Within the EXX/cRPA+SOSEX
framework, this issue has recently been addressed by introduc-
ing a short-range SOSEX correction187. The spurious overestima-
tion of short-range correlation by the original EXX/cRPA scheme
can also be avoided in the spirit of range-separated Hybrid DFT.
Here, the RPA-ACFD formula, together with the HF exchange
kernel167 or coupled cluster theory168, is only employed in the
long-range (as was also introduced in eq. (9) in Section 2.2),
while the short-range correlation (and exchange) is treated by a
short-range density functional167–169. This approach yields reli-
able and accurate results for thermochemical properties and vdW
dimers168,169, yet introduces an empirical range-separation and
scaling parameter167–169,171, which might affect generality and
transferability.

Ren et al. presented a slightly different approach to go be-
yond the original EXX/cRPA model motivated by considerations
from perturbation theory171. Most RPA flavours described above,
when based on KS-DFT or HF, can also be interpreted in terms
of many-body perturbation theory based on the corresponding
(generalized) KS or HF reference states, respectively. Thereby,
within Rayleigh-Schrödinger perturbation theory, the RPA corre-
lation energy corresponds to the sum of all zeroth and first-order
terms of the perturbation expansion independent of whether one
starts from a (generalized) KS or HF reference state129,171. For
the exchange energy, however, RPA and SOSEX miss single ex-
citation (SE) terms, when based on DFT. This term can easily
be obtained based on the independent-particle KS states and in-
cluding the SE term has been shown to lead to significant im-
provements for weakly interacting systems171. Later, a renor-
malization based on higher-order terms (→ rSE) and Coulomb
screening in the form of self-energies as obtained within the GW
approximation (→ GWSE) have been introduced to avoid prob-
lems in (nearly) zero band gap systems185,188. Keeping most
of the improvements of the SE term, the combined approach of
EXX/cRPA+SOSEX+rSE also provides a remarkable transferabil-
ity and has been shown to yield highly accurate results for atomi-
sation, binding, and reaction energies as well as for reaction bar-
rier heights184,185. For hydrogen-bond systems, on the other side,
the combination of RPA with both SOSEX and (r)SE turned out to
be unprofitable185. Employing the EXX/cRPA+GWSE formalism,
Klimeš obtained remarkably accurate lattice energies for molec-
ular solids189. A similar route was taken by Bates and Furche,
who devised a renormalized many-body perturbation theory di-
rectly starting from RPA.186 Account for the resulting leading-

order term, referred to as “approximate exchange kernel” (AXK),
considerably improves RPA energies and has been found to pro-
vide a more balanced correction to RPA than the SOSEX approach,
when treating main-group compounds.190

5.1.3 ACFD/RPA in Electronic Structure Codes

As a general remark, it has unanimously been found that
EXX/cRPA calculations are more reliable when based on KS states
obtained from GGA-DFT calculations rather than Hybrid density
functionals. Also, proper testing with respect to convergence of
the basis set size is highly recommended and if possible correc-
tions to possible basis set superposition errors should be included.
Calculation of the RPA correlation energy is available in the fol-
lowing codes (this does not represent a complete list, but covers
most major electronic structure codes):

• ABINIT191–193: The total and long-range RPA correlation
energy can be calculated for periodic systems in a plane-
wave basis set in the GW-module. It allows to specify the
number of states/bands to be used to obtain χ0 via eq. (18)
(large values recommended for convergence) and the cut-
off energy of the plane-wave basis set for the representa-
tion of the dielectric matrix. Additional speed-up can be ob-
tained when taking advantage of time-reversal symmetry or
using an extrapolation scheme with respect to the number
of empty states/bands.

• CP2K186,194 features EXX/cRPA calculations within the
resolution-of-identity (RI) approximation for gas-phase and
periodic calculations. In addition, the AXK correction to RPA
is available.

• FHI-aims195: Following the EXX/cRPA scheme the total en-
ergy is calculated via

E(RPA)
tot = E(DFT)

tot −E(DFT)
xc +E(EXX)

x +E(RPA)
corr . (22)

Currently, FHI-aims allows for plain cRPA, cRPA+SOSEX,
RPA+(r)SE, and cRPA+rSE+SOSEX (≡ rPT2) calculations
for non-periodic systems relying on the RI approximation.
These “RPA and beyond”-methods are prone for consider-
able basis set superposition errors. Hence, using counter-
poise correction is recommended for accurate energies. Us-
ing a correlation consistent basis set reduces such implica-
tions and is in general recommended for use in RPA calcula-
tions. For the number of empty states, large values, typically
beyond the basis set size to include all available states, is
recommended. Due to a significant loss in accuracy, usage of
the accelerated RI method is not recommended. Calculation
of the RPA correlation energy along the coupling constant,
λ , and output of the (linear) dielectric tensor within RPA is
also implemented.

• TURBOMOLE196: Calculation of RPA correlation energy
and gradients within RI is available. Additional options such
as the frequency grid-size for numerical integration and skip-
ping of the EXX calculation can be set manually. Orbitals can
be excluded from correlation treatment (recommended for
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inner-level orbitals) and usage of high angular momentum
(diffuse) basis function and inclusion of auxiliary basis (for
the calculation of HF exchange) is required.

• VASP197–201 allows for direct ACFD/RPA calculations for pe-
riodic systems in plane-wave basis. This however, requires
several individual calculations and can not be obtained in a
single run as of the time of this publication. After performing
a standard DFT calculations, obtaining EXX from the result-
ing KS states, and running a refined DFT calculation using
the maximum number of plane-waves, one can obtain the
ACFD/RPA correlation energy. Thereby, using the maximum
number of plane-waves is recommended. For convergence
tests with respect to reciprocal space summation and basis
set size, the energy cutoff should be changed already in the
first standard DFT calculation and all four steps are to be
repeated.

5.2 Non-local Density Functionals

5.2.1 Theory and Connection to ACFD Formula

The maybe most obvious way to approximate vdW interactions
within DFT would be to modify the underlying energy functional
to include the proper physics for describing weak, dispersive in-
teractions. The general idea is to begin with the ACFD formula
of eq. (1), postulate an approximate form for χλ (r,r′, iω) and
then simplify the integrals. Invariably, the goal is to avoid the
summation over unoccupied states that is explicit in the full RPA
expression of eq. (20). Functionals of this type have the appeal-
ing feature of potentially being computationally less demanding
compared to RPA or EXX calculations, while still being seamless
in the sense of not requiring any partitioning of the system into
fragments.

In order to simplify the ACFD formula, one might naively try a
local density approximation to the response function:

χλ

(
r,r′, iω

)
≈ f̃ (ρ(r), iω) δ

3(r− r′) , (23)

for some appropriate function f̃ (ρ(r), iω). However, as shown by
Dobson202, this corresponds to unphysical fluctuations in the to-
tal number of electrons rather than the number-conserving fluctu-
ations implied by the ACFD formula of eq. (1). To make a proper
local approximation, one must instead approximate the polariz-
ability:

αααλ

(
r,r′, iω

)
≈ fff (ρ(r), iω)δ

3(r− r′) , (24)

which can be used to construct the ACFD correlation energy via
eq. (3). The first explicit density functional to successfully apply
these ideas was proposed by Dobson203. The resulting functional
was only applicable to jellium-like systems, but seamlessly con-
nected short- and long-range interactions.

To extend this idea to general systems, one requires a more gen-
eral ansatz for the local polarizability of eq. (24). A tremendous
amount of effort has been devoted to this topic204–207, much of
which has centered around plasmon-pole-type approximations to

the local polarizability:

α(r,r′, iω) =
1

4π

ω2
p(r)δ 3(r− r′)
ω2

p(r)−ω2 with ω
2
p(r) = 4πρ(r) , (25)

which is thought to be a good approximation for uniform systems.
The big breakthrough came with the development of the vdW-DF
functional in the Rutgers-Chalmers group208,209. Here, in order
to simplify the algebra, one truncates the Dyson equation for αλ

in eq. (4) at second order so that†

αλ ≈ α0−
〈
λ α0 Txc,λ α0

〉
r′′,r′′′ . (26)

This truncation has the unfortunate side effect of discarding
screening effects (type B non-additivity), but otherwise the al-
gebra becomes too cumbersome to be tractable for practically rel-
evant systems. One then proceeds to make a semi-local, plasmon-
pole-like approximation to α0, constructed to satisfy several exact
constraints: 1) the f-sum rule (Thomas-Reiche-Kuhn), 2) the short
wave-vector (small q) limit, 3) time reversal symmetry, and 4) the
volume of the xc hole. The resulting functional can be expressed
in non-local form as,

E(nl)
corr =

1
2

∫∫
ρ(r)φ(r,r′)ρ(r′)drdr′ , (27)

where φ is itself an integral that is in practice approximated nu-
merically via interpolation of a dense grid of pre-computed val-
ues. The vdW-DF functional is in principle non-empirical and
seamless and produced an explosion of activity applying density
functional theory to weakly interacting systems6,210–213. Numer-
ous variants of vdW-DF have arrived in the intervening years, in-
cluding the vdW-DF2 functional214, which improves upon the ac-
curacy of the original functional for a variety of systems. A recent
review nicely summarizes the important progress in this area215.

The original non-local vdW-DF was intended to be used with a
semi-local exchange functional that was close to HF exchange (or
EXX). However, a number of initial studies noted that the results
were extremely sensitive to the choice of semi-local exchange216

and a number of authors proposed re-parameterizing the semi-
local exchange functional for the specific purpose of produc-
ing good intermolecular forces when paired with vdW-DF212,217.
This approach has the obvious negative consequence that re-
parameterizing the exchange will also have a significant impact
on intramolecular forces and on the molecular electron density
itself. A more natural approach would be to re-parameterize the
vdW-DF to match the semi-local exchange functional, but the ex-
tremely complicated nature of the vdW-DF functional makes this
a daunting task.

Vydrov and Van Voorhis made progress in this direction218 by
dropping the constraint that the approximation to α0 has to be
correct in the short wave vector limit. That limit is not relevant
for long-range intermolecular interactions and introduces a nu-

† It should be noted that most of the literature on the vdW-DF is formulated in terms
of the dielectric permittivity, ε, rather than the polarizability, α. In the context of
the present work, however, we will phrase the discussion in terms of polarizability
for consistency with the other sections.
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merically troublesome short-range divergence of the integral ker-
nel φ in eq. (27). Proposing a new approximate α0 that ignores
this constraint, the resulting VV09 functional takes the form

EVV09
corr ≡

3
64π2

∫∫
ω2

p(r)ω2
p(r′)D(K)drdr′

ω2
0 (r)ω

2
0 (r′)[ω

6
0 (r)+ω6

0 (r′)]‖r− r′‖6
, (28)

where ω2
0 = ω2

p/3+ω2
g is the plasmon response with band gap

determined by ωg and D(K) is a non-empirical damping function.
While eq. (28) may look more complicated than the original vdW-
DF, it is in practice easier to deal with because the function D(K)

is an explicit, analytic function of the local density variables. Sub-
sequently, VV09 was simplified further219 by discarding the semi-
local model for α0 altogether and instead directly proposing a
form for φ in eq. (27):

φ
VV10 ≡ −3

2g(r)g(r′)(g(r)+g(r′))
, (29)

where g is a function of the local density variables. The resulting
VV10 functional is equivalent to VV09 as the fragment separa-
tion approaches infinity, but is manifestly simpler in construction
and in practice seems to be significantly more accurate than the
original VV09 functional220. Because of the semi-empirical na-
ture of its construction, VV10 contains two parameters (C and b)
that must be chosen in practice. The first, C, controls the effec-
tive local band gap and is typically chosen such that the non-local
functional gives accurate C6 coefficients, which are very sensi-
tive to the size of the gap. The second parameter, b, controls
the strength of the damping function and thus has no impact on
long-range properties like the C6 coefficients. Instead, b is typi-
cally chosen differently for different semi-local functionals so that
the short-range repulsion from exchange and the damping of dis-
persion interactions in E(nl)

corr balance appropriately. The flexibility
implied by the choice of b has allowed VV10 to be paired with
a wide array of different semi-local exchange-correlation func-
tionals – GGAs219,221, hybrids221, meta-GGAs222,223 and range-
separated hybrids219,223,224 have all been successfully combined
with VV10.

