
Analytic Non-Adiabatic Couplings for the Spin-Flip ORMAS 
Method

Journal: Physical Chemistry Chemical Physics

Manuscript ID CP-ART-10-2019-005849.R2

Article Type: Paper

Date Submitted by the 
Author: 12-Dec-2019

Complete List of Authors: Mato, Joani; University of Colorado Denver, Chemistry
Gordon, Mark; Iowa State University Department of Chemistry

 

Physical Chemistry Chemical Physics



Analytic Non-Adiabatic Couplings for the Spin-Flip ORMAS 

Method.

Joani Mato and Mark S. Gordon

Department of Chemistry and Ames Laboratory

Iowa State University, Ames, IA 50011

1. Abstract.

Analytic non-adiabatic coupling matrix elements (NACME) are derived and implemented 

for the spin-flip occupation restricted multiple active space configuration interaction (SF-

ORMAS-CI) method. SF-ORMAS is a general spin correct implementation of the SF-CI method 

and has been shown to correctly describe various stationary geometries, including regions of 

conical intersections. The availability of non-adiabatic coupling allows a fuller examination of 

non-adiabatic phenomena with the SF-ORMAS method. In this study, the implementation of 

the NACME is tested using two model systems, MgFH and ethylene. In both cases, the SF-

ORMAS method exhibits good qualitative agreement with established multi-reference 

methods, suggesting that SF-ORMAS is a suitable method for the study of non-adiabatic 

chemical phenomena. 
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2. Introduction.

The Born-Oppenheimer (BO) approximation allows each electronic state to be treated 

independently, while the nuclei move within the strict confines of a single BO potential energy 

surface (PES)1. This assumption greatly facilitates the quantum chemical study of molecules 

in their ground electronic states, for most of which the BO model is a sufficiently valid 

approximation. On the other hand, when two or more PESs approach degeneracy, the BO 

approximation no longer applies2. In such instances, the interaction between the various PESs 

becomes non-negligible, and energy can transfer readily between electronic and nuclear 

motions2. Transitions between BO states can occur via nuclear motion alone, thus allowing 

non-adiabatic processes to take place. 

To account for the non-BO interaction between adiabatic states, it is often necessary 

to compute the first order vibronic couplings, otherwise known as non-adiabatic coupling 

matrix elements (NAC or NACME). The expression for the NACME between two states is given 

in equation (1):

𝐷𝑥
𝐼𝐽 = ⟨ΨI(𝑟;𝑋)| ∂

∂𝑥|ΨJ(𝑟;𝑋)⟩ (1)

In equation (1),  and  denote the adiabatic wave functions of states I and J, respectively, r Ψ𝐼 Ψ𝐽

denotes electronic coordinates, and X denotes the collection of nuclear coordinates, upon 

which the wave function depends parametrically. Lastly, the lowercase x in the derivative 

operator denotes an arbitrary nuclear coordinate. As implied in Eq. (1), the first order NACME 

is a vector quantity that depends on 3N cartesian coordinates, or 3N-6 internal coordinates 

(3N-5 for linear molecules), where N is the number of atoms. Hence, the first order NACME is 

sometimes referred to as a vector coupling2. 

The first order NACME is pivotal in the study of non-adiabatic phenomena, as the 

magnitude of the coupling often indicates the strength of the interaction between the two (or 

Page 2 of 32Physical Chemistry Chemical Physics



more) adiabatic states2,3, and by extension, the inappropriateness of the BO approximation. 

For example, in geometries for which two or more PESs are degenerate (regions of conical 

intersections), the NACME magnitude grows very large4,5. Moreover, the computation of the 

NACME has practical importance since it is often a required variable in minimum energy 

conical intersections (MECI) searches6, and simulations of non-adiabatic dynamics7,8. 

While the availability of NACME is necessary in such cases, it is of equal importance 

that the underlying wave function used in Eq. (1) can accurately describe adiabatic PESs in 

the important regions of coordinate space. Traditionally, multi-reference (MR) methods have 

been used in non-adiabatic studies since they are best equipped to treat degeneracies or near-

degeneracies.  Commonly used methods are the multi-configurational self-consistent field 

(MCSCF)9 and multi-reference configuration interaction (MRCI)10 methods, both of which 

have analytic NACME available3,11,12. Multi-reference methods are ideal in the study of non-

adiabatic processes; however, their computational expense limits these methods to relatively 

small systems. The MCSCF method may also exhibit convergence and root-flipping issues13, in 

addition to the need to carefully select an active space for the system of interest. 

An attractive alternative to MR treatments are the spin-flip (SF) family of methods, 

introduced by Krylov14–16. Adapted to a variety of quantum chemical schemes such as 

configuration interaction (SF-CI)15,17, equations-of-motion coupled-cluster (SF-EOM)14, and 

time-dependent density functional theory (SF-TDDFT)18, SF methods have been used to 

adequately describe non-dynamic correlation, particularly in regions of conical 

intersections19–21.  Analytic gradients22 and analytic NACME23 have also been derived and 

implemented for some of the SF methods. However, many SF methods suffer from 

unpredictable spin-contamination since the wave function is not an exact eigenfunction of the 

 operator24. This somewhat limits the usefulness of the above-mentioned SF schemes. As a 𝑆2
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result, several schemes restoring spin-completeness of the SF configurational space have 

been implemented within wave function theory17,25–27 and TDDFT28–31. 

The SF-ORMAS32 family of methods was developed as a general SF configuration 

interaction approach that corrects the spin-contamination present in conventional SF-CI 

methods. SF-ORMAS was shown to correctly capture non-dynamic correlation in such 

processes as bond-breaking, diradical transition states, and low-lying excited states. An 

analytic gradient was also developed33, allowing for the efficient optimization of minima, 

transition states, and conical intersections. The molecular structures optimized at the SF-

ORMAS level of theory were in most cases very similar to the structures optimized by multi-

reference methods such as MRCI and MRPT2. 

