
Generalised Dissipative Particle Dynamics with Energy 
Conservation: Density and Temperature-Dependent 

Potentials

Journal: Physical Chemistry Chemical Physics

Manuscript ID CP-ART-08-2019-004404.R1

Article Type: Paper

Date Submitted by the 
Author: 10-Oct-2019

Complete List of Authors: Bonet Avalos, Josep; Universitat Rovira i Virgili, ETSEQ, Enginyeria 
Química
Lisal, Martin; ICPF, 
Larentzos, James; US Army Research Laboratory, Weapons and Materials 
Research Directorate
Mackie, Allan; Universitat Rovira i Virgili, 
Brennan, John; U.S. Army Research Laboratory, Weapons and Materials 
Research Directorate

 

Physical Chemistry Chemical Physics



Generalised Dissipative Particle Dynamics with En-
ergy Conservation: Density- and Temperature-
Dependent Potentials †

Josep Bonet Avalos,a Martin Lísal,b,c James P. Larentzos,d Allan D. Mackie,a and John
K. Brennan∗d

We present a generalised, energy-conserving dissipative particle dynamics (DPDE) method ap-
propriate for the non-isothermal simulation of particle interaction force fields that are both density-
and temperature-dependent. A detailed derivation is formulated in a bottom-up manner by con-
sidering the thermodynamics of small systems with the appropriate consideration of the fluc-
tuations. Connected to the local volume is a local density and corresponding local pressure,
which is determined from an equation-of-state based force field, depending also on a particle
temperature. Compared to the original DPDE method, the formulation of the generalised DPDE
method requires a change in the independent variable from the particle internal energy to the
particle entropy. As part of the re-formulation, the terms dressed particle entropy and the cor-
responding dressed particle temperature are introduced, which depict the many-body contribu-
tions in the local volume. The generalised DPDE method has similarities to the energy form of
the smoothed dissipative particle dynamics method, yet fundamental differences exist, which are
described in the manuscript. The basic dynamic equations are presented along with practical
considerations for implementing the generalised DPDE method, including a numerical integra-
tion scheme based on the Shardlow-like splitting algorithm. Demonstrations and validation tests
were performed using analytical equation-of-states for the van der Waals and Lennard-Jones flu-
ids. Particle probability distributions were analysed, where excellent agreement with theoretical
estimates was demonstrated. As further validation of the generalised DPDE method, both equilib-
rium and non-equilibrium simulation scenarios were considered, including adiabatic flash heating
response and vapour-liquid phase separation.

1 Introduction
Heat transport in nanometric dimensions is a generic problem
found in many disciplines and situations, ranging from molecu-
lar motors, chemical reactions in nanocapsules1, microelectronic
systems2,3, propagation of reactive fronts4,5, and nanolubrica-
tion6, among others7,8. In many of these cases, the temperature
gradients may lay in the range 106−108 K/m. In these very large
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temperature gradients, the coupling between the different non-
equilibrium processes is critical for both the understanding as well
as modelling of energy transfer phenomena at the nanoscale. In
other situations, there is evidence of interfacial heat conductiv-
ity depending on the surface roughness9, polarisation of water
molecules due to temperature gradients10,11, and heat rectifica-
tion at the nanoscale12,13. Molecular dynamics simulations have
been applied to the calculation of interfacial heat transfer coeffi-
cients14,15. However, the analysis of significantly larger systems,
still under the submicrometric scale, cannot be addressed by the
direct application of molecular dynamics simulations because the
computational cost would be prohibitive.

Coarse-grain (CG) modelling and simulation offers an alter-
native route for such cases when molecular simulations are too
computationally expensive. The simplest CG models, used for ex-
ample in the original formulations of the DPDE algorithms, are
separation-distance dependent models; however, the more accu-
rate models for specific quantitative applications typically con-
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tain a density dependence that accounts for many-body inter-
actions, which are the result of the coarsening of the degrees-
of-freedom from the coarse-graining process. The density de-
pendence improves transferability of the model accuracy out-
side of the parameterisation limits. Moreover, in some cases,
CG models that are both density- and temperature-dependent
have been shown necessary for further improvement of both the
accuracy and transferability. Indeed, a growing trend towards
density- and temperature-dependent CG models is slowly emerg-
ing. Such models may be built from higher resolution models
(e.g., ref.16), or may be a many-body force field based on an ana-
lytical equation-of-state (MB-FF-EOS) (e.g., ref.17). To date, these
density- and temperature-dependent CG models typically have
been simulated at isothermal conditions. In other non-isothermal
cases, the temperature enters into the definition of the model
parametrically, not as the intrinsically fluctuating particle tem-
perature18,19.

In the context of implementing CG models into an appropri-
ate non-isothermal CG methodology, Dissipative Particle Dynam-
ics with energy conservation (DPDE)20,21 is a CG method that has
proven its applicability in a wide range of situations22–27, includ-
ing shock wave propagation4,5,28–31, and other applications32,33.
However, additional considerations arise when implementing a
density- and temperature-dependent force field within the DPDE
framework, since both the local density and particle temperature
are fluctuating and contribute to the forces between particles and
interaction energies. In this work, we formulate the theory of
DPDE for not only density-dependent17,31,34–36 (see also27 for a
review), but also for temperature-dependent particle-particle in-
teractions, suitable to cover the gap between atomistic molecu-
lar dynamics and the scale-invariant Smoothed Particle Hydrody-
namics (SPH) method.

In contrast with SPH37,38 and its fluctuating counterpart,
Smoothed Dissipative Particle Dynamics (SDPD)39,40, DPDE is
a bottom-up method, suitable for CG models that have been
built using coarse-graining procedures that utilised high resolu-
tion models, and thus retains microscopic information about the
underlying system. The parameters in SPH and SDPD are ob-
tained from the macroscopic properties of the system after a dis-
cretisation of the macroscopic continuum fields using a smooth-
ing kernel W with a characteristic range h, typically larger than,
but of the order of the interparticle distance. The macroscopic
fields then enter into the definition of the model linked to the
characteristic chosen scale related to the virtual volume V of the
particle41. The variance of the fluctuations, 〈v2〉, is thus found to
decrease as the size of the particle increases according to

〈v2〉 ∼ D
kBT
ρV

(1)

where D is the dimensionality of the space, kB is the Boltz-
mann constant, T is the temperature, and ρ is the characteristic
mass density of the system. However, the systematic dynamics
(with fluctuations set off, say) is scale invariant for wavelengths
λ0 > 1/V 1/D as it reproduces the Navier-Stokes fluid dynamics.
The transport coefficients of the model are further invariant pro-
vided that the additional condition V 1/D � h is also satisfied, to

enforce that the pair distribution function g(|r−r′|)' 1 at all dis-
tances42–44. Therefore, introducing the adequate scaling of the
fluctuations in eq. (1), SDPD can describe the behaviour of a sus-
pended colloid of size R with any discretisation of the fluid V ,
provided R� λ0. This condition demands that there exists a large
separation in scales between the dynamics of the suspended par-
ticle and the dynamics of the particles forming the CG fluid. This
situation is common in many applications such as in suspensions,
notably in all these situations that can be described within the
framework of the Langevin equation45,46.

The cut-off length λ0 is however critical since as the size of the
fluid particle decreases, the effect of the fluctuations increases.
Therefore for small scales, the importance of the fluctuations is
comparable to the importance of the conservative forces, thus
breaking the scale invariance of SPH and SDPD methods, as well
as the scaling of the fluctuations expressed in eq. (1). This disrup-
tion of the scale invariance for λ0→ 0, together with the definition
of the fields from the macroscopic perspective, characterises SPH
and SDPD as top-down methods.

As part of the discussion of the generalised DPDE method that
is proposed here, we review the formulation of the thermody-
namic description at the mesoscopic level, which includes a dis-
cussion of the role of the dependent and independent variables
for systems with large fluctuations47,48. In this paper, we intro-
duce an energetic formulation of a generalised DPDE method that
requires a swap in independent variables. The need for an ener-
getic formulation arises, in part, from the requirement of an inte-
gration algorithm based on the splitting of the conservative mo-
tions of the particles, here depending on particle temperatures,
from heat exchange between them. Such a scheme thus requires
adiabatic transformations in the system when the former are ap-
plied, which naturally suggests that the entropy of the particle,
instead of the energy, should be the independent variable. How-
ever, since the entropy is inherently a non-conserved quantity, it is
not suitable as the independent variable when the heat exchange
step is considered.