5.2.2 Practical Aspects

The six dimensional integral implied by eq. (27) is typically the
computational bottleneck in evaluating non-local xc-functionals,
having a formal scaling of O(N2) with system size and a large
prefactor. The complicating element is that the kernel, φ , is a
function not only of R≡ ‖r− r′‖ but also of the local density and
density gradient values at r and r′. If it only depended on R,
the integral could be done rapidly by convolution. Fortunately,
φ(r,r′) only depends on the density through a single function,
q[ρ,‖∇ρ‖] evaluated at the points r and r′. As a result, one can
write225:

φ(q,q′,R)≈∑
i, j

φ(qi,q j,R)pi(q)p j(q′) , (30)

where qi is a mesh of points and pi is some complete set of func-
tions. For each fixed pair {qi,q j} the six dimensional integral in
eq. (27) can be evaluated via convolution. Therefore, for some
fixed number of grid points, G, eq. (30) allows one to compute

the energy and forces for vdW-DF in O(N logN) time – a huge
speed-up relative to the brute force implementation. In practice,
relatively modest values of G (∼ 20) suffice, in which case the
vdW interactions in a typical vdW-DF simulation do not notice-
ably affect the overall timing, making vdW-DF and its derivatives
modern workhorses for the simulation of weakly bound solids215.

Unfortunately, the non-local kernels for VV09 and VV10 do not
share the same structure as vdW-DF: instead of depending on one
function (q), VV09 and VV10 depend on two functions (ω0 and
ωp). As a result, eq. (30) cannot easily be applied to VV10. How-
ever, one can introduce an approximation in which the damping
factor in g is assumed to be the same at both r and r′, resulting in
the revised VV10 (rVV10) kernel226:

φ
rVV10 ≡ −3

2(hR2 +1)(h′R2 +1)(hR2 +h′R2 +2)
, (31)

where h is a function of the local density and its gradient. This
revised functional is numerically very similar to VV10, but has
the distinct advantage that it can be expanded using eq. (30) and
thus evaluated in O(N logN) time.

5.2.3 Non-local (vdW) Density Functionals in Select Elec-
tronic Structure Codes

vdW-DF, VV10 and their variants are available in a wide array of
electronic structure codes. Broadly speaking, plane-wave codes
tend to implement the convolution approximation to speed up
the evaluation of the xc energy and thus implement only rVV10.
Gaussian orbital-based codes sometimes implement the full six di-
mensional integral either by quadrature or by Monte Carlo, lead-
ing to facile implementation of VV10. In the latter case, the eval-
uation of the non-local energy can become prohibitive for very
large systems. Some examples of electronic structure codes fea-
turing non-local vdW-DFs include:

• Q-Chem227 Calculation of vdW-DF, vdW-DF2, VV10 and
rVV10 energies and forces. Note that the C and b param-
eters for VV10 and rVV10 have to be specified via additional
keywords.

• Quantum Espresso228 allows for calculation of dispersion-
inclusive electronic energies and forces as obtained by vdW-
DF, vdW-DF2 and rVV10226,229,230.

• SIESTA231 features vdW-DF, vdW-DF2 and rVV10 energies
and forces.

• VASP197–201 The vdW-inclusive functionals vdW-DF, vdW-
DF2 and rVV10 are implemented212,213. Manual specifica-
tion of b parameter for rVV10 and switch between vdW-DF
and vdW-DF2 required.

5.3 Effective Non-local Core Potentials

Above (Section 5.2), we introduced non-local density functionals
as a promising approach to model vdW interactions. It is aimed to
include non-local, long-range correlation interactions directly in
the form of the potential of the density functional instead of using
post-processing of any sort. While the above vdW-DF models use
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a physically motivated two-point potential between positions in
the electronic charge density, such a path can also be pursued
in a data-driven manner, i.e. by adding a non-local two-point or
core potential, which can be optimized to comply with accurate
reference results.

The basic idea and framework of optimizing the core poten-
tial referred to as optimized effective potential (OEP) is due to
Sharp and Horton232 and has later been picked up in the context
of describing electron correlation within DFT as an alternative to
common density functional approximations (DFAs)233–236. von
Lilienfeld et al. generalized the previously still first principles-
based framework to so-called dispersion-corrected atom-centered
potentials (DCACPs), which aim at accurately reproducing dis-
persion interactions and other complex molecular properties
as predicted from higher-level theoretical methods (or experi-
ment)237. In their approach they include angular momentum-
dependent non-local effective core potentials, as also used in
norm-conserving pseudo-potentials in DFT calculations with a
plane wave basis set238, composed of spherical harmonics and
Gaussian-type radial projectors237. To model dispersion inter-
actions, the parameters, {σi}, entering the effective non-local
core potential are then optimized by minimizing the penalty func-
tional,

P [ρ (Mref)] = |Eref [ρ (Mref)]−E [ρ (Mref) ;{σi}]|2

+∑
A

cA ‖FA [ρ (Mref) ;{σi}]‖2
(32)

via a second Gaussian-type projector. Above, Eref [ρ (Mref)] and
E [ρ (Mref) ;{σi}] are the energy obtained for the reference sys-
tem Mref using the reference method and the parametrically de-
pendent DCACP energy, respectively, and FA is the nuclear force
on atom A as obtained in the DCACP method. For the evaluation
of the penalty functional, one chooses reference systems, Mref,
which are minima on the potential energy surface in the reference
method. Thus, Fref = 0. cA, finally, is a weighting factor, which al-
lows to exclude the nuclear gradient A in the optimization237,239.
Using the gradient of the penalty function with respect to {σi},
this procedure can be used to variationally tune common DFAs to
(re-)produce accurate results for a given molecular property. It
has to be kept in mind though, that a given application requires
a given choice of reference systems, the penalty function(al) and
the weighting factors237, which adds a certain degree of empiri-
cism and potentially limits transferability6.

Typically, second-order Møller-Plesset theory or more recently
also CCSD(T) serves as a reference method and its has been
shown that DFT+DCACP can be used to accurately reproduce the
binding properties of noble gases, a variety of hydrocarbon com-
plexes as well as condensed matter systems like graphite, multi-
layer graphene, molecular crystals, liquid water, and adsorption
phenomena237,239–243. Approaches to include vdW dispersion in-
teractions via effective core potentials are, in general, available in
pseudo-potential DFT codes, such as CPMD244, for instance. As
the DCACP approach relies on optimizing effective core poten-
tials, one can use the obtained potentials in the form of pseudo-
potentials in a variety of electronic structure codes.

5.4 Interatomic Many-Body Method from ACFD/RPA: Many-
Body Dispersion Formalism

The most common and successful approach to model electron cor-
relation in realistic systems in the context of DFT is to combine
a (semi-)local density functional approximation (DFA) for the
short-range exchange and correlation contribution with a model
for long-range correlation (vdW interactions) as a post-processing
step.

5.4.1 Theoretical Background

Typically, post-DFT vdW models are based on a dipole approxima-
tion or RPA and written in an interatomic framework. The lat-
ter can be interpreted as coarse-graining the response functions
entering the long-range ACFD/RPA formula (9), which we will
repeat here for reasons of clarity:

E(lr,RPA)
corr =−

∞

∑
n=2

(−1)n

n
1

2π

∫
∞

0
dω

〈
Tr
{〈(

ααα
(sr)Tlr

)n〉
r′′,r′′′

}〉
r,r′

.

(33)

The coarse-graining is usually chosen such that the spatial inte-
grations in eq. (9) can be performed analytically, which signifi-
cantly reduces the computational cost. In Section 2.2, we already
introduced such a coarse-grained polarizability in terms of atomic
point polarizabilities, see eq. (10). In the Many-Body Dispersion
(MBD) formalism49,245, a less approximate approach is chosen.
Here, the total polarizability is contracted to a sum of effective
isotropic atomic (dipole) polarizabilities.† Such atomic/molecular
response properties have been shown to be accurately described
by a Quantum Harmonic Oscillator (QHO) model49,245–249. In
fact, the leading Padé approximant of the dynamic isotropic
atomic dipole polarizability250 follows the same formula as the
dynamic dipole polarizability of an isotropic QHO,

α
(QHO)
A (iω)≡ αA (iω) = αA,0

[
1+
(

ω

ηA

)2
]−1

, (34)

where αA,0 ≡ α
(QHO)
A (0) is the effective static QHO polarizabil-

ity and ηA is the characteristic excitation frequency of QHO A.
Hence, the remaining step is the parametrization of such QHOs
to model atoms in molecules. In MBD, the two vdW parameters
are obtained from accurate atomic reference data taking into ac-
count the local chemical environment (type A non-additivity, see
Section 2.3) via

xA ≈
αA,0

α
(ref)
A,0

≈

√√√√C6,AA

C(ref)
6,AA

and ηA =
4
3

C6,AA

α2
A,0

, (35)

where the rescaling factor x is derived from the electronic struc-
ture, conventionally as the ratio of the volumes of the atom in

† We would like to point out that the MBD formalism does not fundamentally ex-
clude anisotropic polarizabilities on the atomic scale.The choice of isotropic atomic
polarizabilities, however, allows for an efficient, analytical evaluation of the dipole
coupling.
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the system and the reference atom as obtained via Hirshfeld anal-
ysis251 (this is further detailed for the vdW(TS) model in Sec-
tion 5.5.1 below). It is worthwhile to mention, that a QHO has a
natural width and thus goes beyond point-like dipoles, while the
short-range dipole coupling tensor between QHOs with overlap-
ping densities can still be evaluated analytically252. This short-
range dipole tensor, T(sr)

QHO, is then used to explicitly account
for the short-range screening according to the inverted coarse-
grained Dyson equation,

α
(sr)
A ≈ α̃A (iω) =

1
3

Tr

{
∑
C

BAC

}
; B =

[
P−1 +T(sr)

QHO

]−1
, (36)

where P = diag{αA (iω) ·13} is a diagonal matrix containing three
times αA (iω) for each atom A, i.e. the xx, yy, and zz component
of the corresponding isotropic atomic polarizability tensor. The
summation over all atoms C corresponds to the integration over
the whole space in the Dyson equation and the factor 1

3 , together
with the trace operator, restores an isotropic effective polarizabil-
ity, α̃A (iω). This is the model response used to define α

(sr)
A , which

already significantly improves the description of the polarizabil-
ity compared to the superposition of effective atomic polarizabil-
ities49,253 and then enters a coarse-grained ACFD/RPA formula
for the long-range correlation energy of the form of eq. (11).
For the long-range coupling there is a negligible overlap between
the QHOs. Therefore, the bare point-dipole potential is applied.
So, to a very good approximation, the long-range ACFD/RPA for-
mula for an N atom system can be evaluated based on a set
of N dipole coupled QHOs. Such a set of N three-dimensional
QHOs can be described in terms of mass-weighted displacements,
ζζζ A =

√
mA (rA−RA) and the Hamiltonian,

HMBD (ζζζ ) =
N

∑
A=1
−1

2
∇

2
ζζζ A

+
N

∑
A=1

η2
A

2
‖ζζζ A‖2

+
N

∑
B=1

ηAηB

2

√
α̃A,0 α̃B,0 ζζζ

T
AT(lr)

AB ζζζ B

(37)

= Tζζζ +
1
2

ζζζ
TVVV ζζζ , (38)

with VVV
(i, j)
AB = ηAηB

(
δi j +

√
α̃A,0 α̃B,0 T(i, j)

AB,lr

)
,

where the collective variable ζζζ is the direct sum of all ζζζ A and
(i, j) denotes the Cartesian components of the AB-subblocks of
the potential matrix VVV and the long-range dipole coupling ten-
sor T(lr)

AB . Similar models to describe (many-body) dispersion
interactions within the dipole limit were already known and
used earlier246,254–260. These methods, however, were typically
based on simpler model polarizabilities and did not offer general
parametrization and applicability for realistic systems.