In the present paper the analytic NACME for SF-ORMAS is derived and implemented 

in the GAMESS (General Atomic and Molecular Electronic Structure System)34,35 quantum 

chemistry software package. 

3. Theoretical Approach

2.1 A brief overview of the SF-ORMAS method

A brief overview of the SF-ORMAS method is given here for completeness. Readers 

who are interested in a more detailed description of the method are directed to the original 

SF-ORMAS paper32.

SF-ORMAS is a general single-reference spin-flip configuration interaction (SF-CI) 

method15,17,24. Unlike conventional CI methods, SF-CI is performed through a series of spin-

flipping excitations from a high-spin open-shell determinant (ROHF in this case), resulting in 

determinants with a lower  eigenvalue than the original SCF calculation (i.e. .   This 𝑆𝑍 Δ𝑀𝑠 < 0)

results in a CI wave function that has a lower multiplicity than the underlying SCF calculation. 

For example, a single SF-CIS calculation requires a triplet starting determinant to produce a 
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final singlet CI wave function. A graphical representation of the SF-CIS procedure is shown in 

Figure 1.

Figure 1: A graphical representation of the SF-CIS procedure

Because of the high-spin starting determinant, spin-flip methods provide a multi-

reference description of the system within a single-reference formalism (only a single 

determinant is used as the starting point). This offers significant advantages in computational 

efficiency and accuracy but suffers from the unfortunate side-effect of spin-contamination. 

The wave function generated by the spin-flip procedure is an eigenfunction of the operator, 𝑆𝑍 

but not necessarily of the  operator. This is evident in Figure 1, as determinants (e), (f), (g), 𝑆2

and (h) cannot be paired into configuration state functions (CSFs). 

The SF-ORMAS method was developed as a solution to the spin-contamination 

problem of SF-CI, as well as an attempt to generalize all currently available SF-CI schemes into 

one unified method. The SF-ORMAS method relies on the powerful ORMAS algorithm36, which 

allows for the arbitrary partitioning of the orbital space into subspaces, each constrained by a 
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minimum and maximum number of electron occupations. The SF-ORMAS procedure imposes 

the additional constraint that each generated determinant must be of a lower multiplicity 

than the underling SCF determinant. While the ORMAS method also relies on Slater 

determinants rather than CSFs, it generates all possible determinants within the given set of 

constraints. As such, the final SF-ORMAS wave function possesses the correct spin symmetry 

and does not suffer from spin-contamination. 

Many possible SF-CI schemes are available through the SF-ORMAS procedure, many of 

which are exemplified in the previous publications of the method32,33. The SF-ORMAS method 

also includes analytic gradients33 for geometry optimizations, as well as a perturbation 

correction to account for dynamic correlation32.

2.2 Analytic expressions for the SF-ORMAS NACME

SF-ORMAS is a general CI method; therefore, the derivation of the analytic NACME is 

formally identical to that of MCSCF/MRCI3,37, with the main differences occurring in the 

response terms. Thus, only a brief summary of the derivation is presented below. To maintain 

the generality of the SF-ORMAS method, no assumptions are made about the occupation or 

partitions of the ORMAS subspaces in this derivation, other than the required “spin-flipping” 

constraint. Thus, in principle, this derivation is applicable to every SF-ORMAS partitioning 

scheme that has been previously introduced32,33. 

The total SF-ORMAS wave function for an arbitrary CI state I can be expressed as a 

linear combination of Slater determinants:

Ψ𝐼 = ∑
𝑡

𝐶𝐼
𝑡𝜓𝑡 (2)

In equation (2),  denotes the Slater determinants,  the variationally optimized CI ψ 
𝑡 𝐶𝐼

𝑡

coefficients for state I, while the index  runs over all possible determinants in a given CI 𝑡
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expansion. Nuclear and electronic coordinate dependencies have been left out of the above 

notation for simplicity. Applying Eq. (2) to the NACME definition (1) results in the two-term 

equation:

𝐷𝑥
𝐼𝐽 = ⟨∑

𝑡
𝐶𝐼

𝑡𝜓 
𝑡│  

∑
𝑡′

∂𝐶𝐽
𝑡′

∂𝑥 𝜓 
𝑡′⟩ +  ⟨∑

𝑡
𝐶𝐼

𝑡𝜓 
𝑡│  

∑
𝑡′

𝐶𝐽
𝑡′

∂𝜓 
𝑡′

∂𝑥  ⟩ = 𝐷𝑥,𝐶𝐼
𝐼𝐽 + 𝐷𝑥,𝑀𝑂

𝐼𝐽  (3)

Thus, the computation of the analytic NACME is split into two terms, one containing the 

derivatives of the CI coefficients (the CI term), and one containing the derivatives of the Slater 

determinant (hereafter referred to as the MO term). 