The proposed algorithm introduces the aforementioned split-
ting of the conservative and dissipative interactions, together with
the use of the particle internal energy as the independent vari-
able, in a consistent manner. Moreover, we take advantage of this
situation to introduce an illustrative analysis of the consistency of
the model, and its thermodynamic properties in the canonical en-
semble, in contrast with the usual formulation in the microcanon-
ical ensemble27, although both analyses are equivalent. The ad-
vantage of the canonical ensemble is that the system tempera-
ture is externally characterised, and not defined in terms of the
energy of the system, as it occurs within the microcanonical en-
semble, making the derivation more transparent. The algorithm
is independent of the reservoir temperature and is suitable for
the simulation of thermally isolated systems as well. This study
is carried out in Sec. 2, where a detailed derivation is presented
that is formulated in a bottom-up manner by considering the ther-
modynamics of small systems, ensuring a link to the underlying
physical system of the higher resolution model.

In Sec. 3, we provide detailed derivations of the dynamic equa-
tions, first for the reversible (conservative) interactions based
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on the mesoscopic thermodynamic description, and then for the
irreversible (dissipative) interactions. The equations-of-motion
(EOM) and fluctuation-dissipation relations for the generalised
DPDE method are given in Sec. 4, which includes practical con-
siderations regarding the numerical integration of the algorithm
under the form of a Shardlow-like splitting algorithm26,49. Appli-
cations and demonstrations of the generalised DPDE method for
the van der Waals and Lennard-Jones fluids at both equilibrium
and non-equilibrium conditions are considered in Sec. 5.

2 Mesoscopic thermodynamics considera-
tions

2.1 Definition of the internal state of the DPDE particle

Let us consider that the DPDE particle in our generalised method
is a material element embodying many physical constituents. This
vision has been discussed in several references, notably through
the tessellation of a physical system first introduced by Flekkøy
and coworkers50,51. Let us assume that each CG particle con-
tains some number of coarsened degrees-of-freedom. Here, for
the sake of simplicity, we will ignore the dependence of the pa-
rameters on the latter, but whose effect will be studied elsewhere.
Throughout this work, we use the following terminology: macro-
scopic refers to the thermodynamic system, mesoscopic refers to
the DPDE or CG system, while microscopic refers to the underly-
ing physical system that is represented by the DPDE particle.

Let us consider an ensemble of N DPDE particles (i = 1, . . . ,N)
located at the space points {ri}N

i=1. A local density of DPDE parti-
cles is estimated from the expression34,36

ni ≡
∑ j 6=i w(ri j)

[w]
(2)

with ri j = |ri j|, ri j = ri− r j and

[w]≡
∫

w(r)dr (3)

w(r) is a smooth, non-negative, spherically symmetric weighting
function vanishing for r ≥ Rcut , where Rcut is the cut-off range.
Specific forms of w(r) are discussed below. Notably, ni provides a
measure of the volume of the DPDE particle, Vi ≡ 1/ni. Such par-
ticle volumes are not additive since V 6= ∑i Vi, where V is the vol-
ume of the system. However, under normal conditions (e.g., ho-
mogeneous fluids) these two magnitudes should not significantly
differ. Furthermore, with the definition of eq. (2)36, an isolated
particle can have an undefined value of the local density because
ni < 1/R3

cut , but the integration of eq. (3) returns ni = 0, if a cut-off
is used. This is an artifact of the cut-off, which has to be addressed
in the simulations of the model we present. Alternatively, the lo-
cal density can be defined using the Voronoi tessellation52, which
leads to V = ∑i Vi.

For the internal state of the DPDE particle, we will assume there
exists a function ui of the collective properties of the internal
coarsened degrees-of-freedom. The function ui is considered to
depend upon the mesoscopic equivalent of the macroscopic ther-

modynamic variables that define the state of a given system, i.e.

ui = ui(si,ni) (4)

where si is a measure of the mesoscopic bare particle entropy of
the DPDE particle53. We assume that the state of this particle
is only changed through the exchange of heat with neighbouring
particles, and through changes in the local volume via the varia-
tion of its arguments si and ni. Depending on the nature of the
underlying microscopic physical system, other variables may be
considered. Furthermore, we can define intensive-like variables
from the expression

dui = θidsi +
πi

n2
i

dni (5)

where the particle temperature is defined as

θi ≡
∂ui

∂ si

∣∣∣∣
ni

> 0 (6)

θi must be strictly positive, so that the inverse function si =

si(ui,ni) exists54. By analogy, we have introduced the particle
pressure according to

πi ≡ n2
i

∂ui

∂ni

∣∣∣∣
si

(7)

We will assume that the first law of thermodynamics, which in-
cludes irreversible processes, holds also at the mesoscopic (parti-
cle) level, namely

dui = dqi +dWi (8)

where dqi and dWi are, respectively, the total heat transferred by
the particle i and the work done onto it. According to eqs. (5)
and (8), we can write

θidsi = dqi +dWi−
πi

n2
i

dni (9)

= dqi +dW irrev

where in the last term we have introduced the irreversible work
exerted on the particle.

2.2 Equilibrium averages and appropriate estimators

In the context of the generalised DPDE method, let us consider
the canonical ensemble, defined by a temperature T , a volume
V and number of DPDE particles N. We consider that the total
energy is conserved and given by

E ≡∑
i

[
p2

i
2mi

+ui(si,ni)

]
(10)

while the total momentum

P = ∑
i

pi (11)
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is also a conserved quantity. We propose that the probability dis-
tribution of the system in the canonical ensemble is given by

Peq ({pi},{ri},{si})dΓ∼ e
−∑i

[
p2
i

2mi
+ui(si,ni)−T si

]
/(kBT )

dΓ (12)

where the state of the system is represented by a point in a 7N-
dimensional phase space Γ≡ (p1, . . . ,pN ,r1, . . . ,rN ,s1, . . . ,sN). The
function F , defined as

F ({pi},{ri},{si};T )≡∑
i

[
p2

i
2mi

+ui(si,ni)−T si

]
(13)

can be considered as a free energy functional of the system, and
hence Peq(Γ)∼ e−F/(kBT ). Unlike the usual Hamiltonian of a con-
servative system, F parametrically depends on the macroscopic
temperature T set by the reservoir. Its dependence on the coor-
dinates of the particles arises from the dependence of the local
density in these coordinates, according to eq. (2), ni = n({ri j}).

According to the definition in eq. (12), θi is an estimator of the
macroscopic system temperature

〈θi〉=
∫

dΓθi Peq ({pi},{ri},{si}) = T (14)

The choice given in eq. (12) is consistent with the probability dis-
tribution introduced in the energy form of the SDPD method40,
although here we are working in the canonical ensemble.

2.3 Change in the independent variables

To complete our analysis, let us consider the effect on the meso-
scopic properties when one set of independent (fluctuating) vari-
ables is changed into another set. In particular, consider the
change from a set of si independent variables to a set of ui in-
dependent variables, while keeping the system properties un-
changed.

Let us consider that we introduce the new independent vari-
ables, and by virtue of eq. (6), we can then construct the function
si(ui,ni). Denoting Γ̃ ≡ (p1, . . . ,pN ,r1, . . . ,rN ,u1, . . . ,uN), eq. (12)
can then be written as

Peq ({pi},{ri},{si})dΓ∼ e
−∑i

[
p2
i

2mi
+ui−T si(ui,ni)

]
/(kBT )

∣∣∣∣∂Γ

∂ Γ̃

∣∣∣∣dΓ̃ (15)

The Jacobian of the transformation is |∂Γ/∂ Γ̃| =

(1/θ1)(1/θ2) . . .(1/θN). Hence, we can write

Peq ({pi},{ri},{ui})dΓ̃∼ e
−∑i

[
p2
i

2mi
+ui−T zi(ui,ni)

]
/(kBT )

dΓ̃ (16)

where we have introduced the dressed particle entropy53

zi(ui,ni)≡ si(ui,ni)− kB ln
θi(ui,ni)

θ0
(17)

Here dressed, in contrast to bare, refers to a quantity whose mag-
nitude is affected by the fluctuations. In eq. (17), the temperature
θ0 = 1 is added for dimensional consistency, although its presence
has no physical consequence. Note that the last term on the right-
hand-side of eq. (17) is proportional to kB, and corresponds to the

effect of the change of the nature of fluctuations from swapping
the independent variable. We can thus define the free energy
functional for the new set of independent variables, namely

F̃ ({pi},{ri},{ui};T )≡∑
i

[
p2

i
2mi

+ui−T zi(ui,ni)

]
(18)

Introducing the dressed particle temperature τi as

1
τi
≡ ∂ zi

∂ui

∣∣∣∣
ni

=
1
θi

(
1− kB

∂θi

∂ui

∣∣∣∣
ni

)
(19)

we find that 1/τi is an appropriate estimator of the system tem-
perature for the set of independent variables given by eq. (18),
i.e., 〈

1
τi

〉
=
∫

dΓ̃
1
τi

Peq ({pi},{ri},{zi}) =
1
T

(20)

The relevance of these transformations will become more appar-
ent when we define the entropy production at the mesoscopic
level in Subsec. 3.2.