As a mathematically equivalent, yet much more efficient, alter-
native approach, it has been shown that the long-range RPA corre-
lation energy of this dipole-coupled set of QHOs equals its (zero-
point) interaction energy46,245. Thanks to the bilinear form (38),
this can be obtained numerically exact via unitary transformation
to a new collective variable, ξξξ = Cζζζ , where the transformation

matrix C diagonalizes the potential matrix:

CVVV C† = diag
{

ω̃
2
i

}
. (39)

With the kinetic energy operator, T , being invariant under uni-
tary rotations, C transforms the MBD Hamiltonian into an uncou-
pled set of 3N one-dimensional QHOs,

HMBD (ξξξ ) = Tξξξ +
1
2

ζζζ
†C† CVVV C† Cζζζ

= Tξξξ +
1
2

ξξξ
† diag

{
ω̃

2
i

}
ξξξ =

3N

∑
i=1

Tξξξ i
+

ω̃2
i

2
‖ξξξ i‖2 .

(40)

This set of QHOs can be solved according to textbook and its total
energy is given by half the sum of its characteristic frequencies
ω̃i. The (zero-point) interaction energy, ultimately corresponding
to the RPA long-range correlation energy within the QHO model
of electronic response, is given by

E(MBD)
vdW = E(coupled)

QHO −E(non-interacting)
QHO =

1
2

3N

∑
i=1

ω̃i−
3
2

N

∑
A=1

ηA . (41)

Ultimately, the range-separation function to define Tsr and Tlr, is
chosen of Fermi-type,

f (MBD)
damp

(
RAB;R(AB)

vdW

)
=

{
1+ exp

[
−a

(
RAB

β ·R(AB)
vdW

−1

)]}−1

, (42)

where a = 6 and the effective vdW distance, R(AB)
vdW = 3

√
xAR(A,ref)

vdW +

3
√

xBR(B,ref)
vdW , where one relies on a rescaling of accurate reference

data of vdW radii (for further details, see Section 5.5.1). The
range-separation parameter, β , is finally an empirical parameter
fitted to provide optimal results in combination with a given DFA
for small molecular dimers49. As the range-separation parame-
ter also represents a measure of when the long-range correlation
model has to be included, it gives an estimate of the range of
correlation already captured by the underlying DFA261.

Fig. 4 Schematic illustration of the MBD model with range-separated
self-consistent screening (rsSCS): Effective atomic polarizabilities are
obtained from electrodynamic screening using the short-range part of
the range-separated dipole tensor for quantum harmonic oscillators. The
interaction between the oscillators is then obtained using the long-range
part of dipole coupling tensor.
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5.4.2 Practical Aspects and Related Models

Being formally equivalent to the full long-range RPA correlation
energy for a set of QHOs, the MBD formalism includes many-body
interactions up to N atoms and incorporates correlation effects up
to infinite order. The two main differences are the assumption of
isotropic polarizabilities and that those can be modeled via a sin-
gle QHO per atom. Relying on the QHO model polarizability, on
the other side, fundamentally binds the charge fluctuations to a
given atom (no electron hopping), which limits the validity and
applicability of MBD for metallic systems (does not capture type
C non-additivity, see Section 2.3). For a variety of non-metallic
systems in different chemical environments, on the other side,
the two approximations have been found to be very reliable and
accurate. In fact, in various cases the MBD formalism yields the
same results as the RPA-approach, while requiring only a frac-
tion of the computational workload: The MBD method scales as
O(N3) with the number of atoms N for inversion and diagonaliza-
tion of the B and VVV matrices (comparably small prefactor thanks
to no integrations at runtime and only a few inversions and a sin-
gle diagonalization). After its original formulation for the vdW
energetics of finite-gap molecules, the applicability and efficiency
of MBD was further boosted by the derivation of the analytical
gradient expression245,262 and a reciprocal space formulation263,
which allows for efficient simulations within periodic boundary
conditions and advanced the applicability of the MBD formalism
to molecular crystals and layered materials.

As mentioned above, for a set of QHOs, the MBD formalism is
even mathematically equivalent to the full long-range RPA cor-
relation energy. For this to yield accurate energies for realistic
systems, however, the set of QHOs has to accurately model the
response properties of the system. For that, the MBD model re-
lies on the procedure originally proposed in the vdW(TS) scheme
(vide infra), which is based on the rescaling of accurate refer-
ence data according to Hirshfeld volume ratios. As a result, MBD
can also suffer from the common shortcomings of the Hirshfeld
partitioning scheme, which tends to underestimate charge trans-
fer264,265 and in line with that the volume ratios tend to underes-
timate the corresponding effect on the atomic polarizability. This
can lead to considerable deficiencies in the description of the vdW
parameters of ionic systems253,266. We would like to emphasize
that this is a shortcoming of the underlying (Hirshfeld) partition-
ing scheme and not the MBD framework itself. Significant im-
provements can be achieved when relying on the computation-
ally more demanding, but much more accurate, iterative Hirsh-
feld scheme253,265 or when using a charge-dependent reference
state for the polarizability267, for instance.

Modeling electron density fluctuations and their interactions
within the so-called Drude approximation, i.e. via negatively
charged pseudo-particles harmonically oscillating around atomic
centers, has already been known and used in the context of
vdW interactions by London in the 1930s36,268,269. Based on
this picture, Whitfield and Martyna270 proposed a more gen-
eral approach to model (many-body) induction and dispersion:
the Quantum Drude Oscillator (QDO) model, which also largely
motivated the development of the MBD framework. In the

QDO model, the oscillating pseudo-particles interact via the full
Coulomb potential, with that going beyond the typically invoked
RPA or dipole approximation. The model is defined by the charge
and mass of the pseudo-particles and the characteristic frequency
of their oscillation. With an appropriate choice of these three pa-
rameters, the QDO model can accurately describe the response
properties, many-body induction and dispersion interactions of a
given system up to infinite order248. Direct derivation of effective
parameters for realistic systems, however, represents a challeng-
ing task. Also the evaluation of the interaction energy, which is
typically done via imaginary-time path integration270 or Diffusion
Monte-Carlo271, limits its applicability in terms of system size.
Recently, this model has been used to showcase the relevance of
many-body and multipolar vdW interactions in water and at its
surfaces249,272.

5.4.3 Many-body Dispersion Formalism in Select Electronic
Structure Codes

The MBD formalism is implemented in the following set of select
electronic structure codes:

• ADF273–275 features the MBD formalism (with and without
self-consistent electrodynamic screening).

• CASTEP276: Being a plane-wave DFT code for periodic sys-
tems, the efficient reciprocal space formulation has been im-
plemented.

• FHI-aims195 allows for usage of the MBD formalism with
range-separated short-range screening for periodic (recipro-
cal space formulation) and non-periodic calculations in a se-
rial, MPI-parallel, and a fully memory-parallel implementa-
tion including analytical gradients.

• Q-Chem227: MBD contribution to total energy and option-
ally forces available.

• Quantum Espresso228: MBD contribution to forces and en-
ergies has been implemented.

• VASP197–201 features a reciprocal space formalism for peri-
odic boundary conditions and analytical gradients (default
range-separation parameter only available for the PBE xc
functional). It also allows to output the first five nth-order
contributions to the dispersion energy (obtained in the form
of eq. (11) with short-range screened atomic polarizabilities
as used within the MBD model).

5.5 Pairwise-additive van der Waals Models

Augmenting (semi-)local DFT calculations a posteriori with a
London-type vdW term, as first put forward by Wu and Yang277

and popularized as a general framework by Grimme37, repre-
sents an early and efficient approach to correct for the lack of
long-range electron correlation. As detailed in Section 2.2, the
fundamental mathematical form can be derived from a coarse-
grained ACFD/RPA formula. For the purpose of comparing the
rich set of pairwise-additive vdW models devised to date, we will
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use the ACFD/RPA-derived expression (14) to define the pairwise
vdW energy,

E(pw)
vdW =−1

2 ∑
A6=B

3
π

∫
∞

0
α
(sr)
A α

(sr)
B dω︸ ︷︷ ︸

fdamp

(
RAB;R(AB)

ref

)
R6

AB
(43)

=−1
2 ∑

A6=B
C(eff)

6,AB

fdamp

(
RAB;R(AB)

ref

)
R6

AB
, (44)

with A,B labeling atoms, fdamp denoting the damping function
arising from range-separation, and RAB as interatomic distance.
Note that from our derivation, the C6-coefficients are defined via
the Casimir-Polder formula based on isotropic, static atomic polar-
izabilities, which should already include short-range screening.
However, almost none of the pairwise-additive approaches ex-
plicitly accounts for the electrodynamic screening. Instead, most
methods rely on effective polarizabilities or C6-coefficients, which
are meant to implicitly include such screening effects. The vari-
ous pairwise models we have today basically differ in the way
those effective vdW parameters are determined. As indicated
in eqs. (43) and (44), these typically also involve an atom-pair
dependent reference distance, R(AB)

ref , which parametrically enters
the damping function. Thereby, the actual mathematical form of
this damping function has been shown to have a minor effect on
the final vdW energetics45.

5.5.1 Electronic Structure-based Pairwise-additive Inter-
atomic Methods

One very successful way to model the polarizability of the KS
reference system without recourse to the Adler-Wiser formal-
ism (18), is by incorporating information of the local chemical
environment via the electron density. This represents an approx-
imate, yet reliable and efficiently method to account for type A
non-additivity (see Section 2.3). A variety of successful schemes
in this spirit has been devised to date, e.g. the LRD model42,
the non-local density functional for multipolar interaction coeffi-
cients by Tao et al.278,279, or the vdW-WF method280,281. In this
work, we focus on some of the most widely used approaches: the
vdW(TS) scheme41 and the exchange-hole dipole moment model
(XDM)38,39 including the related density-dependent dispersion
correction (dDsC) scheme44.

The vdW(TS) scheme

Just as the MBD model (see above), the vdW(TS) approach starts
from the leading Padé approximant250 based on an effective static
atomic polarizability, α

(TS)
A,0 ≡ α

(TS)
A (iω = 0). While MBD sub-

sequently explicitly accounts for screening effects (type B non-
additivity), vdW(TS) directly uses this polarizability to approxi-
mate the short-range screened polarizability entering eq. (43):

α
(sr)
A (iω) ≈ α

(TS)
A (iω) = α

(TS)
A,0

[
1+
(

ω

ηA

)2
]−1

, (45)

where ηA corresponds to an effective excitation frequency as in-
troduced in Section 5.441. Inserting this into the Casimir-Polder
integral in eq. (43) yields the London formula282, from which we

can define the C6-interaction coefficients entirely based on effec-
tive static atomic polarizabilities via

C(eff)
6,AB ≈C(TS)

6,AB =
2C(TS)

6,AA C(TS)
6,BB

α
(TS)
B,0

α
(TS)
A,0

C(TS)
6,AA +

α
(TS)
A,0

α
(TS)
B,0

C(TS)
6,BB

and C(TS)
6,AA =

3
4

ηA

[
α
(TS)
A,0

]2
.