The CI term can be simplified by taking advantage of the orthonormality between 

Slater determinants:

𝐷𝑥,𝐶𝐼
𝐼𝐽 = ∑

𝑡𝑡′

𝐶𝐼
𝑡
∂𝐶𝐽

𝑡′

∂𝑥 ⟨𝜓 
𝑡│ψ 

𝑡′⟩ = ∑
𝑡

𝐶𝐼
𝑡
∂𝐶𝐽

𝑡

∂𝑥 = 𝑪𝑰 † ∂
∂𝑥 𝑪𝑱 (4)

where a bold typeface in Eq. (4) represents a vector quantity. The direct differentiation of the 

CI coefficients in Eq. (4) can be avoided by manipulating the coupled-perturbed CI 

equations38. By differentiating the CI variational condition, , the expression in Eq. 𝑯𝑪 ― 𝑬𝑪 = 𝟎

(4) can be written as: 

𝑪𝑰 † ∂
∂𝑥 𝑪𝑱 = (𝐸𝐼 ― 𝐸𝐽) ―1𝐂𝐈 † ∂𝐇

∂𝑥𝑪𝑱 (5)

where  and  are the energies of states I and J, and  represents the Hamiltonian matrix 𝐸𝐼 𝐸𝐽 𝐇

elements between Slater determinants. The derivative term on the right hand side of Eq. (5) 

reduces to an expression very similar to that of the CI gradient33,39:

𝐂𝐈 † ∂𝐇
∂𝑥𝑪𝑱 =

𝑀𝑂

∑
𝑖𝑗

𝑄𝐼𝐽
𝑖𝑗ℎ𝑥

𝑖𝑗 +
𝑀𝑂

∑
𝑖𝑗𝑘𝑙

𝐺𝐼𝐽
𝑖𝑗𝑘𝑙(𝑖𝑗│𝑘𝑙)𝑥 +

𝑀𝑂

∑
𝑖𝑗

𝐿𝐼𝐽
𝑖𝑗𝑈𝑥

𝑖𝑗 (6)

The sums on the right-hand side of equation (6) run over all molecular orbitals (MOs). 

Eq. (6) and the analytic gradient expression for the CI energy differ in the densities and 
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lagrangian expressions. The one- and two-particle densities, and the CI lagrangian in the CI 

gradient expression are replaced by the corresponding transition densities (  and ) and 𝑄𝐼𝐽
𝑖𝑗 𝐺𝐼𝐽

𝑖𝑗𝑘𝑙

the transition lagrangian ( ), respectively. 𝐿𝐼𝐽
𝑖𝑗

The transition densities are defined by:

𝑄𝐼𝐽
𝑖𝑗 = ∑

𝑡𝑡′

𝐶𝐼
𝑡𝑄𝑡𝑡′

𝑖𝑗 𝐶𝐽
𝑡′  ;  𝐺𝐼𝐽

𝑖𝑗𝑘𝑙 = ∑
𝑡𝑡′

𝐶𝐼
𝑡𝐺𝑡𝑡′

𝑖𝑗𝑘𝑙𝐶
𝐽
𝑡′ (7)

where and  in Eq. (7) are the CI coupling constants for two arbitrary Slater 𝑄𝑡𝑡′
𝑖𝑗 𝐺𝑡𝑡′

𝑖𝑗𝑘𝑙

determinants t and t’. 

The transition lagrangian is defined by:

𝐿𝐼𝐽
𝑖𝑗 = 2

𝑀𝑂

∑
𝑝

𝑄𝐼𝐽
𝑖𝑝ℎ 

𝑗𝑝 + 4
𝑀𝑂

∑
𝑝𝑞𝑠

𝐺𝐼𝐽
𝑖𝑝𝑞𝑠(𝑗𝑝│𝑞𝑠) (8)

where  and  are the one and two-electron integrals in the MO basis, respectively. ℎ𝑗𝑝 (𝑗𝑝│𝑞𝑠)

The remaining terms in Eq. (6) are identical to those used in the CI analytic gradients, 

provided that states I and J use a common set of molecular orbitals (which is the case in SF-

ORMAS). The terms  and  are the “skeleton” one- and two-electron integrals, ℎ𝑥
𝑖𝑗 (𝑖𝑗│𝑘𝑙)𝑥

defined by:

ℎ𝑥
𝑖𝑗 =

𝐴𝑂

∑
𝜇𝜈

𝑐𝑖𝜇𝑐𝑗𝜈
∂ℎ𝜇𝜈

∂𝑥

(𝑖𝑗│𝑘𝑙)𝑥 =
𝐴𝑂

∑
𝜇𝜈𝜌𝜎

𝑐𝑖𝜇𝑐𝑗𝑣𝑐𝑘𝜌𝑐𝑙𝜎
∂(𝜇𝜈|𝜌𝜎)

∂𝑥  

(9)

where  and  are the one- and two-electron integrals in the atomic orbital (AO) ℎ𝜇𝜈 (𝜇𝜈|𝜌𝜎)

basis, and  are the MO coefficients. Lastly,  in Eq. (6) are the MO response terms, 𝑐𝑖𝜇 𝑈𝑥
𝑖𝑗

determined via the coupled-perturbed Hartree-Fock (CPHF) equation. 
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The derivative with respect to Slater determinants in the NACME expression (3), i.e. 

the MO term, reduces to the derivative of molecular orbitals by recognizing that a derivative 

works as a one-electron operator. This expression then takes the form:

𝐷𝑥,𝑀𝑂
𝐼𝐽 =

𝑀𝑂

∑
𝑖𝑗

𝑄𝐼𝐽
𝑖𝑗⟨𝜙𝑖| ∂

∂𝑥|𝜙𝑗⟩ (10)

where  denotes the molecular orbitals and  is an element of the transition one-particle 𝜙𝑖 𝑄𝐼𝐽
𝑖𝑗

density matrix, defined in Eq. (7). Since the molecular orbitals are expanded in atomic orbitals 

via the expression, , the derivative in Eq. (10) is expanded by the product rule 𝜙𝑖 = ∑
𝜇𝑐𝑖𝜇𝜒𝜇

into the derivatives of atomic orbitals and MO coefficients (expressed through the response 

terms, as above). Thus, the final form of the MO term becomes:

𝐷𝑥,𝑀𝑂
𝐼𝐽 =

𝑀𝑂

∑
𝑖𝑗

 𝑄𝐼𝐽
𝑖𝑗[ 𝐴𝑂

∑
𝜇𝜈

𝑐𝑖𝜇𝑐𝑗𝜈⟨𝜒𝜇| ∂
∂𝑥|𝜒𝜈⟩ +

𝑀𝑂

∑
𝑝

𝑆𝑖𝑝𝑈𝑥
𝑝𝑗] =

𝑀𝑂

∑
𝑖𝑗

 𝑄𝐼𝐽
𝑖𝑗[𝜎𝑥

𝑖𝑗 + 𝑈𝑥
𝑖𝑗] (11)

where  in Eq. (11) is the overlap matrix of the orthonormal MOs. 𝑆𝑖𝑝 = ⟨𝜙𝑖│𝜙𝑝⟩

The total expression for the NACME is written as:

𝐷𝑥
𝑖𝑗 = (𝐸𝐼 ― 𝐸𝑗) ―1[ 𝑀𝑂

∑
𝑖𝑗

𝑄𝐼𝐽
𝑖𝑗ℎ𝑥

𝑖𝑗 +
𝑀𝑂

∑
𝑖𝑗𝑘𝑙

𝐺𝐼𝐽
𝑖𝑗𝑘𝑙(𝑖𝑗│𝑘𝑙)𝑥 +

𝑀𝑂

∑
𝑖𝑗

𝐿𝐼𝐽
𝑖𝑗𝑈𝑥

𝑖𝑗] +
𝑀𝑂

∑
𝑖𝑗

 𝑄𝐼𝐽
𝑖𝑗[𝜎𝑥

𝑖𝑗 + 𝑈𝑥
𝑖𝑗]

= (𝐸𝐼 ― 𝐸𝑗) ―1[ 𝑀𝑂

∑
𝑖𝑗

𝑄𝐼𝐽
𝑖𝑗ℎ𝑥

𝑖𝑗 +
𝑀𝑂

∑
𝑖𝑗𝑘𝑙

𝐺𝐼𝐽
𝑖𝑗𝑘𝑙(𝑖𝑗│𝑘𝑙)𝑥]

+
𝑀𝑂

∑
𝑖𝑗

[{𝐿𝐼𝐽
𝑖𝑗(𝐸𝐼 ― 𝐸𝐽) ―1 + 𝑄𝐼𝐽

𝑖𝑗}𝑈𝑥
𝑖𝑗 + 𝑄𝐼𝐽

𝑖𝑗𝜎𝑥
𝑖𝑗]

(12)

As in the case of the SF-ORMAS analytic gradients, the MO responses must reflect the 

underlying open-shell high-spin SCF calculations33, as well as the specific partitioning of the 

orbital space by the ORMAS algorithm (the total energy is invariant to orbital rotations within 

the same ORMAS subspace). Specifically, the MO responses in Eq. (12) are obtained through 
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the solution of the coupled-perturbed ROHF (CPROHF) equations, which can be formally 

derived by differentiating the ROHF variational condition38,40.  The CPROHF equations are 

concisely written as:

𝐴𝑈𝑥 = 𝐵𝑥 (13)

The matrix  is the orbital hessian, and  depends on the derivatives of the Fock and overlap 𝑨 𝐵𝑥

matrices. The exact expressions for these matrices have been reported abundantly 

throughout the literature38,40–42, so they are not reproduced here. Eq. (13) requires that each 

response is solved for all 3N (or 3N-6) degrees of freedom in a molecular system. This can be 

avoided by applying the Z-vector method of Handy and Schaefer43. First, it is recognized that 

the response terms  are subject to the orthonormality condition:𝑈𝑥
𝑖𝑗

𝑈𝑥
𝑖𝑗 + 𝑈𝑥

𝑗𝑖 + 𝑆𝑥
𝑖𝑗 = 0 (14)

The last term in Eq. (14) is the derivative of the overlap matrix. The sum containing the 

response term in the NACME expression of Eq. (12) may be manipulated further by using the 

orthonormality condition of Eq. (14) to obtain:

𝑀𝑂

∑
𝑖𝑗

{𝐿𝐼𝐽
𝑖𝑗(𝐸𝐼 ― 𝐸𝐽) ―1 + 𝑄𝐼𝐽

𝑖𝑗}𝑈𝑥
𝑖𝑗 =

𝑀𝑂

∑
𝑖𝑗

𝑇𝐼𝐽
𝑖𝑗𝑈𝑥

𝑖𝑗

 =
1
2

𝑀𝑂

∑
𝑖𝑗

𝑇𝐼𝐽
𝑖𝑗(𝑈𝑥

𝑖𝑗 + 𝑈𝑥
𝑗𝑖) +

1
2 

𝑀𝑂

∑
𝑖𝑗

𝑇𝐼𝐽
𝑖𝑗(𝑈𝑥

𝑖𝑗 ― 𝑈𝑥
𝑗𝑖) =

1
2

𝑀𝑂

∑
𝑖𝑗

(𝑇𝐼𝐽
𝑖𝑗 ― 𝑇𝐼𝐽

𝑗𝑖)𝑈𝑥
𝑖𝑗 ―

1
2

𝑀𝑂

∑
𝑖𝑗

𝑇𝐼𝐽
𝑖𝑗𝑆𝑥

𝑖𝑗

(15)

The term  has been defined. Eq. (15) requires only the unique 𝑇𝐼𝐽
𝑖𝑗 = 𝐿𝐼𝐽

𝑖𝑗(𝐸𝐼 ― 𝐸𝐽) ―1 + 𝑄𝐼𝐽
𝑖𝑗

elements of the response term (i.e. the orbital pairs for which the energy is not invariant). In a 

SF-ORMAS calculation, this involves pairs of orbitals between different ORMAS subspaces36. 