The function z plays an analogous role as s, although the ’in-
tensive’ variables are not the same in one representation as in the
other. To see the differences, let us write ui(zi,ni), from which we
obtain

dui = τidzi +
∂ui

∂ni

∣∣∣∣
zi

dni (21)

where we have made use of eq. (19). Defining the particle heat
capacity as

CV ≡
∂ui

∂θi

∣∣∣∣
ni

(22)

we rewrite the relationship between bare and dressed tempera-
tures in eq. (19) in a more significant form

τi = θi
1

1− kB
CV

(23)

At this point, it is convenient to introduce the particle equivalent
of other usual derivatives such as the thermal expansion coeffi-
cient α

α ≡ 1
n

∂n
∂θ

∣∣∣∣
π

(24)

together with the isothermal compressibility β

β ≡ 1
n

∂n
∂π

∣∣∣∣
θ

(25)

With these definitions, after some algebra, one arrives at a more
natural form for the second derivative in eq. (21)

∂u
∂n

∣∣∣∣
z
=

π

n2 +

[
kBτ

CV n2
α

β

]
(26)

This expression gives rise to the definition of the dressed pressure
of the particle, i.e.

π̃ ≡ π +
kBτ

CV

α

β
(27)

so that
dui = τidzi +

π̃i

n2
i

dni (28)
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2.4 Models for the particle internal energy function

Up to this point in the derivation, we have introduced the for-
mulation of the mesoscopic thermodynamics. Next, we propose a
specific mesoscopic many-body force field based on an equation
of state (MB-FF-EOS) that will be used later in the implementa-
tion of the generalised DPDE method. The intent of providing a
specific MB-FF-EOS model here is for presentation clarity of the
derivations that follow. In Appendix A, we provide other inter-
esting forms of MB-FF-EOS models, including the Lennard-Jones
(LJ) EOS that will be used for demonstrations of the generalised
DPDE method.

2.4.1 Mesoscopic van der Waals many-body force field based
on an equation of state

Let us consider that the particles satisfy a van der Waals-like
mesoscopic MB-FF-EOS, namely

π =
nkBθ

1−bn
−an2 (29)

which depends on the particle temperature θ and the local den-
sity n. The parameters a and b are the usual parameters in the
van der Waals (vdW) EOS55.

Without loss of generality, we assume that eq. (29) is obtained
after partial differentiation of a mesoscopic Helmholtz free energy
defined by a Legendre transform of u(s,n)54

f (θ ,n)≡ u−θs ⇒ d f =−sdθ +
∂ f
∂n

∣∣∣∣
θ

dn (30)

Note that no extensiveness at the mesoscopic level should be
assumed thus far. In particular, note from eq. (13) that F 6=
∑i(p2

i /mi + fi). Therefore, eq. (30) should be interpreted only as
a convenient mathematical transformation. The physical thermo-
dynamic consequences are to be taken only from the behaviour of
the ensemble of mesoscopic particles. Hence,

π =
nkBθ

1−bn
−an2 (31)

= n2 ∂ f
∂n

∣∣∣∣
θ

Integrating with respect to n one finds,

f = kB θ ln
(

n
1−bn

)
−an+Φ(θ) (32)

where Φ(θ) is an undefined function of the particle temperature.
Focusing on the determination of the function u consistent with
eq. (29), we have to introduce a second EOS for the DPDE parti-
cle, i.e.,

s =− ∂ f
∂θ

∣∣∣∣
n

(33)

=−kB ln
(

n
1−bn

)
−Φ

′(θ)

The internal energy can then be readily obtained as

u = f +θs (34)

= Φ(θ)−θΦ
′(θ)−an

According to the classical DPDE model with a constant heat ca-
pacity per particle CV , one writes CV = ∂u

∂θ

∣∣∣
n
= −θ Φ

′′
(θ), which

implies
Φ(θ) =−CV θ(lnθ −1)+ c1θ + c2 (35)

where c1 and c2 are arbitrary constants. Thus, the internal energy
is

u =CV θ −an− c2 (36)

We arbitrarily choose c1 = 0 and c2 = 0, to recover the orig-
inal model for the DPDE particles. However, we will write
c1 =CV lnθ0 with θ0 = 1 for dimensional consistency of eq. (35).
From eq. (36) we obtain θ = (u+an)/CV , and arrive at one of the
central functions of the problem, namely

s(u,n) =−kB ln
(

n
1−bn

)
+CV ln

(
u+an
CV θ0

)
(37)

This function can be inverted to obtain the sought result

u(s,n) =CV θ0 es/CV

(
n

1−bn

)kB/CV

−an (38)

It is also interesting to provide the expression for the dressed par-
ticle entropy z. Effectively, in view of eq. (17) and eq. (37), one
finds

z(u,n) =−kB ln
(

n
1−bn

)
+(CV − kB) ln

(
u+an
CV θ0

)
(39)

We also provide here the expressions for the excess internal en-
ergy and entropy of the vdW EOS, as these equations were used
in ref.34 based on an excess pressure

πex

n2 =
bkBθ

1−bn
−a (40)

Employing a constant heat capacity for the model, we can write

u(s,n)≡ uex(s,n) =CV θ0 es/Cv

(
1

1−bn

)kB/CV

−an (41)

The entropy function is then

s(u,n)≡ sex(u,n) =−kB ln
(

1
1−bn

)
+CV ln

(
u+an
CV θ0

)
(42)

2.4.2 General form for systems with linear dependence in
the particle temperature

The vdW pressure defined by eq. (29) can be generalised consid-
ering that the pressure may be density dependent, while its par-
ticle temperature dependence still remains linear. Within these
conditions, the general form of the mesoscopic MB-FF-EOS de-
pends upon two functions of n alone, denoted by ψ(n) and V (n),
where u can be written as

u(s,n) =CV θ0 es/CV ψ(n)kB/CV +V (n) (43)
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The general equation for the particle pressure takes the form

π = kBθ
n2 ψ ′(n)

ψ(n)
+n2 V ′(n) (44)

The entropy function is then

s(u,n) =CV ln
[

u−V (n)
CV θ0

]
− kB lnψ(n) (45)

while the dressed particle entropy takes the form

z(u,n) = (CV − kB) ln
[

u−V (n)
CV θ0

]
− kB lnψ(n) (46)

3 Dynamic equations

3.1 Reversible interactions

Let us consider that with respect to the reversible interactions, F

acts as a generalised Hamiltonian, such that

ṙi =
pi

mi
(47)

ṗi =−∑
j 6=i

∂u j

∂n j

∣∣∣∣
s j

∂n j

∂ri
≡ fC

i (48)

ṡi = 0 (49)

With this choice, Ḟ = 0. While the interpretation of eq. (47)
is straightforward, eq. (48) deserves further comment. Due to
translational invariance of the system, the set of functions ui is in-
dependent of an arbitrary variation λλλ of the origin of coordinates.
In other words, transforming ri → ri + λλλ leaves ni invariant, as
well as then the internal energy. Therefore,

∂ni

∂~λ
= 0 ⇒ ∑

j

∂ni

∂r j
= 0

Furthermore, we can write

∑
j

∂u j

∂n j

∣∣∣∣
s j

∂n j

∂ri
= ∑

j 6=i

(
∂u j

∂n j

∣∣∣∣
s j

∂n j

∂ri
− ∂ui

∂ni

∣∣∣∣
si

∂ni

∂r j

)

and by using
∂ni

∂r j
=−

∂n j

∂ri
=−

w′(ri j)

[w]
ei j

for j 6= i, we arrive at

fC
i = ∑

j 6=i
fC
i j =−∑

j 6=i

(
∂u j

∂n j

∣∣∣∣
s j

+
∂ui

∂ni

∣∣∣∣
si

)
w′i j

[w]
ei j (50)