(46)

Hence, the key quantity is the effective static atomic polarizability.
To obtain this polarizability, one takes advantage of the linear cor-
relation between the atomic volume, VA, and the (static) atomic
polarizability283, i.e. αA (iω = 0) = κA ·VA with κ as proportional-
ity constant. This allows the definition

α
(TS)
A,0 =

κ
(A)
eff V (A)

eff

κ
(A)
free V (A)

free

α
(free)
A,0 =

κ
(A)
eff

κ
(A)
free

· x(A)V ·α(free)
A,0 , (47)

where α
(free)
A,0 is the static polarizability of the corresponding atom

in vacuo41. The atomic volume can be determined as the ex-
pectation value of the cube of the electron-nucleus distance, r,
based on the atomic density of the atom in its chemical environ-
ment or of the corresponding isolated atom, respectively. The
effective atomic density is conventionally obtained via Hirshfeld
analysis251, from which the rescaling factor, xV , is given by

x(A)V =
V (A)

eff

V (A)
free

=

∫
r3 wA (r)ρ (r) dr∫

r3 ρ
(A)
free (r) dr

, wA (r) =
ρ
(A)
free (r)

∑B ρ
(B)
free (r)

(48)

where wA is the Hirshfeld weighting factor and ρ (r) is the total
electron density of the molecule or material. All densities, includ-
ing the in vacuo atomic density, are evaluated at runtime with
the same DFA. Finally, inserting the effective atomic polarizabil-
ity into the second part of eq. (46), together with an equivalent
consideration of (46) for an isolated atom, gives

C(TS)
6,AA =

ηA

η
(free)
A

[
κ
(A)
eff

κ
(A)
free

]2 [
x(A)V

]2
C(free)

6,AA '
[
x(A)V

]2
·C(free)

6,AA (49)

where, upon closer inspection, the two prefactors involving η

and κ together have been found to be well approximated by
unity41. Relying on accurate reference data for the C6-coefficients
of the corresponding isolated atoms, C(free)

6,AA , this approach has
been shown to yield accurate effective interaction coefficients
within 5.5 % from values derived from experimental Dipole Oscil-
lator Strength Distributions41. For the final ingredient of the en-
ergy expression (44), the damping function, a Fermi-type range-
separation function was proposed,

f (TS)
damp

(
RAB;R(AB)

vdW

)
=

{
1+ exp

[
−d

(
RAB

sR ·R
(AB)
vdW

−1

)]}−1

, (50)

where the steepness of the damping, d, has been found to have
a negligible effect on binding energies and is therefore fixed to
d = 20. The onset of the range-separation, finally, is determined
by the DFA-dependent scaling parameter sR (typical values: 0.94
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for PBE, 0.96 for PBE0, 0.84 for B3LYP) and an effective vdW dis-
tance, R(AB)

vdW , given by the sum of the corresponding effective vdW
radii of atoms A and B. Based on the definition of the vdW radius
by Pauling and considerations from classical physics, the vdW ra-
dius of an atom is proportional to the cube-root of its volume.†

This allows to define an effective vdW radius of an atom in a sim-
ilar manner from its in vacuo counterpart:

RvdW ∝
3
√

V =⇒ R(A)
vdW =

3
√

x(A)V ·R(A,free)
vdW . (51)

Combining eq. (44) and eqs. (48)–(51), ultimately defines the
vdW dispersion energy in vdW(TS),

E(TS)
vdW =−1

2 ∑
A6=B

f (TS)
damp

(
RAB;R(AB)

vdW

)C(TS)
6,AB

R6
AB

. (52)

Effective, electronic structure-based vdW parameters can also
be obtained via an alternative, yet similarly accurate and reliable,
approach, which relies on net atomic populations instead of the
real-space representation of the electron density as used in the
Hirshfeld scheme outlined above. Atomic populations as initially
classified by Mulliken, can be calculated in Fock space, i.e. from
the density-matrix in an atom-centered basis set representation.
The alternative rescaling factor xD is defined as285,

x(A)D =
hA

ZA
; hA = ∑

a
fa ∑

i∈A
‖Dii‖2 , (53)

where ZA is the nuclear charge (atomic number) of atom A corre-
sponding to hA for an atom in vacuo. We would like to point out
that hA, being the atom-projected trace of the Mulliken popula-
tion matrix D, does not involve off-diagonal (mixed) terms of the
density matrix. As such, it does not suffer from the arbitrariness
of partitioning the electron population of overlap regions, which
represents the main and fundamental pitfall of Fock-space charge
partitioning schemes. This approach yields interaction coeffi-
cients en par with the original scheme285 and allows for the us-
age of the vdW(TS) model and the MBD formalism in conjunction
with electronic structure methods without real-space representa-
tion of the electron density, such as the semi-empirical Density-
Functional Tight-Binding method or other density matrix-based
approaches. Similar in spirit, yet neglecting some hybridization
effects and relying on the not well-defined full Mulliken charge,
is the dDMC vdW model by Petraglia et al.286 (see below).

The vdW(TS) method uses the same starting point as the MBD
formalism. The interaction coefficients used in eq. (52) can thus
also be adapted via the coarse-grained Dyson equation (36) to
account for electrodynamic (short-range) screening. Such an
approach can be used to dissect the importance of screening
and multi-center interactions for dispersion interactions (further
sub-classifying type B non-additivity). Furthermore, the vdW(TS)
scheme can be used to investigate the effect of dispersion
interactions on the electronic structure and derived properties19.

† We note that a recent study 284 predicts such classical considerations to be insuffi-
cient and that, in quantum systems, different scaling laws can apply.

As the interaction coefficients are a functional of the electron
density (or density matrix), the effective potential arising from
long-range correlation forces can be derived. Inclusion of this
term in the self-consistency procedure of the DFT calculation,
termed self-consistent vdW(TS), has been shown to affect the
work function of metals, for instance19. As already mentioned for
the MBD model, see Section 5.4, usage of Hirshfeld analysis for
the calculation of the vdW parameters can lead to a considerable
underestimation of the effect of charge transfer. Also in the case
of vdW(TS), this deficiency can be alleviated via the iterative
Hirshfeld scheme265,266 or by the use of a charge-dependent
reference for the isolated atom267. For the simulation of hybrid
organic-inorganic interfaces, an adapted version vdWsurf has
been devised287, which accounts for the metallic screening in the
substrate according to Lifshitz-Zaremba-Kohn theory59,60. The
vdWsurf model significantly improves upon the original scheme
and provides an description of the binding properties of metal
surface-adsorbed organic molecules287–291.

The XDM model and the dDsC scheme

In the exchange-hole dipole moment (XDM) model, vdW disper-
sion interactions are interpreted as the interaction of electronic
multipoles spanned by the moving electron and its accompa-
nied exchange- or Fermi-hole: The instantaneous depletion of the
probability to find a second electron near the position of an elec-
tron with equal spin. For a single atom the total atomic moment
integrals,

〈
M2

l
〉

can be calculated via〈
M2

l

〉
=∑

σ

4π

∫
drρσ (r)

{
‖r−R‖l − [‖r−R‖−Dσ (r)]l

}2
, (54)

where ρσ is the electron density in spin-channel σ , r is the spatial
coordinate and R is the position of the nucleus. Dσ is the magni-
tude of the exchange-hole dipole moment, which can be obtained
exactly from occupied orbitals, referred to as XDM(EXX) and typ-
ically used as post-HF method, or approximated from the Becke-
Roussel model292 for the exchange-hole, referred to as XDM(BR)
and typically used in the context of DFT293. For an N-atom sys-
tem, this is partitioned into N atomic contributions by means of
the Hirshfeld scheme. The dipole moment integral of atom A in a
many-atom system, for instance, is given by〈

M2
1

〉
A
= ∑

σ

4π

∫
drwA (r)ρσ (r)D2

σ (r) , (55)

with wA as Hirshfeld weighting factor, see eq. (48). Using
a closure or Unsöld-approximation, as also employed in MBD
or vdW(TS), one can obtain a relation between these atomic
exchange-hole dipole moment integrals and the dipole-dipole in-
teraction coefficients for pairwise vdW interactions given by

C(XDM)
6,AB =

2
3
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1
〉

A

〈
M2

1
〉

B
∆A +∆B
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α
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α
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eff
〈
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1
〉

A +α
(A)
eff
〈
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1
〉
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〈
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1

〉
A

〈
M2

1

〉
B

,
(56)
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with ∆A as average excitation energy into unoccupied orbitals of
atoms A, which can be expressed in terms of (effective) atomic po-
larizabilities by comparison to London’s formula based on the first
Padé approximant of the dynamic polarizability to yield the final
expression294,295. Ultimately, effective atomic polarizabilities are
obtained via rescaling of accurate reference data using Hirshfeld
volume ratios as in the vdW(TS) model, eq. (47). The XDM model
typically also involves evaluation of higher multipole vdW inter-
actions. This gives rise to expressions similar to eq. (44) with
corresponding Cn-interaction coefficients and a R-n-dependence.
The resulting total vdW energy is typically well-converged when
accounting for n = 6,8,10. The C8/10-coefficients are calculated
based on the same footing using the atomic quadrupole and oc-
topole moment integrals (l = 2,3) and KAB from eq. (56) via294
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To couple the XDM approach as a long-range correlation model
with (semi-)local DFAs, a rational damping was proposed, such
that the final energy can be written as39

E(XDM)
vdW =−1

2 ∑
A6=B

C(XDM)
6,AB

R6
AB

1+

(
a1 ·R

(AB)
cut +a2

RAB

)6
−1

, (58)

with a1 and a2 as DFA-dependent damping parameters. Based on
the exchange-hole dipole moment, similar definitions to eq. (56)
can also be obtained for quadrupolar (C8) and octopolar (C10)
vdW interactions can be obtained294. In addition, three-body
vdW interactions can be included according to the Axilrod-Teller-
Muto formula296,297,

E(ATM)
vdW = ∑

A,B,C
[cos(ϕ)cos(ϑ)cos(θ)+1]

C9,ABC

(RABRBCRCA)
3 , (59)

where ϕ,ϑ ,θ are the angles enclosing the triangle spanned by
the atomic positions of atoms A, B, and C. The corresponding C9-
interaction coefficients in the XDM-framework are given by295,

C(XDM)
9,ABC =

QAQAQC (QA +QB +QC)

(QA +QB)(QB +QC)(QC +QA)
,

where QA ≡C(XDM)
9,AAA =

3
4

α
(A)
eff C(XDM)

6,AA .

(60)

In order to use the ATM expression in conjunction with (semi-
)local DFAs, it is damped at short internuclear separations.
Thereby, an obvious ambiguity arises in the definition of an ef-
fective distance in the damping function. Various forms have
been formulated1,298–300 and the convoluted interplay of intri-
cate error cancellations with(in) different DFAs often leads to
the sometimes unpredictable performance of adding the ATM
term1,301–303.

As a further adaption of the XDM approach, Steinmann and

Corminboeuf introduced a combination of XDM interaction coef-
ficients with a more rigorous, density-dependent damping func-
tion based on the universal damping functions by Tang and
Toennies304 and the more robust iterative Hirshfeld partitioning
scheme265 to obtain atomic polarizabilities in eq. (56)305. As in
the case of the vdW(TS)scheme, this model, termed dDXDM, has
been shown to provide significant improvements in particular for
ionic systems thanks to the more reliable and robust partitioning
scheme305. Building ontop of this approach, a simplification of
the Becke-Roussel model tailored for the derivation of long-range
interaction coefficients has been derived by the same authors and
has been given the name dDsC306. It typically employs a(n) (it-
erative) Hirshfeld-dominant partitioning scheme306,307 and has
been shown to yield accurate results for a variety of benchmark
sets for vdW complexes, ionic systems, and reactions while af-
fording rather low computational costs in comparison to vdW-
optimized (non-local) density functionals44,306. With the C6-
coefficients and the damping function being a functional of the
electron density, the dDsC model can also be used self-consistently
in order to investigate vdW effects on the electronic structure at
acceptable computational cost18.
The dDsC scheme has also been adapted for use in Tight-Binding
approaches, where the Hirshfeld partitioning has been replaced
by Mulliken charge analysis. Despite neglecting important hy-
bridization effects (vdW parameters of homonuclear systems cor-
respond to in vacuo parameters, for instance), the resulting
dDMC model has been shown to substantially augment the semi-
empirical Density-Functional Tight-Binding method for the de-
scription of non-covalent interactions286.