By inverting Eq. (13) and applying the resulting expression to Eq. (15), one obtains the Z-

vector equation:

𝐴𝑇𝑍𝐼𝐽 = Δ𝑇𝐼𝐽 (16)
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 is defined as . Finally, the Z-vector solution of Eq. (16) can be used in the Δ𝑇𝐼𝐽 Δ𝑇𝐼𝐽 = 𝑇𝐼𝐽
𝑖𝑗 ― 𝑇𝐼𝐽

𝑗𝑖

NACME expression in Eq. (12) to obtain: 

1
2

𝑀𝑂

∑
𝑖𝑗

Δ𝑇𝐼𝐽𝑈𝑥
𝑖𝑗 =

1
2

𝑖𝑛𝑑𝑒𝑝.

∑
𝑖𝑗

𝑍 
𝑖𝑗𝐵𝑥

𝑖𝑗 (17)

 The sum on the right-hand side of Eq. (17) runs only over independent orbital pairs, for 

which the energy is not invariant to rotations. 

4. Implementation and testing

Most terms for the SF-ORMAS NACME expression are readily available from the recently 

implemented analytic gradients33 in GAMESS. The only novel terms are the transition density 

matrices which may be formed using the existing ORMAS routines. The transition densities 

are obtained through the use of the Slater-Condon rules44–46 by looping over all possible single 

and double excitations to generate the coupling constants, and then multiplying by the CI 

coefficients from the two states36,47. 

To test the implementation of the analytic NACME for SF-ORMAS, numeric non-

adiabatic couplings via finite differencing were also coded in GAMESS. Starting from Eq. (3), 

the CI and MO terms of the NACME can be written as numerical derivatives in the following 

way, respectively48:

∑
𝑡

𝐶𝐼
𝑡

∂
∂𝑥𝐶𝐽

𝑡 = ∑
𝑡

𝐶𝐼
𝑡 ⋅ 𝐶𝐽, + Δ𝑥

𝑡 ― 𝐶𝐼
𝑡 ⋅ 𝐶𝐽, ― Δ𝑥

𝑡

2Δ𝑥 (18)

𝑀𝑂

∑
𝑖𝑗

𝑄𝐼𝐽
𝑖𝑗⟨𝜙𝑖| ∂

∂𝑥|𝜙𝑗⟩ =
𝑀𝑂

∑
𝑖𝑗

𝑄𝐼𝐽
𝑖𝑗

⟨𝜙𝑖│𝜙 +Δx
𝑗 ⟩ ― ⟨𝜙𝑖│𝜙 ―Δx

𝑗 ⟩
2Δ𝑥 (19)

In Eqs. (18) and (19), the double difference formula is used to approximate the nuclear 

derivatives. The superscripts ‘ ’ and ‘ ’ denote quantities computed at a displaced + Δ𝑥 ― Δ𝑥

cartesian geometry, either positive or negative by an amount . Δ𝑥
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Eq. (18) requires that the original (not displaced) set of CI coefficients always be 

available at each displaced geometry in order to compute the CI overlaps. However, no more 

than two sets of CI coefficients need to be stored in disk or memory at any given 

displacement. Similarly, the displaced MO overlap in Eq. (19) requires the displaced AO 

overlap matrix (  ), as well as the MO coefficients, computed at two different ⟨𝜒𝜇│𝜒Δ𝑥
𝜈 ⟩

geometries. 

A major concern in the evaluation of the numerical NACME is the phase of the wave 

function. The total energy and energy derivatives of the system are not susceptible to changes 

in the phase of the MO and/or CI coefficients; the numerical NACMEs in Eqs. (18) and (19), on 

the other hand, are not invariant to phase changes between displacements. 

To avoid this problem, the phase consistency of the MO coefficients was ensured by 

monitoring the diagonal elements of the displaced MO overlaps, . Provided that 𝑆Δ𝑥
𝑖𝑖 = ⟨𝜙𝑖│𝜙Δx

𝑖 ⟩

 is sufficiently small, the displaced overlap should be close to 1 if no change of phase has Δ𝑥

occurred, and close to -1, if a change of phase has occurred. Thus, multiplying each new 

molecular orbital,  by the quantity,   ensures that all MOs maintain the same 𝜙Δ𝑥
𝑖

𝑆Δ𝑥
𝑖𝑖

|𝑆Δ𝑥
𝑖𝑖 | =± 1

phase between displacements. A similar procedure was carried out for the CI coefficients as 

well.  To minimize the complexity of the CI phase, the MO phases were corrected (when 

necessary) immediately after the SCF step of the SF-ORMAS calculation, but before the CI step. 

Finally, the antisymmetric nature of the derivative operator (and consequently of the NACME) 

was used as a test of accuracy during the coding process of the numerical NACME. After 

several trials, a value of 0.005 bohr was chosen as an optimal value for the displacement 

variable, , to avoid potential numerical instabilities. Δ𝑥

The analytic NACME implementation was compared to the numerical NACME, and in most 

cases the agreement between the two is on the order of  bohr-1. In some cases, 10 ―5 ― 10 ―6
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agreement only on the order of  could be achieved. Since the numerical differentiation 10 ―4

happens along cartesian coordinates, any displacements that change the molecular center of 

mass have the potential to introduce minor errors into the evaluation of the numerical 

NACME. 

5. Illustrative calculations

To illustrate the implementation of the NACME for the SF-ORMAS method, examples with 

MgFH and ethylene are considered in this study. These are compared with MCSCF calculations 

of the state-averaged complete active space kind49–51 (SA-CASSCF), for which NACME have 

already been implemented in GAMESS. Since all CASSCF calculations employed in this study 

are state-averaged, the SA prefix is implied and therefore not used in the rest of this paper.   