Note that the form of the force corresponds to the one related
to compression-expansion of the particle under adiabatic condi-
tions. Finally, let us introduce the particle pressure to the force
expression (50) by using eq. (7)

fC
i j =−

(
πi

n2
i
+

π j

n2
j

)
w′i j

[w]
ei j (51)

Angular momentum is also preserved by eq. (51), moreover, it is
formally identical to the expression used in SDPD40, yet here ob-

tained bottom-up, from the properties of an ensemble of particles
defined a priori. Notice, however, that the particle pressure is not
exactly the macroscopic pressure of the ensemble. For instance,
using the virial as an estimator of the system (macroscopic) pres-
sure, we obtain

P≡ 1
DV

〈
∑

i

p2
i

mi
+∑

i
∑
j<i

ri j · fCi j

〉
(52)

which using eq. (51) can also be written as

P =
NkBT

V
+

〈
∑

i
∑
j<i

(
πi

n2
i
+

π j

n2
j

)
ri jw′i j

[w]

〉
(53)

It is clear from eq. (53) that the macroscopic pressure of the sys-
tem differs from the functional form of the particle pressure, pre-
cisely due to the fluctuations that couple all the fluctuating vari-
ables in the average. Therefore, as noted by Pagonabarraga and
Frenkel34, the particle pressure acts as an excess pressure and not
as a total pressure of the system, as it is used in SDPD. Only close
to the macroscopic limit, where the fluctuations are negligible40,
is the total pressure approximately the particle pressure. In prac-
tice then, when implementing the generalised DPDE method, the
excess pressure determined from the analytical EOS is used to
determine the particle pair forces, as opposed to using the total
pressure.

Finally, eq. (49) is an adiabatic condition that indicates that
no heat is exchanged between the internal degrees-of-freedom of
the particles, neither amongst themselves nor with the reservoir
in a reversible transformation. The variation of the particle inter-
nal energy is then only due to the expansion-compression work
resulting from the conservative forces given by eq. (51).

3.2 Irreversible interactions

In the absence of fluctuations, the dynamics of the system is
driven by the condition of minimum of F , i.e. Ḟ < 0. We will
not define the equation for the time dependence of the entropy
yet, but we introduce the dissipative forces into the equation for
the momentum, eq. (48), leaving the variation of the position
unchanged with respect to eq. (47), i.e.

ṗi =−∑
j 6=i

∂u j

∂n j

∣∣∣∣
s j

∂n j

∂ri
≡ fC

i + fD
i (54)

Writing Ḟ in terms of the dynamic quantities one has

Ḟ = ∑
i

(
pi

mi
· ṗi +θiṡi− fC

i · ṙi−T ṡi

)
< 0 (55)

Then, replacing the dynamic equations the latter takes the form

Ḟ = ∑
i

(
fD
i ·

pi

m
+θiṡi−T ṡi

)
< 0 (56)

From eq. (9), and assuming that Ẇ irrev
i = −fD

i ·
pi
m , one arrives at

the expression
Ḟ = ∑

i
(q̇i−T ṡi)< 0 (57)
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The total heat transferred by particle i can be separated in differ-
ent contributions, involving the interparticle heat exchage as well
as the heat exchange with the external reservoir

q̇i = ∑
j 6=i

q̇i j + Q̇i (58)

The interparticle heat exchange satisfies q̇i j =−q̇ ji due to energy
conservation. Hence, the summation over all the particles is zero.
Introducing this definition into eq. (57), one finds

Ḟ = ∑
i

(
Q̇i−T ṡi

)
< 0 (59)

or, what is the same

∑
i

ṡi > ∑
i

Q̇i

T
(60)

As−∑i Q̇i/T is the entropy variation of the reservoir, this equation
indicates the obvious result that the inner processes in the system
should lead to a positive entropy production. In other words, if
we split the particle entropy production into an internal s int

i and
an external sext

i contributions, the latter being related to the heat
exchaged with the reservoir, eq. (60) in fact simply indicates that

∑
i

s int
i > 0 (61)

To provide then an indication of the entropy production at the
particle level, let us consider again eq. (9), which in terms of the
internal entropy production reads

θiṡ int
i = ∑

j 6=i
q̇i j +Ẇ irrev

i (62)

On the one hand, from the definition of the irreversible work done
on the particle indicated above, we demand that

Ẇ irrev
i =−fD

i ·
pi

m
> 0 (63)

Invoking pairwise additiveness and momentum conservation, it
follows that fD

i = ∑ j 6=i fD
i j , with fD

i j = −fD
ji . Then, we can straight-

forwardly demand that

Ẇ irrev
i =−fD

i ·
pi

m
=−∑

j<i
(vi−v j) · fD

i j > 0 (64)

The usual form for the dissipative force in DPD complies with this
requirement and will be used along this article, i.e.

fD
i j =−γi jei jei j ·

(
vi−v j

)
(65)

where the friction kernel is

γi j ≡ γ ω
2
(

ri j

RD
cut

)
(66)

The kernel γi j is a function of only the interparticle distance in
order to preserve Galilean invariance, while it is symmetric un-
der the permutation of their indices, in order to maintain total
momentum and energy conservation. Furthermore, since the dis-
sipative force is directed along the line of the particle centres,
the angular momentum is also preserved by the dissipative force

expression. In this expression, RD
cut stands for the radius of inter-

action of the dissipative force.

On the other hand, from eqs. (5) and (28) it follows that at
constant volume,

τiżint
i |ni = θiṡint

i |ni = ∑
j 6=i

q̇i j (67)

Aiming at using the internal energy as independent variable in
the algorithm, we will demand that

ż int
i |ni =

θi

τi
ṡ int

i |ni = ∑
j 6=i

1
τi

q̇i j > 0 (68)

As θi/τi is always positive, with this choice ṡint
i |ni > 0 is also guar-

anteed. Using the fact that q̇i j =−q̇ ji, we can write

żint
i |ni = ∑

j<i

(
1
τi
− 1

τ j

)
q̇i j > 0 (69)

According to20,56, to assure the possitiveness of the entropy pro-
duction, we demand that

q̇i j =−κi j

(
1
τ j
− 1

τi

)
(70)

The heat exchange kernel κi j is a function of the interparticle
distance, which we express as

κi j = κ ω
2
(

ri j

Rcut

)
(71)

where ω is a weight function depending on the distance between
particles, and Rcut is the characteristic distance for the heat ex-
change. κ is a coefficient modulating the heat conductivity of the
system. The kernel satisfies Galilean invariance.

In analogy with eq. (70) we also introduce the equation for the
interaction of the particles with the heat reservoir, namely,

Q̇i =−κi

(
1
T
− 1

τi

)
(72)

where the kernel κi is anlogous to the interparticle kernel given
in eq. (71).

To end this section, some important comments are in order. On
one hand, we have used F in eq. (13), with a given choice of the
independent variables, as a generalised Hamiltonian from which
we have derived the dynamic equations of motion (ignoring the
fluctuations). The function F̃ cannot be equivalently used to ob-
tain the same equations of motion as it incorporates effects of the
change of description, which are related to the finite size of the
mesoparticles and the fluctuating nature of their variables. The
choice of the generalised Hamiltonian associates the systematic
dynamics with the saddle point of the probability distribution in
eq. (15). However, this saddle point analysis of the equivalent
distribution in eq. (16) yields different non-equivalent systematic
dynamics.

On the other hand, the form given in eq. (70) relating the in-
terparticle heat transport with the inverse dressed temperatures is
a matter of choice. Instead, one could have defined this quantity
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in terms of the difference of inverse bare temperatures. However,
our choice assures that the average of the dissipative interactions
vanishes in equilibrium, in view of eq. (20), which would be not
the case if the bare temperatures were used instead.