5.5.2 (Semi-)Empirical Pairwise Approaches

The first widely used vdW model in the context of DFT was the
DFT-D approach by Grimme, which followed the form of eq. (44)
and featured effective, but fixed C6-interaction coefficients and a
Fermi-type damping function37. The applicability was later (DFT-
D2) extended by deducing effective interaction coefficients from
atomic properties40. It is worthwhile to mention that both ap-
proaches did not account for any effects of the chemical environ-
ment (type A non-additivity) nor did they yield the correct asymp-
totic behavior43. These obsolete methods can thus not be recom-
mended for use in electronic structure calculations today. After
careful numerical investigation of the effect of the local chemi-
cal environment, a new semi-empirical variant, termed D3, was
devised. The scheme is based on atom-pair specific C6 coeffi-
cients and includes local information in the form of geometry-
motivated, fractional coordination numbers43,

CNA = ∑
B6=A

{
1+ exp

[
−p1 ·

(
p2 ·

R(A)
cov +R(A)

cov

RAB
−1

)]}−1

, (61)

where the parameters p1 = 16 and p2 = 4/3 have been chosen
based on a set of organic molecules, RAB is the distance between
atoms A and B, and R(A)

cov is the (scaled) covalent radius of atom A.
The final procedure has been shown to yield chemically sensible
coordination numbers for a variety of organic and non-organic
systems43. The interaction coefficient for atoms A and B is then
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calculated for a number of different coordination numbers, which
are achieved by considering the corresponding hydrides and ap-
proximately decomposed to provide reference values for C6,AB.
This collection of coordination number-dependent C6 coefficients
then serves as a reference database and the final effective inter-
action coefficient, C(D3)

6,AB , which enters eq. (44), is obtained from
interpolation of the reference coefficients based on their coordi-
nation numbers via

C(D3)
6,AB (CNA,CNB) =

1
L ∑

Aref

∑
Bref

C6,ArefBref L(Aref,Bref) , (62)

where L(Aref,Bref) = e
−p3

[
(CNA−CNAref)

2
+(CNB−CNBref)

2
]

(63)

and L is the sum of all Gaussian distances L(Aref,Bref), The last
global ad hoc parameter p3 = 4 to assure smooth behavior at in-
teger coordination numbers43. Thus, the effective interaction co-
efficients are interpolated from reference values based on their
local coordination. The general procedure for the definition of
coordination numbers and the interpolation scheme is thereby,
in principle, completely arbitrary and was motivated by numer-
ical results43. The geometry-based D3 model neglects any elec-
tronic structure and explicit screening effects, but at the same
time models dispersion interactions beyond the dipole approxi-
mation and allows for a vdW correction for any given total en-
ergy method including molecular mechanics. As showcased by
Ehrlich et al. strong electronic structure effects like far-from-
neutral species, can be incorporated by a suitable choice of ref-
erence systems for the interpolation scheme308. For general ap-
plications however, such an approach introduces a certain degree
of empiricism and requires a careful choice and testing. Recently,
also a more straightforward approach to include such effects via
rescaling of interaction coefficients based on atom-in-a-molecule
charges was proposed (D4) and shown to significantly improve
transferability and general applicability309. The D3 scheme also
involves an additional term for pairwise dipole-quadrupole vdW
interactions, which scales as 1/R8 (derived from perturbation
theory). The C8-interaction coefficients, i.e. the equivalent of
C6 for dipole-quadrupole vdW interactions, are computed recur-
sively304,310,311 based on the corresponding C6-coefficients43.
For the damping two mathematical forms are commonly used: the
original scheme employed a formulation proposed by Chai and
Head-Gordon312. Including the quadrupolar interaction term,
this defines the vdW energy in D3 as

E(D3)
vdW =−1

2 ∑
A6=B

∑
m=6,8

p(m)
4 C(D3)

m,AB/Rm
AB

1+6
(

p(m)
5 ·R(AB)

D3 /RAB

)2nb+m+4 (64)

respectively. Above, nb = 2 for two-body interaction and m = 6,8
denotes dipole-dipole and quadrupole-quadrupole interaction. p4

is a rescaling factor for quadrupolar interactions (p4 = 1 for
m = 6), while p5 is the a DFA-dependent damping parameter,
which together with the atom pair-dependent cutoff radius, RD3,
determines the onset of the vdW correction. The cutoff radius RD3

is determined from the attenuation of the DFT interaction energy
below a certain threshold for the corresponding dimer43. Such a

choice of cutoff parameters instead of vdW radii in the damping
function can conceptually be justified as the appropriate range-
separation is not necessarily a function of vdW radii, but depends
on the range of electron correlation captured by the underlying
DFA. This, however, is highly system-dependent and a rigorous
and seamless scheme for arbitrary systems has not been derived
so far. As an alternative range-separation, Becke and Johnson
proposed to use a rational damping as in the XDM model (cf.
eq. (58)) also in D3, which is widely used and referred to as D3-
BJ38,39,45. The cutoff radius entering the damping function in the
case of D3-BJ is defined by45

R(AB)
D3-BJ =

√
C(D3)

8,AB/C(D3)
6,AB . (65)

A nowadays common extension of the DFT-D3 framework is to
also include beyond-pairwise terms in the form of the three-body
term according to Axilrod and Teller296 and Muto297, eq. (59). In
the context of D3, the effective three-body C9-interaction coeffi-
cients are approximated via the effective two-body C6-coefficients
according to

C(D3)
9,ABC =−

√
C(D3)

6,ABC(D3)
6,BCC(D3)

6,CA . (66)

Finally, the three-body term is damped at short distances equiv-
alently to the two-body interaction in eq. (64) using p4 = 4/3,
nb = 3 and m = 6. As mentioned above in the context of the XDM
model, formulating a rigorous damping function for the three-
body ATM energy in terms of internuclear distances leads to an
obvious ambiguity and can give rise to a considerable uncertainty
whether the additional three-body term improves the final vdW
energies302,303.

5.5.3 Pairwise-additive vdW Models in Select Electronic
Structure Codes

As of today most electronic structure packages feature pairwise-
additive vdW models to correct for the lack of long-range correla-
tion on common (semi-)local DFAs. Among others the following
approaches are available:

• ABINIT191–193 features the D3 dispersion correction (64),
D3-BJ, and the three-body D3-ATM term, eq. (59) with defi-
nition (66).

• ADF273–275 allows for inclusion of D3, D3-BJ, and dDsC as
post-DFT vdW models.

• CASTEP276: Pairwise-additive vdW models can be included
in an a posteriori fashion. Available methods include
vdW(TS), vdWsurf, and D3.

• DFTD3313: Being independent of the electronic structure,
the D2, D3 and D3-ATM models can be employed a posteriori
to any electronic-structure calculation via a standalone cal-
culator. For instance, a library version of Grimme’s DFTD3
code is available at https://github.com/aradi/dftd3-lib.

• FHI-aims195: The vdW(TS) model can applied for periodic
and non-periodic systems in an a posteriori manner as well as
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self-consistently, which accounts for long-range correlation
effects on the self-consistent solution for the electron density
and derived properties.

• Gaussian314: D3 and D3-BJ can be included na-
tively. For the XDM model, Otero de la Roza
and co-workers, developed the post-processing pro-
gram postg315,316 available as free software on
https://github.com/aoterodelaroza/postg. Further informa-
tion on the usage of the program and damping parameters
are available at http://schooner.chem.dal.ca/wiki/XDM.

• NWChem317 features the original dispersion model by Wu
and Yang277 and Grimme’s D1, D2, D3, and D3-BJ including
default parameters for a variety of xc functionals. The XDM
model is available. As of the time of this publication, this
requires manual specification of the damping parameters a1

and a2 for a given xc functional, which can be obtained from
Ref. 316 or at http://schooner.chem.dal.ca/wiki/XDM.

• Q-Chem227 allows for inclusion of several (semi-)empirical
dispersion corrections including the scheme by Chai and
Head-Gordon312 as well as Grimme’s D3 with a number
of options for the damping function. In addition, the
ATM three-body term can be included. Also, the elec-
tronic structure-based XDM (post-DFT and self-consistent)
and vdW(TS) models are available.

• Quantum Espresso228: The XDM model can be used (only
together with PAW pseudopotentials, however). The cor-
responding a1 and a2 parameters can again be obtained,
for instance, at http://schooner.chem.dal.ca/wiki/XDM. The
vdW(TS) scheme is implemented as post-DFT model as well
for self-consistent inclusion of vdW interactions.

• TURBOMOLE196: The D3, D3-BJ and the D3-ATM vdW
model can be added.

• VASP197–201: The pairwise-additive models D3, D3-BJ,
or vdW(TS) can be enabled. Also, the extension of the
vdW(TS) model by using iterative Hirshfeld partitioning as
well as Ewald summation of the vdW(TS) energy for peri-
odic systems is implemented and the dDsC scheme is avail-
able with conventional Hirshfeld-dominant partitioning.

6 Performance
With the exception of the fully first-principles EXX/cRPA ap-
proach, all of the above methods involve minimum one empirical
parameter and in the end all of the practical methods outlined
above rely on a given model for the non-local density-density re-
sponse and approximations to the evaluation of the ACFD for-
mula. Therefore, the importance of careful analysis of the trans-
ferability and validity of the employed approximations cannot
be overestimated. However, the applicability of highly accurate
quantum-chemical approaches, including (local) coupled cluster
theory, Quantum Monte-Carlo (QMC), and SAPT, as reference
methods is limited to a maximum of a few hundred atoms in the

best case. Due to the often still substantial gap between exper-
imentally and theoretically accessible length-scales, comparison
to experimental data also does not represent a seamless and ad-
equate way of assessing the accuracy of vdW models in all but
a few cases. As a result, most of the practical approaches for
modeling vdW interactions are parametrized and tested against
benchmark sets of small (and medium) size complexes or sim-
ple molecular materials. As we shall see in the following section,
the majority of schemes provides comparable accuracy for these
standard test sets. Yet, long-range correlation forces show a far
from trivial, strongly non-linear behavior with increasing system
size due to their inherently quantum-mechanical and non-local
character. As such, the performance of different models often
strongly depends on the size and complexity of the systems un-
der consideration (see Section 6.2). A careful analysis and com-
parison among models that rely on different approximation can
provide tremendous insight into the failure of certain models or
approximations and is invaluable for further methodological de-
velopments. In the following we will present a few exemplary
test sets and reference systems to illustrate such cases. Please
note, that most of the numerical data presented herein has not
been based on maximally accurate DFT calculations (consistent
improvements of up to 1 % possible, yet negligible for the rela-
tive accuracy of the vdW models). Instead, we have used settings
as they are employed in typical production calculations, which in
our opinion offers an optimal way to discuss general trends and
features of the models and particular systems in the context of
practical applications.

6.1 Benchmark Sets with High-Level Reference Data

Typically, vdW models are judged based on the interaction ener-
gies they provide in comparison to high-level quantum-chemical
calculations. An important advantage of such an approach is that
it allows to evaluate the different models based on a given (fixed)
geometry of the test system and does not involve an intricate in-
terplay of the interaction energy and, e.g. finite-temperature ef-
fects, which can be hard to disentangle. At the same time, it
allows to evaluate the accuracy of interaction energies as a func-
tion of nuclear positions, i.e. the overall shape of the potential
energy surface.