Two different SF-ORMAS schemes are used throughout these examples: the SF-

ORMAS-CIS (i.e. allowing single excitations into the virtual space), and SF-CAS (no excitations 

into the virtual space)32. Additionally, single spin-flip (1SF) and double spin-flip (2SF) 

examples are considered.  Unless otherwise stated, all calculations in this section use the 6-

31G(d) basis set. 

MgFH

The first example considered for the SF-ORMAS NACME is the reaction 

. Following the example of Saxe, Lengsfield, and Yarkony11, the couplings 𝑀𝑔 + 𝐻𝐹→𝑀𝑔𝐹 + 𝐻

of the reaction are calculated along the collinear surface of Mg – F – H in which the distance 

between hydrogen and fluorine is varied. Along this path, the reaction exhibits charge 

transfer between the  and  orbitals of the H-F bond. Only the two lowest  states of the 𝜎 𝜎 ∗  1Σ +

system are considered here.
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First, the SF-ORMAS calculations are compared with those of the CASSCF method to 

ensure that the quality of the two wave functions is comparable for the purposes of this 

investigation. Two SF schemes are considered for this system, the SF-ORMAS-CIS, and SF-

CAS(2,2). 

Similarly, two different active spaces are used in the CASSCF calculation: a minimal 

(2,2) space which contains only the  and  HF orbitals, and a larger (4,6) active space, 𝜎 𝜎 ∗

containing the aforementioned  orbitals, the magnesium 3s and 3p (x and y) orbitals, as well 𝜎

as the fluorine 3pz orbitals. All atoms of the MgFH molecule are located along the z-axis. 

Figure 2 shows a potential energy surface scan along the H-F bond distance for the 1 1

 and  states of the Mg-F-H system at four different levels of theory. Figure 3 shows Σ + 2 1Σ +

the energy difference (calculated as ) along the same bond distances. 2 1Σ + ―1 1Σ +
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Figure 2: A PES scan along the F-H distance (in bohr) of the Mg-F-H complex for the two lowest  states. All  1Σ +

methods use the 6-31G(d) basis set. All methods share a common 0 kcal/mol energy in the ground state PES. 
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Figure 3: The energy difference (in eV) between the two lowest  states of the Mg – F – H complex as a function  1Σ +

of the F-H distance (in bohr). 

The ground state potential energy surfaces show little difference among the four 

levels of theory presented in Figure 2. All methods produce qualitatively similar PESs, 

displaying significant overlap and successfully capturing the small barrier present along the 

bond elongation path. On the other hand, the excited state potential energy curves obtained 

using the four different methods are appreciably different, particularly the curve generated by 

the SF-CAS method. While qualitatively similar to the other methods, SF-CAS greatly 

overestimates the energy of the  state at large H-F distances, as demonstrated in Figure 2 1Σ +

3.  While the difference is mostly quantitative (the general trend of the PES remains similar to 

that of the other methods), the lower quality of the SF-CAS wave function in this instance is 

understandable since the method lacks additional excitations into the virtual space which are 
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crucial for the characterization of the  excited state. The CASSCF(2,2) method also lacks 2 1Σ +

such excitations; however, the orbital optimization (not present in SF methods) along with 

the state-averaging work to reduce the impact of the lack of excitations into the virtual space.  

Similarly, the additional single excitations present in the SF-ORMAS-CIS method (not included 

in SF-CAS) significantly improve the description of the excited state. As Figure 3 shows, the 

SF-ORMAS-CIS excitation energies along the PES are virtually identical to those of 

CASSCF(2,2). 

The inclusion of the  and  orbitals in the active space is critical for the description 𝜎 𝜎 ∗

of the charge-transfer nature of the reaction. Indeed, all methods contain the  orbitals in 𝜎

their active space (in SF methods, the “active space” is the singly occupied space of the ROHF 

reference32). Figure 4 shows the natural orbital occupation numbers (NOON, computed by 

diagonalizing the state specific density matrix) of the  and  orbitals along the F – H bond 𝜎 𝜎 ∗

elongation, calculated at the same levels of theory. 
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Figure 4: The natural orbital occupation numbers of the  and  orbitals along the F – H bond elongation σ σ ∗

coordinate. All methods use the 6-31G(d) basis set. 

Figure 4 demonstrates the excellent qualitative agreement between the SF-ORMAS 

and the CASSCF NOON. At smaller bond distances the occupation of the  orbital is near 2.0, 𝜎

while the occupation of the  orbital is near 0.0. As the bond elongates, electron density 𝜎 ∗

transfers from the  to the  orbital, until the occupations of the two orbitals approach 1.0. 𝜎 𝜎 ∗

Once again, the SF-CAS method deviates slightly from the other methods as the occupation 

change happens at smaller distances. This is again attributed to the inflexibility of the SF-CAS 

wave function, as the open shell triplet reference used in SF methods strongly favors the 

diradical configuration. Both SF-ORMAS methods employed here agree qualitatively with the 

CASSCF results. 
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Table 1 shows the absolute values of the NACME for several F-H distances, computed 

at all four levels of theory discussed above. The NACME in cartesian coordinates is a vector of 

dimension 3N (where N is the number of nuclei). However, in this case the NACME along the x 

and y coordinates vanish because of linearity and the fact that both states belong to the totally 

symmetric irreducible representation of the  group ( ). Therefore, only the non-𝐷∞ℎ  1Σ +

vanishing NACME along the z-direction (molecular axis) are given in Table 1. For small 

systems like MgFH it is possible to make a direct comparison of the NACME along the 

symmetry unique coordinates. 

Table 1: The absolute value of the NACME z-component (in bohr-1) as a function of the F-H distance (in bohr). 