4 The generalised DPDE algorithm

4.1 Dynamic equations

Following the previous definitions and the analysis of the ther-
modynamics at the mesoscopic level, we can propose the algo-
rithm for the generalised DPDE method. Here we use the original
DPDE perspective20, which is centred on the particle internal en-
ergy ui as the dynamic variable instead of si, as it is usually done
in SDPD39. An exception is the energy form of SDPD given in
ref.40, however that formulation does not consider the heat flow.
We propose that positions and velocities are varied according to

ri
′ =ri +

pi

mi
δ t (73)

pi
′ =pi +∑

j 6=i
fC
i j δ t +∑

j 6=i
fD
i j δ t +∑

j 6=i
δpR

i j (74)

where prime and non-prime variables refer to the time t +δ t and
t, respectively, δ t is the time step, and the conservative and dis-
sipative forces, fC

i j and fD
i j , are defined in eqs. (51) and (65), re-

spectively. The random contribution to the momentum is given
by

δpR
i j =

√
kB(θi +θ j)γi j ξi j ei j δ t1/2 (75)

= σi jξi j ei j δ t1/2

with δpR
i j =−δpR

ji. In eq. (75),

σi j =
√

kB(θi +θ j)γi j (76)

and the normalised Gaussian random numbers ξi j satisfy〈
ξi j
〉
= 0〈

ξi jξkl
〉
= δikδ jl −δilδ jk

where the average is taken over the probability distribution of
ξi j. Eq. (76) represents the fluctuation-dissipation theorem,
which is derived in Appendix B [see eq. (123)]. Note that the
functional form in eq. (76) is different from the original DPDE
method20, where the temperature scales as (θi +θ j), rather than
τiτ j/(τi + τ j). This different temperature scaling is due to the
difference between the dynamics constructed from F as a gen-
eralised Hamiltonian instead of F̃ , as was done in the original
DPDE formulation20.

The third equation defining the algorithm of the generalised
DPDE method refers to the dynamics of the particle internal en-
ergy ui, which can be related to a conservation law, unlike the
bare or dressed particle entropy. Thus, after having defined the
equations governing the changes in the positions and momenta,
we can derive the non-fluctuating part of the particle internal en-
ergy variation from the balance of the total energy of the system.

Hence, for a system in contact with an energy reservoir at fixed
volume, we can establish from eq. (10) that

∑
i

(
p′2i
2mi
−

p2
i

2mi
+u′i−ui

)
= ∆E (77)

with ∆E taken as the energy exchanged with the heat source.
Using eq. (74), and retaining terms up to order O(δ t), one has

u′i = ui +
1
2 ∑

j 6=i

(
vi−v j

)
· ei j γi jei j ·

(
vi−v j

)
δ t

− 1
2 ∑

j 6=i

(
vi−v j

)
· fC

i j δ t− 1
2 ∑

j 6=i

(
vi−v j

)
·δpR

i j (78)

− 1
2mi

∑
j 6=i

∑
l 6=i

δpR
i j ·δpR

il + q̇iδ t +∑
j 6=i

δuR
i j

where δuR
i j is the random heat exchanged between particles i and

j during the time step δ t. Due to total energy conservation, we
require that δuR

i j =−δuR
ji. In eq. (78), note the term proportional

to δpR
i j · δpR

il . According to eq. (75), eq. (78) is of O(δ t), but is
usually replaced by its equilibrium average when the approxima-
tion based on the Fokker-Planck equation is used. The presence
of this term allows for an energy conservation up to O(δ t) at ev-
ery time step, and not simply of its average. In defining the above
equation, the energy exchanged with the reservoir can only be
given by the heat transferred as the volume of the system is held
fixed, i.e.,

∆E = ∑
i

Q̇iδ t (79)

Following the original DPDE formalism, the random contribution
to the particle internal energy is defined as20

δuR
i j =

√
2kBκi j ξ i jδ t1/2 (80)

= αi j ξ i jδ t1/2

where
αi j =

√
2kBκi j (81)

and the normalised Gaussian number ξ i j satisfies the properties〈
ξ i j

〉
= 0

〈
ξ i jξ kl

〉
= δikδ jl −δilδ jk

Here, the average is taken over the probability distribution of ξ i j.
The fluctuation-dissipation theorem given by eq. (81) can also be
obtained by the standard methods57.

In summary, the EOM for the positions, momenta, and parti-
cle internal energy in the generalised DPDE method are given by
eqs. (73), (74), and (78), respectively, with the random contribu-
tion to the momentum and the particle internal energy, δpR

i j and
δuR

i j, defined in eqs. (75) and (80), respectively, and the friction
and heat exchange kernels, γi j and κi j, given by eqs. (66) and
(71), respectively.
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4.2 Numerical discretisation

The integration of the EOM was performed using the extended
Shardlow splitting algorithm (eSSA)26. The eSSA splits the in-
tegration into reversible and irreversible terms with the overall
solution operator, Φδ t , given as49

Φδ t 'Φ
irrev
δ t;1,2 ◦Φ

irrev
δ t;1,3 ◦ ...◦Φ

irrev
δ t;i, j ◦ ...◦Φ

irrev
δ t;N−2,N ◦Φ

irrev
δ t;N−1,N ◦Φ

rev
δ t

(82)

The reversible term Φrev
δ t corresponds to

dri =
pi

mi
δ t (i = 1, ...,N)

dpi = fC
i δ t (83)

dui =−
1
2 ∑

j 6=i
vi j · fC

i j δ t

where fC
i and fC

i j are given by eqs. (50) and (51), respectively, and

vi j ≡ vi−v j =
pi
mi
− p j

m j
.

The reversible term Φrev
δ t is discretised using the velocity-Verlet

algorithm as58

pi

(
t +

δ t
2

)
= pi (t)+

δ t
2

fC
i (t) (i = 1, ...,N)

ri (t +δ t) = ri (t)+δ t
pi

(
t + δ t

2

)
mi

ui

(
t +

δ t
2

)
= ui (t)−

δ t
4 ∑

j 6=i
vi j (t) · fC

i j (t) (84)

evaluate :
{

fC
i (t +δ t)

}N

i=1

pi (t +δ t) = pi

(
t +

δ t
2

)
+

δ t
2

fC
i (t +δ t) (i = 1, ...,N)

evaluate :

{
∑
j 6=i

vi j (t +δ t) · fC
i j (t +δ t)

}N

i=1

ui (t +δ t) = ui

(
t +

δ t
2

)
− δ t

4 ∑
j 6=i

vi j (t +δ t) · fC
i j (t +δ t) (i = 1, ...,N)

Each irreversible term Φirrev
δ t;i, j then corresponds to

dpi− j
i = fD,i− j

i j δ t +δpR,i− j
i j

dpi− j
j =−dpi− j

i (85)

dui− j
i =−

vi− j
i j

2
·
(

fD,i− j
i j δ t +δpR,i− j

i j

)
+ q̇i− j

i j δ t +δuR,i− j
i j

dui− j
j =−

vi− j
i j

2
·
(

fD,i− j
i j δ t +δpR,i− j

i j

)
− q̇i− j

i j δ t−δuR,i− j
i j

As shown in Ref.26, the equations for dui− j
i and dui− j

j can be re-

written as

dui− j
i =−1

2
d

(
pi− j

i ·pi− j
i

2mi
+

pi− j
j ·p

i− j
j

2m j

)

+ q̇i− j
i j δ t +δuR,i− j

i j (86)

dui− j
j =−1

2
d

(
pi− j

i ·pi− j
i

2mi
+

pi− j
j ·p

i− j
j

2m j

)

− q̇i− j
i j δ t−δuR,i− j

i j

where the superscript i− j indicates that the variation of momenta
and particle internal particle energy is considered for a pair of
interaction particles i and j only; fD,i− j

i j , pR,i− j
i j , q̇i− j

i j , and δuR,i− j
i j

are given by eqs. (65), (75), (70), and (80), respectively.

Each irreversible term Φirrev
δ t;i, j can also be discretised using the

velocity-Verlet algorithm as26

pi

(
t +

δ t
2

)
= pi (t)−

δ t
2

γi jvi j (t) · ei jei j +
δ t1/2

2
σi jξi jei j

p j

(
t +

δ t
2

)
= p j (t)+

δ t
2

γi jvi j (t) · ei jei j−
δ t1/2

2
σi jξi jei j

pi (t +δ t) = pi

(
t +

δ t
2

)
− δ t

2
γi j

1+ µi j
2 γi jδ t

{
vi j

(
t +

δ t
2

)
· ei jei j

+δ t1/2 µi j

2
σi jξi jei j

}
+

δ t1/2

2
σi jξi jei j (87)

p j (t +δ t) = p j

(
t +

δ t
2

)
+

δ t
2

γi j

1+ µi j
2 γi jδ t

{
vi j

(
t +

δ t
2

)
· ei jei j

+δ t1/2 µi j

2
σi jξi jei j

}
− δ t1/2

2
σi jξi jei j

ui (t +δ t) = ui (t)−
1
2

[
pi (t +δ t) ·pi (t +δ t)

2mi
+

p j (t +δ t) ·p j (t +δ t)
2m j

− pi (t) ·pi (t)
2mi

−
p j (t) ·p j (t)

2m j

]
+δ tκi j

(
1
τi
− 1

τ j

)
+δ t1/2

αi j ξ̄i j

u j (t +δ t) = u j (t)−
1
2

[
pi (t +δ t) ·pi (t +δ t)

2mi
+

p j (t +δ t) ·p j (t +δ t)
2m j

− pi (t) ·pi (t)
2mi

−
p j (t) ·p j (t)

2m j

]
−δ tκi j

(
1
τi
− 1

τ j

)
−δ t1/2

αi j ξ̄i j

where µi j =
1
mi

+ 1
m j

, and the superscript i− j has been omitted for
notational simplicity. The temperatures θi, θ j, τi and τ j are up-
dated with the mesoscopic MB-FF-EOS using the updated particle
internal energies, before these equations are applied to another
pair of particles.