Over the last decade, especially the group of Hobza has
designed and obtained a number of benchmark sets in this
spirit. Among others321–324, this includes sets of small molec-
ular dimers in equilibrium configuration (S22, S66)318,320 fea-
turing a variety of types of intermolecular interactions (vdW-
bound, hydrogen-bonded, mixed) and the corresponding disso-
ciation curves (S22x5, S66x8)319,325. The remaining empirical
(damping) parameter(s) in almost all of the above practical mod-
els, have been obtained based on an optimal performance for
these benchmark sets. As a result, the different vdW models over-
all perform comparably well on these sets of molecular dimers
(cf. Tab. 2) and as a main conclusion it underlines the impor-
tance of vdW interactions for a reasonable description (accuracy
of bare PBE more than four times worse than any vdW-inclusive
method!). Upon closer inspection, we see that, as one might ex-
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S22 S66 S66x8 Average

PBE 10.88 9.00 6.44 8.77

PBE +



MBD 2.01 1.55 1.34 1.63
vdW(TS) 1.42 1.42 1.38 1.41
XDM 1.72 1.59 1.72 1.67
D2 2.13 2.34 1.76 2.08
D3 1.80 1.26 1.13 1.39
D3-ATM 2.01 1.38 1.26 1.55

vdW-DF2a,b 2.13 2.01 2.07
VV10a,c 1.30 1.26 1.28
LC-VV10a,c 0.88 0.63 0.75

Table 2 Mean absolute deviations (MADs) of interaction energies ob-
tained by MBD, vdW(TS), XDM, D2, D3, and D3-ATM in conjunction with
the PBE-GGA density functional for the S22, S66, and S66x8 bench-
mark sets in kJ/mol. The calculations have been performed using stan-
dard production settings in FHI-Aims 195, NWChem 317, and the DFTD3
code 313. Reference data from CCSD(T)/CBS calculations 318–320. Data
taken from a Ref. 220, b Ref. 214, c Ref. 219.

pect, the empirical D2 scheme with its neglect of the local chem-
ical environment typically yields the least accurate results. Nev-
ertheless, employing any of the vdW models drastically improves
upon the bare (semi-)local description with PBE or other DFAs
for that fact. When testing such combined approaches of a (semi-
)local DFA and a given vdW model, one should also consider the
error in the short-range description associated with the chosen
DFA. Any discussion or optimization of dispersion methods be-
yond this intrinsic error is not physical and should be avoided.

For years, small organic dimers as discussed above represented
the only class of systems, where accurate reference data was avail-
able. The accuracy of simple, pairwise vdW models for these
systems motivated their wide-spread use and even gave rise to
the impression that dispersion interactions can universally be well
approximated by pairwise-additive interatomic potentials as still
concluded in many standard textbooks. A first step to go beyond
these typical reference sets was the investigation of molecular
crystals, where an accurate treatment of dispersion interactions is
vital3,4,301,303,326. As a test suite the C21 benchmark set327 and
its extended version X23328) have been proposed. Here one re-
lies on lattice energies derived from experimental sublimation en-
thalpies. For such an approach and the comparison to experimen-
tally derived reference data, in general, it is important to keep in
mind possible experimental errors or uncertainties – both in the
experimental measurement and for the derivation of (electronic)
interaction energies, where one typically relies on some (simple)
model to account for the experimental conditions. As can be
seen from Fig. 5, many modern vdW model (MBD, XDM, D3, D3-
ATM) almost reach this experimental accuracy of roughly 4.3 %
(4.6 kJ/mol), while vdW(TS) and rVV10 give a mean absolute rel-
ative error (MARE) of 17.2 and 15.0 %. This divergence between
the pairwise models and in particular the poor performance of
the vdW(TS) model can be explained by two major points. First,
the (Hirshfeld) rescaling procedure does not sufficiently capture
the effect of the local environment due to the strong anisotropy
in the system, which is exemplified by the significant improve-

ment when explicitly accounting for short-range screening (see
“with SCS” in Fig. 5). Second, as pointed out by Otero de la Roza
and Johnson, the neglect of higher multipole vdW interactions
can lead to an overestimation due to a spurious damping/range
separating function for the dipolar C6/R6-interaction295,329. Ne-
glecting higher multipole vdW interactions in the D3 model, for
instance, leads to a similar performance as for the C6/R6-only
vdW(TS) scheme (cf. “only dip.” in Fig. 5). The performance of
rVV10 for these systems can mainly be traced down to the ne-
glect of screening effects (type-B non-additivity, see Section 5.2),
which have been shown to be important for anisotropic systems.
In addition, experience has shown that rVV10, and VV09 for that
matter218, perform best with more “repulsive” semi-local func-
tionals, i.e. functionals capturing a sufficient portion of exchange-
repulsion. Hence, the PBE functional might not represent an op-
timal choice for combination with rVV10. For consistency with
the remaining calculations, however, we will stick to the PBE xc-
functional throughout this work.

In another approach to study vdW interactions in larger-scale
systems, Grimme and Risthaus330,331 made use of experimen-
tally derived association energies, when they compiled the S12L
benchmark set of supramolecular guest-host complexes. The ref-
erence data was derived from experimental Gibb’s free energies
in solution. Thanks to ongoing methodological developments in
the quantum-chemistry community and the ever-growing com-
putational power, accurate QMC results are also available for a
subset of S12L. These calculations provide a reliable benchmark
at a given geometry, which is free of any thermal or solvation ef-
fects. Noteworthy, these results show that the approximations in
the “back-corrrection” from experimental free energies can intro-
duce errors of up to 16 % (or 15 kJ/mol)8. In addition to the
subset of S12L set covered in Ref. 8, Hermann et al. obtained
QMC reference results for additional guest-host complexes of the
C70 fullerene9. For the purpose of this work, we compiled 13
supramolecular complexes for which QMC reference data is avail-
able. This set, to which we will refer to as “SMC13”, is shown in
Fig. 6. The complexes are characterized by strongly anisotropic
molecular polarizabilities and represent showcase examples for
the non-additivity of (short-range) screening and multi-center
interactions. It also shows the absolute inapplicability of bare
(semi-)local DFAs for non-covalently bound systems with increas-
ing size. In fact, PBE predicts attractive interaction for only three
of the 13 complexes and yields a MARE of 128 %.

Including vdW forces in form of the atom-pairwise vdW(TS)
model or two-point non-local rVV10 density functional already
drastically improves the description of supramolecular complexes
as contained in the SMC13 set down to a MARE of 17–20 % (see
Fig. 5). One main part of the remaining error can be traced down
to the strong anisotropy of the systems. This gives rise to signifi-
cant many-body effects in form of (short-range) screening, which
are not captured by the Hirshfeld rescaling procedure in vdW(TS)
and the semi-local polarizability functional in rVV10. Thanks to
an improved description of screening effects via additional gradi-
ent information, the still pairwise XDM model yields significantly
better results329. Also in the case of D3, considerable improve-
ments can be obtained. How much of the improvements in XDM
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Fig. 5 Mean absolute relative error (MARE) of PBE in conjunction with van der Waals models. Left: with respect to experimentally derived lattice
energies for X23 set of molecular crystals 327,328 (rVV10 result taken from Ref. 261). Results for D3 with neglect of higher multipole interactions and
vdW(TS) with account for electrodynamic screening shown as empty bars. Right: interaction energies as compared to Diffusion Quantum Monte-Carlo
(DQMC) results for the SMC13 set of supramolecular complexes (see Fig. 6). Note that the MARE for plain PBE is 61 % and 128 % for X23 and SMC13,
respectively.

Fig. 6 SMC13 complexes. First row, left to right: C60@catcher, 1,4-dicyano benzene@tweezer, C70@catcher, and gycine anhydride@macrocycle.
Second row: tetracyano quinone@tweezer, two configurations of C70@[6]-CPPA (cycloparaphenylacetelyne), C70@[10]-CPP (cycloparaphenylene),
and C70@[11]-CPP. Third row: four configurations of C70@[8]-CPPA.
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and D3 stem from the inclusion of higher-multipolar interactions
is still often under debate. Inclusion of the ATM three-body term,
for example, in both cases reduces the accuracy. This might be
connected to the ambiguous definition of the damping function
for the three-body energy, but on the other side might raise the
question in how far the increased functional space in form of mul-
tipolar interactions facilitates error cancellation and overfitting.
In the case of VV10, on the other side, it has been shown, that
inclusion of the ATM vdW energy leads to considerable improve-
ments in the description of supramolecular complexes332. Ac-
counting for (short-range) dielectric screening as well as (long-
range) electron correlation to all orders in the MBD formalism,
ultimately, yields mean deviations just above the uncertainty of
the reference method.

Overall, the X23 and SMC13 test sets allow to get a glimpse at
the non-additivity of vdW interactions in systems beyond the typi-
cally considered simple dimers and further benchmark sets in this
direction are being compiled and have already been proposed,
e.g. the S8 or L7 set333,334. It is worthwhile to point out that
this can be assumed to only be the tip of the iceberg of the many-
body nature of long-range correlation forces, which are expected
to occur in more complex systems and materials.

6.2 Beyond typical Benchmarking

Above, we outlined the general benchmarking scheme for (vdW)
approaches in electronic structure modeling: Determining and
discussing the overall deviation from high-level reference data of
interaction energies based on a select set of hopefully diverse sys-
tems, which then serves as an estimate for the expected accuracy.
For many studies in molecular and materials modeling, however,
the average performance in terms of electronic interaction ener-
gies does not represent an optimal testing ground for the accuracy
of the studied quantity or property. For studying the critical points
on a potential energy surface, for example, the average accuracy
of interaction energies in equilibrium geometries provides only
limited information. Therefore, it is worthwhile to also analyze
more specific quantities a given (combined) electronic structure
method yields. In recent years a number of studies showed that
while providing similar accuracies for the common benchmark
sets, the results for specific applications can substantially differ
when employing different vdW models. In the following we will
showcase some of these findings.

6.2.1 Precision and Reproducibility

As a first important point, we would like to remind about one
of the fundamental necessities of science: the replicability of re-
sults. One major concern in molecular and materials modeling in
general is that by now we have a wide array of software avail-
able to perform computational studies. Typically, each of these
(electronic structure) codes uses a different computational and
sometimes theoretical framework in order to perform calculations
(different approaches to diagonalization, integration, etc.). Addi-
tionally, there exists a variety of potential basis set representa-
tions for the wavefunction or electron density. As a result of all
this, it has been shown for DFT calculations that careful testing is
needed such that different implementations of the same theoret-

ical approach also yield the same results335. In the same way,
different implementations of vdW models have to be carefully
checked and compared in terms of consistency. Experience has
shown that, different codes can yield different results for the same
vdW approach. This especially holds true for electronic structure-
based methods, as different electronic structure codes are typi-
cally tested and benchmarked with respect to energies and not
for the parameters entering the vdW model. Thus, a collective
effort to unify the results from different implementations is of ut-
most importance and on-going work.

6.2.2 Beyond (single) Equilibrium Structures

Another important point, which remains largely under-explored
in the typical benchmark procedure outlined above, is the per-
formance of vdW-inclusive electronic structure methods beyond
individual equilibrium geometries.

Relative energies of (meta-)stable states. Predicting a cor-
rect energetic ranking is of utmost importance in the field of
crystal structure prediction, for instance4,303. Molecular crystals
are often characterized by a variety of possible and meta-stable
polymorphs (crystalline systems with equivalent composition, but
different crystal packing), which are mainly governed by non-
covalent interactions. Knowing the thermodynamic most stable
form is quintessential in, e.g. pharmacy or organic electronics, as
a given drug or functional organic material might loose its solubil-
ity or functionality upon phase transition to a thermodynamically
more stable form as regretfully discovered in the case of the HIV
protease inhibitor Ritonavir336. As such, predicting the correct
energetic order in vdW-bound systems is an important capability.
One well-studied example is oxalic acid, for which a majority of
vdW-inclusive methods does not predict the correct relative sta-
bilities of the two polymorphs. The vdW-DF2 approach and ac-
counting for exact exchange and explicit or implicit many-body
effects in PBE0+MBD or PBE0+D3, respectively, finally yields
the correct energetic order. Thereby, only PBE+MBD agrees well
with experimental findings both in a qualitative and quantitative
sense3. A similar example is the Coumarin crystal, where inclu-
sion of many-body dispersion effects significantly improves the
prediction of the most stable polymorphs and their energetic or-
der compared to the pairwise vdW(TS) method56.
In the case of supramolecular complexes, Hermann et al. in-
vestigated the relative interaction energies of the C70-fullerene
with [N]-cycloparaphenylene ([N]-CPP) as also contained in the
SMC13 set (vide supra). Accurate QMC reference calculations
show that the binding energies of C70 to [10]- and [11]-CPP are
degenerate (within QMC uncertainty)9. However, DFT calcula-
tions in conjunction with pairwise or two- and three-body vdW
models, including PBE+vdW(TS), PW6B95+D3, PW6B95+D3-
ATM, and rVV10, show a clear preference for the 10-membered
ring and only explicit account for the many-body character of
vdW interactions correctly predict an energetic degeneracy9,333.