CASSCF(2,2) CASSCF(4,6) SF-ORMAS-CIS SF-CAS-CI

F-H 
distance Mg F H Mg F H Mg F H Mg F H

1.73 0.364 0.264 0.217 0.330 0.177 0.158 0.371 0.245 0.196 0.442 0.300 0.213

2.00 0.373 0.769 0.661 0.305 0.515 0.490 0.369 0.836 0.703 0.560 1.586 1.314

2.23 0.513 1.734 1.426 0.367 1.122 0.974 0.538 1.939 1.582 0.409 1.543 1.323

2.48 0.480 1.604 1.290 0.515 1.708 1.365 0.485 1.636 1.309 0.199 0.552 0.494

2.73 0.268 0.725 0.599 0.449 1.201 0.910 0.274 0.733 0.601 0.119 0.232 0.228

3.23 0.110 0.178 0.179 0.224 0.353 0.258 0.115 0.218 0.203 0.060 0.066 0.086

3.48 0.082 0.100 0.118 0.181 0.223 0.158 0.113 0.159 0.094 0.046 0.040 0.062

All methods show the same general trend along the elongation of the H-F bond. The 

NACME values in Table 1 appear to be inversely related to the energy difference between the 

two  states. For example, at an F-H distance of 2.23 bohr, both the SF-ORMAS-CIS method  1Σ +

and the CASSCF(2,2) method exhibit the smallest energy gap between the two states (see 
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Figure 3), and consequently the largest magnitude of the NACME for each atom (Table 1). At 

the point of largest energy separation (a distance of 3.48 bohr), the NACME values are 

consistently the smallest for all methods. The magnitude of the NACME is expected to be 

inversely related to the energy difference between two states2. This relationship is formally 

exact for exact wave functions, although only approximate for approximate wave functions, as 

shown in Eqs. (5) and (12). Nevertheless, this trend holds very well for CI wave functions, as 

the CI contribution to the NACME is often the largest48,52.   

Table 2 shows the norm of the NACME (|NACME|, defined as the usual norm for a 3N-

dimensional vector; i.e. ) multiplied by the energy difference between the two |𝐷| = ∑3𝑁
𝑖 𝐷2

𝑖

states.

Table 2: Norm of the NACME multiplied by the energy difference between the two  states (i.e. )  1Σ + |𝑁𝐴𝐶𝑀𝐸| ∗ Δ𝐸

in units of eV/bohr. The HF bond distance is in units of bohr. 

|𝑁𝐴𝐶𝑀𝐸| ∗ Δ𝐸 

HF Distance CASSCF(2,2) CASSCF(4,6) SF-ORMAS-CIS SF-CAS-CI

1.73 1.724608519 1.566863645 1.670905953 2.261304065

2.00 3.045000722 2.620178643 3.1428818 6.883013323

2.23 4.743683976 3.813668526 4.948593597 6.286231137

2.48 4.435114396 4.418846852 4.427928061 3.24986534

2.73 2.8482491 3.5354586 2.854074715 1.923755155

3.23 1.322232239 1.753217834 1.47917789 0.943628098

3.48 0.987176005 1.355925724 1.136395302 0.724298597

The values in Table 2 take into account both the NACME as well as the energy 

difference between the two states considered. The  values for SF-ORMAS-CIS |𝑁𝐴𝐶𝑀𝐸| ∗ Δ𝐸
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follow consistently the same pattern as the values for CASSCF(2,2) and CASSCF(4,6), in most 

cases landing somewhere between the two (Table 2). The accuracy of single spin-flip CI is 

expected to be approximately at the level of CASSCF(2,2), and the values in Table 2 do indeed 

reflect that assertion. SF-CAS, on the other hand, appears to overestimate the  |𝑁𝐴𝐶𝑀𝐸| ∗ Δ𝐸

value at short H-F distances, and underestimate it at long H-F distances. Nevertheless, SF-CAS 

also follows roughly the same pattern as the other three methods shown in Table 2. 

The similar qualitative behavior of the SF-ORMAS non-adiabatic couplings with those 

of CASSCF suggest the suitability of the SF-ORMAS method in the study of such systems. The 

differences in the NACME values between SF-ORMAS and CASSCF reflect their differences in 

the description of the PES. 

Ethylene

The ethylene molecule (C2H4) is a classic example of a system that can illustrate the influence 

of conical intersections in organic chemistry. The first  excited state of ethylene has a 𝜋𝜋 ∗

short lifetime and undergoes rapid isomerization53. Generally, the analysis of ethylene at non-

equilibrium geometries at which the adiabatic approximation is not appropriate requires a 

multi-reference approach; however, spin-flip methods have proven to be adequate in the 

treatment of ethylene near a conical intersection42. SF-ORMAS in particular was shown to 

predict energies and geometries comparable to those obtained using multi-reference 

methods, such as MRCI and MRPT2,  at multiple stationary points on the ethylene PES, 

including minima, saddle points, and minimum energy conical intersections (MECI)32,33. 

Table 3 shows the norm of the NACME (|NACME|, defined as the usual norm for a 3N-

dimensional vector; i.e. ) for several levels of theory computed at three critical |𝐷| = ∑3𝑁
𝑖 𝐷2

𝑖

geometries of ethylene: the D2h ground state geometry, the D2d rotational transition state, and 

the twisted-pyramidal S1/S0 conical intersection geometry53. The norm of the NACME vector 
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(instead of individual cartesian coordinates) is used to simplify the comparison among the 

different levels of theory. The norm of the NACME is used in the calculation of transition 

probabilities between states in the adiabatic representation55. 

Table 3 also shows the difference in energy between the ground state (S0) and first 

excited state (S1) in each respective geometry.