For this algorithm, it is important to note that the integration of
the irreversible terms exactly conserves the total energy E at each
time step. However, analogous to an application of the velocity-
Verlet algorithm in microcanonical molecular dynamics, the inte-
gration of the reversible term does not conserve E at each time
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step. Rather, the symplectic velocity-Verlet algorithm preserves E
only up to terms of order δ t2, conserving a pseudo-Hamiltonian
that differs from the true Hamiltonian by this difference of order
δ t2. Although there is long-time stability for the velocity-Verlet
algorithm in conservative systems, this energy fluctuation gives
rise to an energy drift when coupled with dissipative processes,
as in the DPDE-type algorithms26.

4.3 Computational details

For validation of the generalised DPDE method, analytical EOSs
for the LJ and vdW fluids were considered. The LJ EOS devel-
oped by Kolafa and Nezbeda was implemented59, which produces
results of high accuracy for both the pressure and internal en-
ergy over a wide range of temperatures and densities. The LJ
EOS is used for most of the validation tests presented here, in-
cluding the non-equilibrium simulation scenarios of flash heat-
ing response and fluid phase separation. Other validation tests
are performed using the vdW EOS34,55,60. For both fluid mod-
els, the following parameters for argon (molar mass of 39.948
g/mol) were used: σLJ = 3.35654 Å and εLJ/kB = 291.382 K;
avdW = 27197.659 KÅ3 and bvdW = 53.48 Å3. All data is presented
in reduced units, based on these LJ parameters.

A quadratic weighting function was used in the local density
model, while the typical weighting function (1− r/Rcut) was used
for the friction kernel ω (r), eq. 66, and the heat exchange ker-
nel ω (r), eq. 71, where Rcut = RD

cut = Rcut = 4. Note that other
choices of weighting functions are possible, e.g., the Lucy func-
tion37, popular in SPH and SDPD simulations, a third order spline
function, or a smoothed step function52.

For all of the results presented, the following simulation param-
eters were used unless stated otherwise: N = 27,000; δ t = 0.01
(corresponding to 13.63 fs in real units); CV = 60; γ = 4.5;
κ = 1. A range of state points were considered: T = 1 to 3 and
ρ ≡ N/V = 0.2 to 0.8, which spans both liquid and supercritical
fluid phase behaviour. For initialisation, particles were placed on
a simple cubic lattice structure in a cubic simulation box that was
appropriately sized to the target densities, then simulated for an
equilibration period of 5×105 time steps. After equilibration, the
systems were simulated for an additional 5×105 time steps from
which the average thermodynamic properties were determined
by collecting data every 50 time steps. All simulations were con-
ducted using the LAMMPS software package61, except for the
isothermal DPD simulations presented in Sec. 5.1, where an in-
house code was used.

Finally, when using the vdW EOS as a many-body force field, a
scheme that prevents numerical instabilities at low and high lo-
cal densities has been introduced. To prevent compression of the
fluid below the excluded volume, the scheme ensures that a lo-
cal density of a particle is not higher than a specified threshold,
thus avoiding numerical issues associated with unphysical com-
pression. Similarly, to avoid numerical instabilities at very low
local densities, a minimum threshold of 10−6 is enforced. Details
of the scheme can be found in Supplemental Material A.

5 Results and Discussion

5.1 Validation of the generalised DPDE method

For validation of the generalised DPDE method, the particle prob-
ability distributions were analysed (Fig. 1). The particle prob-
ability distributions of the particle internal energy, particle tem-
perature, particle momenta and local density were determined
from the generalised DPDE method for the vdW EOS at T = 1.5
and ρ = 0.5. The distributions determined from simulation are
compared against the theoretical distributions obtained from the
general probability given in eq. (16) after integration, i.e.,

P(q) =
1
Z

∫
dΓ̃e

−∑i

[
p2
i

2mi
+ui−T zi(ui,ni)

]
/(kBT )

δ [q−q(Γ̃)] (88)

where q(Γ̃) is an arbitrary function of the state of the system and
Z is the normalisation. For the particle internal energy distri-
bution of particle i, for instance, we have q(Γ̃) = ui. No explicit
expression can be obtained for the general case, except for the
particle momenta58, i.e.,

P(pα )∼ e−[p
2
α/(2mkBT )] (89)

with α ≡ (x,y,z). Nevertheless, we can compare the simulated
particle probability distributions against theoretical estimates for
u, θ and n using mean field and saddle point evaluations. For the
particle internal energy we have

P(u)∼ e−[u−T z(u,ρ)]/(kBT ) (90)

where the system number density ρ = N/V is used in the theoret-
ical estimate. As evident in Fig. 1, excellent agreement between
the simulated and theoretical estimate is found, which further in-
dicates a self-consistent theoretical framework. Along the same
lines, the particle temperature distribution is obtained by simply
changing the particle internal energy for the particle temperature,
with the Jacobian ∂u/∂θ |n =CV , i.e.,

P(θ)∼ e−[u(θ)−T z(θ ,ρ)]/(kBT )CV (θ ,ρ) (91)

where for the general model used here, CV is a constant. Again,
the excellent agreement between the simulated and theoreti-
cal distributions indicates the consistency of the methodology
proposed here. Finally for the density fluctuations, we have
performed Monte Carlo simulations using the equivalent of the
Monte Carlo configurational integral62, which we will demon-
strate elsewhere

〈n〉 ∝

∫
dr1 . . .drN e−∑i[V (ni)/(kBT )+lnψ(ni)]

(
1
N ∑

i
ni({ri j})

)
(92)

The agreement of the simulated result with the Monte Carlo sam-
pling, the latter based only on the particle internal energy func-
tions, is excellent. We can thus conclude that the model presented
is capable of correctly sampling the equilibrium distribution func-
tions, and therefore, its thermodynamic behaviour is consistent.

As further validation of the consistency of the generalised DPDE
method, the equivalence of the thermodynamic quantities from
isothermal DPD simulations under similar thermodynamic condi-
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tions was tested. For the vdW EOS at T = 1.5 and ρ = 0.5, two
different approaches for performing an isothermal DPD simula-
tion were employed. The standard isothermal DPD method was
applied, while an alternative approach was implemented by main-
taining the particle internal temperatures fixed at the thermostat
temperature during a generalised DPDE simulation. In all three
approaches, the density-dependent component of the particle in-
teraction potential was still present. Simulated under effectively
the same thermodynamic conditions in all three approaches, en-
semble averages of the kinetic temperature and the virial pres-
sure were in excellent agreement, where relative to the standard
isothermal DPD result, differences of less than 0.1 % were found.

5.2 Analysis of the energy conservation

The energy conservation of a MB-FF-EOS within the generalised
DPDE framework is considered next. An analysis of the numerical
integration scheme presented in Sec. 4.2 is given, however first, a
proof that the MB-FF-EOS is a conservative potential is described.

5.2.1 Proof that a MB-FF-EOS is a conservative potential

The intent of the proof is to demonstrate that a density- and
temperature-dependent many-body force field used within the
generalised DPDE framework satisfies a necessary condition of
a conservative potential, i.e., the Maxwell relation ∂ fi

∂r j
=

∂ f j
∂ri

.

The proof follows the work of Warren63 and Moore et al.31

who considered a many-body force field that has both a dis-
tance and density dependence, where they satisfied the nec-
essary requirements relating the corresponding weighting func-
tions. The key distinction of the MB-FF-EOS introduced within
the generalised DPDE framework is the temperature dependence,
as such, when the force between pairs is determined then, fC

i j =

fC
i j
[
ni(
{

ri j
}
),n j(

{
ri j
}
),θi,θ j

]
, where θi 6= θ j. The complete proof

that a MB-FF-EOS satisfies the Maxwell relation for a conservative
potential follows from straightforward, but careful book keep-
ing, and is provided in Supplemental Material B. Satisfying the
Maxwell relation ensures that any observed energy drift is due to
the numerical integration of the EOM, which is considered in the
next section.