General trends in (binding) energetics. Overall, the diver-
gence between the different vdW models significantly increases
with increasing system size and complexity, when going from
small organic dimers to organic crystals and supramolecular com-
plexes. This trend is continued when going even beyond this
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regime to layered materials, such as graphene and boronitride
(BN)337. The adsorption energy of water on a BN-flake with in-
creasing size nicely showcases the increasing spread of the en-
ergetics predicted by the different models: For the simple bo-
razine (H6B3N3), all considered vdW-inclusive methods provide
good agreement with QMC and CCSD(T) reference data, while
the results start to strongly deviate for boronene (H12B12N12).
For hexagonal boronitride (h-BN) finally, RPA+SOSEX is the only
DFT-based method found, that yields accurate results. Note-
worthy, the strongly constrained and appropriately normalized
(SCAN) functional338 provides a fairly good agreement compared
to the remaining DFT-based methods. Even more importantly,
when comparing the adsorption of water on borazine, boronene,
and h-BN, the authors showed that the tested vdW-DFs (vdW-
DF2 and optB86b-vdW) predict an increase in the interaction en-
ergy with increasing size, which is not obtained in QMC, RPA,
PBE+MBD, or PBE+D3. This has been assigned to the inherent
isotropy in non-local vdW-DFs conflicting the strong anisotropy
of h-BN337. For layered materials, detailed tests showed that
different flavors of vdW-DFs show a wide spread in terms of
the predicted interlayer binding energy. The deviations can
thereby reach up to 80 % with respect to RPA calculations and
100 % among the various vdW-DFs when considering different
systems339.
Another clear difference between semi-local DFAs in combina-
tion with a vdW model and non-local vdW-DFs can be shown for
the adsorption on and inside carbon nanostructures. While both
approaches yield similar results for the extended 2D-analogue
(graphene), vdW-DFs have been shown to significantly overes-
timate the adsorption energy inside carbon nanotubes340. This
can be traced down to electron correlation at medium-ranges be-
tween the regimes of covalent bonds and the asymptotic London-
type limit, which turned out to be strongly overestimated for
nanostructures in the case of vdW-DFs. It is the highly complex,
non-linear scaling of vdW interactions with increasing system
size, which makes the accurate, quantitative description across
all length scales an very demanding task. For a more qualitative
description, one often relies on the power law a given kind of in-
teraction follows with increasing separation. In the case of disper-
sion interactions, even this poses an intricate issue: As shown by
Ambrosetti et al., the power law exponent for the interaction be-
tween carbyne-like atomic wires varies strongly with the interwire
separation before reaching its (very) long-range value and a very
similar behavior has been observed for layered structures, nan-
otubes, and even nanostructure–protein complexes. Moreover,
the distinct many-body character of vdW interactions gives rise to
a strong dependence of power law exponents on the geometrical
and response properties of the respective interaction partners50.

Asymptotic behavior. Despite the often complex variations be-
fore reaching the long-range scaling law, the long-range decay
in itself represents a very strong qualitative benchmark for inter-
molecular interactions. Especially in this regard, collective elec-
tronic behavior and the quantum-mechanical many-body charac-
ter of long-range correlation forces have been shown to have a
pivotal influence. The summation of R-6-terms does yield the
correct power laws for the decay of the interaction of atoms,

small molecular systems, insulating 2D-materials, and thick metal
slabs. The results for more complex systems such as thin (semi-
)metallic layers, on the other side, can be qualitatively wrong23.
For instance, the interaction of two two-dimensional metallic sys-
tems (in parallel alignment) decays in the long range as D-5/2

with distance D and the interaction between undoped graphene
layers as D-3 according to RPA calculations (an even more com-
plex scaling laws once considering many-body effects beyond the
RPA)23,341,342. Simple pairwise-additive vdW models, on the
other side, predict a D-4-dependence in all cases of parallel sheets.

Reaction barriers, rates, and mechanisms. An accurate de-
scription of vdW interactions in non-equilibrium structures is,
of course, also essential for determining and evaluating reactive
pathways. For a wide variety of configurational changes of small
organic compounds, Steinmann and Corminboeuf showed that
most vdW-inclusive methods including non-local vdW-DFs and
pairwise dispersion models provide accurate relative energies for
the respective equilibrium geometries, while they found mixed
performances for reaction barriers44. For more complex reac-
tions and transitions, this aspect is in general hardly explored.
Nevertheless, the accuracy of vdW models out of equilibrium (in
a structural sense) can be pivotal, especially for systems that form
a vdW-bound precursor as it is often the case in bimolecular reac-
tions343,344 or (catalytic) surface reactions345, for example. Also,
the role of vdW interactions for the reaction path (ensemble) and
the sensitivity of reaction mechanisms with respect to the accu-
racy of the vdW model remain open questions.

6.2.3 Beyond (Electronic) Interaction Energies

Above we outlined some important deviations between and short-
comings of the various vdW models in terms of interaction ener-
gies for specific systems. In actual studies, however, we are of-
ten not only interested in interaction energies, but also several
connected or derived properties, which can also be significantly
affected by long-range correlation forces.

Effect on free energy contributions. For proper comparison
to experiment and realistic modeling, for instance, one usually
needs to account for thermal effects and obtain free energies. An
interesting example of vdW interactions modifying such a derived
quantity is the polymorphism of aspirin. While most electronic
structure methods (both with and without vdW model) predict
two polymorphs to be energetically degenerate, only one of them
(“form I”) prevails in nature. By explicitly accounting for many-
body dispersion effects, it has been shown in Ref. 346 that an
intricate interplay of phonons and long-range electronic fluctua-
tions can explain the abundance of form I via entropic stabiliza-
tion (emergence of low-frequency phonon modes).

Equilibrium geometries. One of the central steps in almost
all studies in molecular and materials modeling is an (initial) ge-
ometry optimization. Hence, one of the most important tasks
of an electronic structure method is to provide accurate struc-
tures. Nevertheless, the performance of vdW models is only rarely
assessed based on geometrical features. In an extensive study,
Witte et al. covered a wide range of popular (vdW-inclusive)
methods in terms of their ability to reproduce accurate geome-
tries for molecular reference systems. Non-local vdW-DFs, in par-
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ticular ωB97X-V and (LC-)VV10, turned out to provide excellent
agreement with accurate reference geometries over a wide range
of system sizes347. The good performance of vdW-DFs in terms
of geometries was also found for layered materials339. For the
adsorption of water on two-dimensional structures, on the other
side, it has been shown that with the exception of RPA many
vdW-inclusive DFT approaches underestimate the equilibrium ad-
sorption height by about 0.2 Å, which is in line with their over-
estimation of the adsorption energy (see above)337. Comparing
pairwise-additive vdW models and the MBD formalism, Blood-
Forsythe et al. showed that the pairwise vdW(TS) and D3 ap-
proach yield considerably larger deviations from benchmark ge-
ometries of different benzene configurations, small peptides, and
supramolecular complexes262. This is especially pronounced for
π–π-stacked systems and can thus mainly be attributed to an in-
sufficient account of anisotropy in systems27,262. In many cases,
however, pairwise approaches such as vdW(TS) or D3 are known
to give good geometries, despite the poor performance for the
corresponding energies.

Molecular dynamics and dynamic properties. Connected to
finding the (meta-)stable configurations of a given system, is the
exploration of extended regions of the potential energy surface
in (ab initio) molecular dynamics simulations. For many struc-
tural changes that do not involve breaking covalent bonds, vdW
dispersion interactions represent the main source of interatomic
forces and thus govern the dynamics of the system. A well-known
example is the folding process of peptides and proteins in the
gas phase. In the absence of solvent effects, non-covalent inter-
actions between the residues are responsible for the adaption of
a secondary structure. Hence, (accurate) inclusion of vdW in-
teractions is pivotal as even small errors might be propagated to
qualitatively wrong results during the dynamics. As such, inclu-
sion of long-range correlation forces in form of a vdW model sub-
stantially improves the formation of helical entities in polypep-
tides348–352. Another example is liquid water, where vdW forces
have been shown to considerably affect the obtained equilibrium
radial distribution and diffusion coefficients353–357. The over-
all effect, however, strongly depends on the choice of the xc-
functional and the vdW model and no final conclusion about an
physically correct combination has been agreed upon. An accu-
rate (first principles-based) treatment of dispersion interactions is
also important for the dynamics of liquid water on 2D-materials,
where minimal changes in microscopic geometrical features give
rise to significant differences in macroscopic properties358.

Polarizabilities and effective interaction coefficients. Atomic
and molecular (dipole) polarizabilities are one of the fundamen-
tal properties in the context of vdW interactions, which never-
theless are equally relevant in many more fields like spectroscopy
and solvation. It has been shown that both explicit account for
electrodynamic screening49 as well as an appropriate determi-
nation of the initial, unscreened atomic polarizabilities can sig-
nificantly improve the description of the (dipole) polarizabilities
of molecules and (ionic) materials49,267. In this regard, it has
been shown that the MBD framework does provide accurate po-
larizabilities for close to neutral molecular systems, its predictve
power for ionic systems, however, is strongly limited by the em-

ployed Hirshfeld scheme to obtain the initial unscreened polariz-
abilities. This can be overcome by employing an iterative parti-
tioning scheme, which has been shown to substantially improve
the description of polarizabilities in ionic systems267. Also in the
case of two-dimensional systems it was found that accounting
for anisotropy has an important effect on the polarizability and
correspondingly on the derived (anisotropic) C6-interaction coef-
ficients337. Similar collective effects can be found for effective
C6-coefficients. Inclusion of the self-consistent electrodynamic
screening polarizabilities, i.e. account for type-B non-additivity,
reveals a highly non-trivial scaling of atom–atom interaction coef-
ficients with respect to system size; a behavior that is not observed
for coefficients based on a more local description as in vdW(TS)
or D32.

Effects on electronic properties. As pointed out earlier, the
correlation energy is part of the electronic Hamiltonian and as
such they, in principle, affect the self-consistent electronic charge
density. However, as the correlation energy is typically around
five orders of magnitude smaller than the total energy, its effect
on the electron density is negligible in most cases and the vdW
energy can be evaluated as an a posteriori correction. Mostly, in-
clusion of a vdW model in the KS self-consistency procedure only
leads to a small polarization of the electron density towards in-
termolecular regions27. Yet, in-depth testing of the self-consistent
vdW(TS) scheme revealed a striking exception: It has been shown
that for several metal surfaces, long-range electron correlation
can indeed affect the electronic structure and introduce a highly
system-specific change in the work function due to charge polar-
ization effects19. Small effects of self-consistent inclusion of long-
range correlation have also been found for the radial distribution
in liquid water357.

7 Conclusion
Above we gave a general introduction to a wide variety of cur-
rent approaches to model vdW dispersion interactions in elec-
tronic structure calculations and presented a general overview
of the performance on select showcase examples. We will now
draw some general conclusions, provide what we think are some
best-practice tips, and give a short outlook on some major open
problems in the field.