 

Table 3: |NACME| (in bohr-1) and energy difference (in eV) between the ground and first excited state of ethylene 

calculated at three different geometries. All methods use the 6-31G(d) basis set. The MRCI calculations use 

CASSCF(2,2) as a reference. The energy difference at the MECI was confirmed to be negligible (~0 eV) and is 

therefore not given. The quantities of |NACME|  (in units of eV/bohr) are also given for the ground state and ∗ Δ𝐸

transition state geometries.

Ground state (D2h) Trans. state (D2d) MECI    Geom. 

Method (S1-S0)Δ𝐸 |NACME| |NACME|* Δ
𝐸 (S1-S0)Δ𝐸 |NACME| |NACME|*

 Δ𝐸 |NACME|

CASSCF(2,2) 10.2 0.416 4.24 4.2 0.703 2.95 3.8 × 104

CASSCF(4,4) 9.6 0.351 3.37 3.9 0.702 2.74 5.6 × 104

SF-CAS(2,2) 11 0.374 4.11 6.5 0.463 3.01 2.4 × 104

2SF-CAS(4,4) 10.3 0.300 3.09 5.6 0.484 2.71 4.7 × 103

SF-ORMAS-CIS 9.0 0.330 2.97 3.4 0.870 2.96 3.7 × 105

MRCISD 9.2 0.345 3.174 3.5 0.674 2.36 N/A

The NACME norms computed here are in good qualitative agreement among the 

different levels of theory. As shown in Table 3, the transition state geometry (located at a  90𝑜

HCCH torsional angle) displays NACME norms with magnitudes that are consistently larger 

than those of the ground state geometry. The NACME norms calculated via SF-CAS (with 

either single or double spin-flip) are consistently smaller than their CASSCF counterparts. 
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This is expected given the disparity in the excitation energies calculated by the two families of 

methods (see Table 3). Since SF-CAS produces higher excitation energies, it is reasonable that 

the computed NACME norms will be lower in magnitude. Indeed, the norm of the NACME 

multiplied by the energy difference (shown for the ground state and transition state 

geometries in Table 3) for all methods are within ~1 eV/bohr of each other.  

Considering that neither SF-CAS nor CASSCF account for dynamic correlation, state-

averaged CASSCF tends to underestimate excitation energies, whereas SF-CAS tends to 

overestimate them. It has been shown that adding dynamic correlation via perturbation 

theory (i.e. SF-MRMP2)32 significantly improves the excitation energies for SF-CAS. However, 

the NACME norms calculated at the SF-CAS level of theory are likely to be smaller than the 

corresponding CASSCF values at geometries that have non-negligible excitation energies, due 

to the tendency of SF-CAS to overestimate such energies. The difference is quantitative, 

however, as both methods obey the same general trend. For instance, at their respective MECI 

geometries at which the two states are degenerate, both methods show very large NACME 

norms with little significant differences among the various methods.  

Inclusion of additional single excitations, as in the SF-ORMAS-CIS method, 

significantly improves not only the excitation energies, but also the NACME norms. At the 

ground state geometry, the NACME norms for SF-ORMAS-CIS are very close to both CASSCF 

methods and MRCI (while the excitation energy is much closer to that of MRCI). The same is 

true for the transition state geometry. In the transition state geometry (D2d symmetry) there 

is a slightly greater disparity in the NACME norms between SF-ORMAS-CI and MRCI, 

attributed to the additional double excitations present in the MRCI method. 

As expected, the SF-ORMAS method behaves qualitatively similarly to both CASSCF 

and MRCI in the computation of non-adiabatic couplings. In conjunction with previous energy 

Page 23 of 32 Physical Chemistry Chemical Physics



and geometry calculations32,33, SF-ORMAS methods show great promise in the study of non-

adiabatic processes for organic molecules. 

6. Conclusion

The non-adiabatic coupling matrix elements (NACME) for the SF-ORMAS-CI method were 

derived and implemented in the GAMESS software package. Conventional SF methods have 

been successfully used in the past to study non-adiabatic processes in quantum chemistry19–

21,23,56,57; however the large spin contamination inherent in such methods has often proved to 

be a significant source of error. SF-ORMAS is free of spin contamination, and the availability of 

NACME greatly expands the applicability of the method, allowing for investigations beyond 

the adiabatic approximation. 

The analytic NACME implementation is tested against two model systems and 

compared with results from state-averaged CASSCF calculations. The goal of these 

calculations is not to present any new information on the above systems, but rather to 

demonstrate the possible suitability of SF-ORMAS in the study of non-adiabatic processes. In 

all cases, the SF-ORMAS method demonstrates good qualitative agreement with results 

obtained from CASSCF. While the precise magnitude of the NACME is not expected to be the 

same among different levels of theory, the NACME computed by SF-ORMAS displays the same 

general trends as CASSCF along various points on the PES. The data presented here, in 

conjunction with previously reported results32,33, strongly suggest that SF-ORMAS is a suitable 

candidate for the study of non-adiabatic phenomena. 

Of course, a more valid test for the current implementation of NACME would be to 

conduct full non-adiabatic dynamics simulations, either using a surface hopping8 or an ab-

initio multiple spawning7 approach. This will be the subject of a future study with the SF-

ORMAS method. Also of interest is the implementation of the SF-ORMAS gradients and 

NACME with the effective fragment potential (EFP) solvation method58. A previous 
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implementation of  EFP with SF-TDDFT22 showed promise for the optimization of stationary 

geometries and conical intersections of solvated molecules. It will be interesting to examine 

the quality of the SF-ORMAS method for the characterization of solvated molecules, and the 

effect that spin-contamination may have on such systems. This will also be the subject of a 

future study. 
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