As an aside, this proof is valid if a MB-FF-EOS is used in ei-
ther the original DPDE or generalised DPDE method. However
as discussed above, implementing a temperature-dependent par-
ticle interaction potential within the DPDE framework requires
that the conservative forces are calculated at constant entropy,
and not at constant particle internal energy. This allows for the
separation of the energy variation due to reversible work from
the pure heat transfer in the algorithm. This separation adds the
complexity of dealing with the particle temperature and dressed
particle temperature simultaneously. In support of these theo-
retical constructs, from rigorous testing, we have observed that
a manifestation of using a MB-FF-EOS within the original DPDE
method is energy drift several orders of magnitude higher than
the numerical integration error presented below.

5.2.2 Analysis of the numerical integration scheme

An analysis of the energy conservation observed for the numer-
ical integration scheme described in Sec. 4.2 is presented next.

Shown in Fig. 2 is the time step size (δ t) dependence of the in-
tegration scheme using the LJ MB-FF-EOS for different temper-
atures at a density of ρ = 0.5. The energy drift is characterised
by a linear fit of the time evolution of the relative total energy,
[E(t)−E(t = 0)]/E(t = 0), where the slope of this fit is defined as
the relative energy drift rate per simulation time (t = 5,000). Ex-
cellent energy conservation is observed, where not until δ t = 0.05
does the energy drift become non-negligible, yet still remains
small at δ t = 0.1.

In Fig. 3, the energy drift rate dependence at different densities
and temperatures using δ t = 0.01 is considered. The isotherms at
T = 1.5 and 3 correspond to states in the supercritical phase. The
isotherm at T = 1 corresponds to states in the liquid phase, where
vapour-liquid phase separation is observed for densities below
ρ < 0.7, and thus are excluded from the figure. For all temper-
atures, the energy drift increases with density due to the increase
in particle pressures determined from the EOS, leading to larger
interparticle forces. Moreover, at higher densities, the gradient
of the pressure-density behaviour in the EOS results in larger in-
terparticle force fluctuations as the particle density fluctuates. At
higher temperature, the energy drift is observed to increase in
Figs. 2 and 3, which can also be attributed to larger interparti-
cle forces resulting from the high particle pressures determined
from the EOS. Note that the Metropolis procedure developed by
Stoltz64 could be implemented to stabilise the numerical scheme,
particularly at smaller values of CV .

5.2.3 Comparison of the simulated and the thermodynamic
behaviour

A comparison of the thermodynamic pressure calculated from
the analytical LJ EOS and the virial pressure simulated using
the LJ MB-FF-EOS in the generalised DPDE method is presented
in Fig. 4. Isotherms are plotted for a range of system densi-
ties, where excellent agreement between the thermodynamic and
virial pressures are observed. The minor deviations observed at
the highest system density ρ = 0.8 stem from the finite spheri-
cal cut-off used in the local density, where the dependence on
cut-off is considered below. The equivalence of the generalised
DPDE virial pressure and the thermodynamic pressure shown in
Fig. 4 validates a fundamental thermodynamic consistency be-
tween the generalised DPDE method and the macroscopic EOS.
An analogous comparison between the thermodynamic pressure
calculated from the analytical vdW EOS and the virial pressure
from the generalised DPDE simulations is presented in Fig. S1 of
the Supplemental Material. Again, excellent agreement between
the thermodynamic and virial pressures is observed.

The effect of the spherical cut-off [defined below eq. (3)], Rcut ,
used in the local density weighting function on the virial pres-
sure is shown in Fig. 5. As expected, with increasing Rcut , the
virial pressure converges to the thermodynamic pressure, which
follows from the local density converging to the system density
with increasing Rcut . The dependence of the virial pressure on Rcut

becomes more pronounced with increasing system density, which
again is based on the approximation of the local density relative
to the system density, i.e., related to the suppression of the density
fluctuations. The dependence of Rcut on the energy conservation
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Fig. 1 Equilibrium probability distributions for the vdW MB-FF-EOS at T = 1.5 and ρ = 0.5: (top left) particle internal energy; (bottom left) particle
temperature; (top right) particle momentum; (bottom right) local density. Dashed lines are the probability distributions given in eqs. (90), (91), (89),
and (92), respectively, while solid lines are determined from a generalised DPDE simulation. Due to each of the particle momenta being nearly
identical, the plots for each component are indistinguishable.

Fig. 2 Total energy drift rate dependence on time step size, δ t, for the nu-
merical integration scheme of the generalised DPDE method presented
in Sec. 4.2. Data is presented for the LJ MB-FF-EOS at ρ = 0.5 and
T = 1.5 (circles), and T = 3 (squares) on the semi-log plot.

Fig. 3 Effect of system density ρ on the total energy drift rate for the LJ
MB-FF-EOS at T = 1 (circles), T = 1.5 (squares), and T = 3 (triangles)
using δ t = 0.01. Dotted lines are provided for visual clarity only.
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Fig. 4 Comparison of the thermodynamic pressure calculated from the
analytical LJ EOS (lines) and the virial pressure simulated using the LJ
MB-FF-EOS in the generalised DPDE method (symbols) at T = 1 (cir-
cles), T = 1.5 (squares), and T = 3 (triangles). Standard deviations calcu-
lated from the generalised DPDE simulations are smaller than the plotted
data points.

was also analysed, and although not shown here, the total energy
drift was found to increase as Rcut decreases. This is due to parti-
cles entering/exiting the spherical cut-off over a time step, where
for smaller Rcut , this results in a larger change in local density,
and thus a larger change in the magnitude of the force over the
time step.

A parametric study of the dependence of the heat capacity used
in the DPDE particle EOS, CV , the momentum coefficient γ, and
the heat coefficient κ on the steady-state particle probability dis-
tributions was performed using the generalised DPDE method.
Fig. 6 demonstrates the dependence of the heat capacity on the
particle temperature distribution. Not shown here, but as ex-
pected, the local density and particle momentum distributions
do not exhibit a dependence on the value of CV . Similarly, as
expected, no dependence of the steady-state particle probability
distributions was exhibited for the various choices of γ and κ. The
complete set of particle probability distributions for this paramet-
ric study is given in Supplemental Material C, D, and E.

5.3 Non-equilibrium simulations
As a further test of both the generalised DPDE method and the nu-
merical integration stability, two different non-equilibrium simu-
lations scenarios were considered. First, an adiabatic flash heat-
ing simulation was performed, which is a common initiation sce-
nario for simulating the thermal response of material models.
Then, fluid phase separation was demonstrated, which is a key
phenomenon when simulating complex fluids of practical inter-
est. Both simulation scenarios provide a means of assessing the
non-equilibrium behaviour of the method, where thermodynamic
variables are monitored as the system evolves to an equilibrated
state while maintaining constant energy conditions.

Fig. 5 Effect of the spherical cut-off, Rcut , used in the local density weight-
ing function on the simulated virial pressure for the LJ MB-FF-EOS in the
generalised DPDE method (symbols) at the T and ρ shown in the legend.
The thermodynamic pressure calculated from the analytical LJ EOS at
these state points is also shown (lines). Standard deviations calculated
from the generalised DPDE simulations are smaller than the plotted data
points.

Fig. 6 Effect of the heat capacity, CV , used in the DPDE particle EOS on
the particle temperature distribution, θi. ρ = 0.5 for all cases shown.
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Fig. 7 Slab-heating response shown as the time evolution of the kinetic
temperature Tkin (black), internal temperature Tint (red), and the virial
pressure P (blue) for a generalised DPDE simulation using the LJ MB-
FF-EOS at ρ = 0.5. A box-centred slab of particles comprising 50 % of
all particles in the box was instantaneously heated by Theat = 5 at t = 0.

5.3.1 Flash heating response

Adiabatic flash heating simulations were performed by instan-
taneously heating a slab of particles to a target temperature of
Theat = 5. Initially, the system was equilibrated at T = 1.5 and
ρ = 0.5 for 5,000 time steps (using δ t = 0.01). After equilibration,
a box-centred slab of particles consisting of half of the total num-
ber of particles was instantaneously heated via both a rescaling of
the particle velocities and a resetting of the particle temperatures
to Theat . The adiabatic flash heating simulations were conducted
for an additional 5,000 time steps, ensuring that steady-state be-
haviour was achieved. Temporal data of the system thermody-
namic properties were collected every 50 time steps.