7.1 The Status quo of van der Waals Modeling

As can be seen from Section 6.1, most modern models provide
an apparently reliable description of vdW interactions in select
test systems. Thereby, the main focus in almost all benchmarking
studies is on intermolecular interaction energies. For the assess-
ment of the performance of a given methodology, however, we
highly suggest to consider, first, systems beyond the typical bench-
mark sets (as these are often considered in the parametrization of
vdW models) and, second, quantities beyond plain (intermolec-
ular) interaction energies. Fig. 5 and Section 6.2 highlight the
non-trivial scaling with size and complexity of the system and the
implications of modeling vdW interactions for derived properties.
As a result of this, careful choice and analysis of the applicability
and suitability of a given approach for the system and property of
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interest is recommended.
Our current understanding of vdW interactions is mainly mo-

tivated by an atom-pairwise picture, which is in clear contrast
to the fundamental physics behind dispersion interactions (see
Section 2.1) and a growing number of experimental and theo-
retical studies show a failure of the pairwise-additive approxima-
tion. Unfortunately, our conceptual understanding beyond this
simple approximation is still in its infancy and only a few stud-
ies (mostly employing the RPA approach or the MBD formalism)
shed some light on the quantum nature of dispersion interactions
and collective electronic behavior in systems of practical inter-
est3,9,23,50,342,359. Due to this limited understanding there are no
general guidelines for the validity of a given approximation and
the applicability of the corresponding model, when going beyond
typical benchmark systems. Hence, we suggest to always test dif-
ferent approaches on representative reference systems. Compar-
ison amongst approaches, which rely on fundamentally different
approximations, helps to assess the validity of calculations. Com-
paring models, which are based on the same fundamental ap-
proximations, allows conclusions about the result within a given
framework and limits the danger of fortuitous error cancellation
in a select flavor of the model.

The Status quo can be summarized as follows: Current vdW
methods significantly improve upon dispersion-less (semi-local)
DFAs and are imperative to model realistic systems due to the
ubiquitous nature of long-range correlation forces. The results
from different models, however, can be wide spread and there
is no universal method applicable to practically relevant systems.
On the upside, the current situation is like “different horses for
different courses” – mostly one of the many devised models is ap-
plicable to the system of interest and after careful testing reliable
results can be obtained for a broader class of systems. Never-
theless, a few important points in terms of accuracy and physical
completeness remain to be addressed, some of which we will out-
line below.

7.2 Open Problems and Outlook
While vdW-inclusive modeling has become routine in electronic-
structure calculations by now, a variety of experimental
observations can still not be fully explained within current vdW
models61–65,67–69. Thus a lot of methodological research is still
put into the improvement of current models and the development
of new models. In the following we will outline some of the
currently open problems, categorized as aspects of practical
application or concerning the fundamental physics, which are
neglected or only approximately present in current interatomic
vdW models.

• Aspects connected to practical application

Combining a vdW model with DFT. A certain degree of empiri-
cism is (maybe inevitably) introduced by coupling a (semi-)local
DFA with a given vdW model. Introducing a range-separation
of the coupling tensor as shown in Section 2.1 provides a solid
and, in principle, exact framework for the typically ad hoc em-
ployed damping function in vdW approaches. For practical appli-

cations then, we assume that short-range correlation forces are
captured by the underlying DFA and hence limit the dispersion
model to the long-range regime. So, in order to obtain a seam-
less description of the total system, the range-separating function
would need to describe the range of correlation that is captured in
the DFA and correspondingly switch on the vdW method beyond
that. This range captured by the DFA is in general not known
and thus one relies on empirical switching functions of fixed form
with some parametrical dependence on the system. This compli-
cates the range-separated combination of (semi-)local DFT with
a (long-range) vdW model and impedes a clear-cut analysis of
the vdW model For instance, using CCSD(T) and SAPT, Shah-
baz and Szalewicz have recently shown, that most (semi-)local
DFAs lack several, considerable contributions to the interaction
energy of molecular dimers at distances less than the vdW equi-
librium360,361, where the DFA is assumed to capture all terms.
By fitting the combined DFT+vdW method to total interaction
energies, the range-separation function is pushed to (unphysi-
cally) also correct for several non-vdW effects including contri-
butions from electrostatics, exchange, induction, and different
higher-order correlation terms. An important point, when treat-
ing metallic systems with a vdW model in conjunction with DFT,
is that most DFAs are designed to be exact for the homogeneous
electron gas. As such, the DFA already captures a large extend
of long-range correlation in metallic systems (especially alkali-
metals). This contribution to electron correlation and the polar-
izability further complicates the development of a seamless and
clear-cut combination of vdW models with a given DFA and, to the
best of our knowledge, no accurate solution with universal appli-
cability has been put forward to date. An intriguing early work in
the context of damping pairwise interatomic and intermolecular
potentials are the so-called universal damping functions by Tang
and Toennies304. For practical application in the context of DFT,
this approach, unfortunately, still lacks some universality due to
the limited sensitivity to capture the shortcomings of a given DFA
in describing intermediate- and short-range correlation.
In contrast to a clear-cut separation of the DFT- and vdW-
description, non-local vdW-DFs represent a very promising ap-
proach by simply avoiding such a separation altogether and
explicitly incorporating long-range correlation into the DFT-
description. As can be seen from Section 6, however, the vdW-DF
approach is still in the earlier stages of development and, in our
opinion, needs further methodological refinement, especially in
order to account for many-body effects and for the description of
the intermediate range between the asymptotic limits.

Determination of an atomic density response from KS-DFT.
In the context of combining a given dispersion model with DFT,
all vdW models rely on some representation of the (effective)
density-density response or correspondingly the polarizability of
the KS reference system. While the Adler-Wiser formula (18)
provides a seamless and accurate description, it is not very use-
ful in practical applications as it requires explicit evaluation of
all KS states. In addition, most of the efficient techniques are
formulated in an atomistic framework. This requires additional
mapping to effective atoms-in-molecules response properties and
such partitioning is never unambiguous. Despite several success-
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ful schemes have been proposed, none can be universally applied
in an efficient manner to neutral and ionic molecular, solid, and
metallic systems. First works in this direction combine ideas from
non-local density functionals and electronic structure-based inter-
atomic frameworks.

Account for geometrical characteristics. Typically, bench-
marking and parametrization of a vdW model focuses on the re-
production of interaction energies for a given geometry. However,
the starting point of almost all modeling studies is an initial op-
timization/relaxation of the systems structure. Any subsequent
calculations therefore rely on this very first step to give an accu-
rate configuration. Yet, very little attention is given to this piv-
otal capability when parameterizing or testing a vdW-inclusive
total energy method. Despite some models by now account for
the reproduction of intermolecular equilibrium distances to some
extent, this is still far from testing if a given approach provides
accurate geometries in a practical work flow.

Benchmark references for (more) complex systems. As men-
tioned above, our understanding of vdW interactions is currently
still mainly based on a pairwise-additive framework. As show-
cased in Sections 2.3, 3.2, and 6, however, strong many-body ef-
fects and other complex phenomena arise with increasing system
size and complexity. What is known for small organic dimers,
might therefore not apply to practically relevant systems. Con-
ceptual understanding usually roots from a profound basis of ac-
curate observations or reference data. Our hope is, that with
the growing computational capacities and ongoing methodolog-
ical improvements, further accurate benchmark calculations will
guide our conceptual understanding and shed some light on the
non-additivity of long-range correlation forces and its implica-
tions for derived properties.

vdW interactions in comprehensive modeling techniques.
For many of the tasks in molecular and materials modeling,
specialized methods have been developed for an accurate and
efficient simulation, e.g. continuum solvation models, subsystem
DFT, methods to account for nuclear quantum effects, and others.
Only few examples among those techniques accurately account
for dispersion interactions, however. Incorporation of vdW
models might help to elucidate some of the more comprehensive
ramifications of long-range correlation. On the same note, the
cross-over and borderland between vdW interactions (micro-
scopic) and Casimir forces (meso- to macroscopic) remains to be
fully explored.

• Physics incorporated in interatomic vdW models

Beyond atomic dipoles in interatomic frameworks. As shown
in Section 2.1, an dipole formulation of vdW interaction can,
in principle, be exact. This, however, would require a continu-
ous description in the form of infinite, infinitesimal polarizability
centers. For the formulation of an exact interatomic framework,
a given set of infinitesimal dipoles would need to be combined
into an, in principle infinite, set of atomic multipoles, in order
to represent the exact, continuous description within the dipole
formulation. It is evident from the asymptotic behavior, that the
neglect of higher-order atomic multipoles can in particular affect

the description at intermediate separations. Nevertheless, the im-
portance of explicitly including such higher-order atomic multi-
poles in the description of long-range vdW interactions and how
much the effect of higher-order contributions can be mimicked by
an appropriate form of the damping/range-separation function is
still often under debate. On the other side, the contribution of
higher-order multipoles to the short-range part of the coupling
tensor, which is relevant for electrodynamical screening, is in-
disputable in our view. Instead of following up on any of the
discussions, we here would like to give our general perspective
on a framework to include vdW dispersion interactions between
higher-order multipoles: All contributions should root from the
same (range-separated) coupling tensor, such that the multipolar
expansion is asymptotically exact, and all coupling parameters
should be derived on the same footing. Otherwise, one could
arbitrarily define effective damping functions and coupling pa-
rameters, which in the end boils down to providing a larger func-
tional space with different ranges to be fit to interaction profiles
much like in a molecular mechanics approach. Any improvement
in such a formalism would not necessarily stem from improved
physics, but simply from an increased parameter space for fitting
and the physical meaning of individual terms would be highly
limited.
As a complimentary approach, inclusion of higher-order multi-
poles can also be achieved by means of perturbation theory based
on the quantum Drude oscillator model248 or directly on the cor-
responding dipole-coupled state as presented in Ref. 362, for
instance. Such contributions beyond dipolar coupling and/or
second-order perturbation theory can introduce qualitatively new
features in confined structures362 or electric fields (also due to
the presence of ionic species)363 and the implications for realistic
and practically relevant systems remain to be fully explored.

Polarizability anisotropy on atomic level. Polarizability
anisotropy on a molecular level has been shown to be of high
importance for the description of vdW interactions especially
with increasing system size and complexity. This can be further
strengthened by anisotropies on an atomic level. While this is
naturally accounted for in non-local functionals, all interatomic
vdW models outlined above rely on isotropic atomic polarizabili-
ties and therefore neglect the intrinsically different in-plane and
out-of-plane polarizabilities of a Carbon atom in graphene, for
instance. Including atomically anisotropic polarizabilities is not
fundamentally excluded in most vdW models, evaluation of the
resulting anisotropic dipole coupling tensor, however, represents
a prohibitive computational bottleneck.

Interatomic approaches and type C non-additivity. Further-
more, all of the above interatomic models are formulated in
terms of dipole fluctuations on atomic sites. As a result, none
of those is able to capture charge displacements that exceed
atom-atom distances, i.e. intrinsic electron hopping within
electronic fluctuations. Such a phenomenon would cause very
large multipolar terms and can give rise to very long-ranged
correlation forces48. This effect was labeled type C non-additivity
by Dobson and is so far only well-studied within the RPA
formulation.
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• Understanding van der Waals Interactions from Experiment

All in all, understanding the nature and complex scaling of vdW
interactions requires pushing both theoretical and experimental
boundaries in order to merge the conclusions from both sides
into one consistent picture. A very promising approach in that
regard are the recent advances in the field of (2D-)THz spec-
troscopy, which allows to study more collective vibrations and
dynamics. In contrast to most previous measurements, it also en-
ables a direct investigation of the underlying (non-local) dielec-
tric/polarization response of the system, see e.g. Refs. 364,365.
Finally, further exploration of the frequency spectrum in (multi-
dimensional) electronic spectroscopy can open up a new route
towards exploring the nature of vdW interactions. Such an ap-
proach could directly probe the underlying collective electronic
fluctuations (with wave lengths expected in the vacuum ultra-
violet region around 50–150 nm) and their potential connection
to the Rydberg states (or Rydberg series) of condensed matter.
This, of course, requires careful and accurate disentanglement
from other (photo-)ionization and excitation processes.
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266 T. Bučko, S. Lebègue, J. Hafner and J. G. Ángyán, Journal of

Chemical Theory and Computation, 2013, 9, 4293–4299.
267 T. Gould, S. Lebègue, J. G. Ángyán and T. Bučko, Journal of
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