Shown in Fig. 7 are the time evolution of the kinetic tem-
perature Tkin = ∑i(p2

i /mi)/(3N − 3), internal temperature Tint =

∑i θi/N, and the virial pressure P, where a total energy drift of
10−7 was observed. The inset of Fig. 7 displays the early time
behaviour, where the initial abrupt changes in Tkin and P are
due to the relaxation of the artificially-created heated slab inter-
face. Nonetheless, it is evident that Tkin and Tint quickly equalised,
where at steady state, the ensemble averages of 〈Tkin〉 and 〈Tint〉
are in excellent agreement (average relative difference of less
than 0.01%), indicative of numerical stability and self-consistency
within the simulation.

5.3.2 Vapour-liquid phase separation simulations

A demonstration of spontaneous phase separation using the gen-
eralised DPDE method was performed. For the LJ EOS, a state
point within the vapour-liquid coexistence region was chosen,
T = 1 and ρ = 0.2, where the initial configuration was a sim-
ple cubic lattice structure of size 68.4× 38.5× 51.3 length units.
Other computational details for this simulation are: δ t = 0.01;
CV = 60; Rcut = 4; γ = 4.5; and κ = 1. Shown in Fig. 8 are the

Fig. 8 Number density profiles determined from slabs along the x-
direction from a generalised DPDE simulation at various times as vapour-
liquid phase separation occurs for the LJ fluid. The initial configuration
was a simple cubic lattice structure at T = 1 and ρ = 0.2. The vapour
and liquid coexistence densities determined elsewhere 65 are shown as
dotted and dashed lines, respectively.

number density profiles along the x-direction at various times.
At t = 0, the cubic lattice structure is clearly evident, while as
phase separation spontaneously occurs, the number density pro-
files indicate condensation occurring in the form of a slab of parti-
cles. For comparison, the vapour and liquid coexistence densities
determined using the LJ two-body hard-core interaction poten-
tial65 are shown. The slight under-prediction of these coexisting
densities is attributed to the local density approximation, which
under-estimates the system density. Fig. 9 presents the time evo-
lution of the kinetic temperature Tkin, internal temperature Tint ,
and the virial pressure P as the phase separation occurs. The sat-
uration pressure determined elsewhere65 is shown, where again
the slight discrepancy with the generalised DPDE simulation re-
sult is attributed to the local density approximation. A configu-
rational snapshot of the vapour-liquid coexistence at equilibrium
is provided in Fig. S2 of the Supplemental Material. A surface
tension of σ = 0.18 was estimated from the ensemble averages of
the pressure tensor components, as described elsewhere66.

A practical computational detail regarding the local density
when simulating the vapour phase is discussed here. The local
density calculation does not include the self-particle, which could
be numerically problematic if no particles are within the spheri-
cal radius, since ni = 0 precisely. For a large Rcut , this is less likely
to occur even in the vapour phase. And while this did not occur
for the simulation considered here, nevertheless, a practical so-
lution is worth mentioning. In the occurrence when no particles
are found within the spherical radius, ni could be set to a small,
but non-zero value, while setting the particle pressure πi = 0. In
this case, the interparticle forces for particle i will be zero, yet still
numerically defined.
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Fig. 9 The time evolution of the kinetic temperature Tkin (black), inter-
nal temperature Tint (red), and the virial pressure P (blue) for the same
vapour-liquid phase separation shown in Fig. 8. The saturation pressure
of 0.029(±0.022) determined elsewhere 65 is shown as the orange line.

6 Conclusions
A generalised, energy-conserving dissipative particle dynamics
method appropriate for the non-isothermal simulation of particle
interaction force fields that are both density- and temperature-
dependent was presented. A detailed derivation of the EOM was
formulated in a bottom-up manner, preserving a direct link to the
higher resolution scale. Practical considerations for implement-
ing the generalised DPDE method were given, along with demon-
strations using analytical equation-of-states for the van der Waals
and Lennard-Jones fluids, which were used to validate the algo-
rithm and the thermodynamic consistency of the method. From
the analysis presented here, it can be inferred that a fundamen-
tal inconsistency exists if the original DPDE method is straight-
forwardly used to simulate a temperature-dependent force field.
Effectively, when the particle temperature is used in both the MB-
FF-EOS and the DPDE particle EOS, a thermodynamically rigor-
ous link between these two quantities is lacking, if applied in the
original DPDE method. As such, it is not guaranteed that with
the original DPDE EOM the appropriate thermodynamic consis-
tency will be satisfied when a temperature-dependent force field
is implemented, which manifests in a lack of energy conservation
during the simulation. With the growing emphasis on bottom-up
CG models that depend on both the density and temperature, the
generalised DPDE method will be a key method for simulating
these CG models in non-isothermal conditions.

While the final expressions for the EOM have similarities to
those of the energy form of the SDPD method40, the formula-
tion of the EOM for each method are distinctively different. In
the SDPD method, the formulation begins by considering collec-
tions of molecules effectively as fields, and subsequently trans-
lating these fields into particles following a procedure that is not
unequivocal67. The fluctuations are introduced within the spirit
of fluctuating hydrodynamics, namely, as small perturbations of

the macroscopic fields. In contrast, for the generalised DPDE
method, each particle is considered to be embedded in a local
volume and embodying thermodynamic properties, due to the
coarsened degrees-of-freedom. Compared with isothermal DPD,
the finiteness of the particle heat capacity produces particle in-
ternal energy fluctuations that entangle with the dynamics of the
fields, which affects the thermodynamic averages in a non-trivial
way, as we have shown in this article. Thus, for the generalised
DPDE method, a fundamental link is maintained with the under-
lying physical system at the higher resolution scale. In contrast
with the top-down formulations such as SDPD, the bottom-up ap-
proaches allow for a clear and consistent formulation of the fun-
damental physical principles affecting the dynamics, as well as
the thermodynamic properties of the macroscopic physical sys-
tem, as acknowledged in the literature67,68. We thus believe that
the proposed generalised DPDE method is a step forward in the
construction of mesoscopic models from the coarse-graining of
molecularly-defined systems.

Although the demonstrations were performed using an analyt-
ical EOS, the generalised DPDE method is not limited to such
models. Rather, density- and temperature-dependent models de-
veloped from higher resolution models are also suitable, such
as those determined using bottom-up coarse-graining approaches
that have been rapidly developed in recent years16,69–73, which
include the effect of the non-Markovian response73–75, and the
development of a conceptual framework for the operation of
coarse-graining76–79.

MB-FF-EOS models have many attributes as CG models, in-
cluding robust transferability and scaling invariance, while over-
coming unphysical ordered phase behaviour that often afflicts CG
models17. Moreover, appropriate CG mapping of a set of non-
bonded atoms or molecules “moving coherently”, may be best re-
alised by a MB-FF-EOS27. Applications of the generalised DPDE
method using other MB-FF-EOS such as the Exponential-6 EOS
recently used for fluid mixtures at extreme pressures and tem-
peratures17 are underway in our group. Similarly, our current
dissipative particle dynamics with reactions framework5 will be
adapted for the generalised DPDE method, which entails simulta-
neously simulating a CG model that is density- and temperature-
dependent along with a CG model that is density-dependent only.

Finally, the derivation of the macroscopic thermodynamic prop-
erties as well as the transport coefficients from the different mod-
els of current interest discussed here were not addressed in this
manuscript, but have been left for future work by our group. Also
beyond the scope of the present work is a study of the dependence
of the level of coarsening on the thermodynamic and transport
properties80.
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A More complex molecular models
Here the reader can find the functional forms of more general
mesoscopic MB-FF-EOS models. In particular, we introduce the
general functional form for systems with particle pressures that
depend linearly on the particle temperature θ , and with an arbi-
trary dependence on the local density n. Further, we present the
analytical expressions of the LJ fluid EOS, as described in ref.59.

A.1 General form for systems with linear dependence on the
particle temperature

Analogous to the vdW EOS given in eq. (29), let us assume a
system in which the pressure may be density dependent, but its
particle temperature dependence is linear. Within these condi-
tions, the general form of the mesoscopic MB-FF-EOS depends
upon two functions of n, ψ(n) and V (n), and can be written as

u(s,n) =CV θ0 es/CV ψ(n)kB/CV +V (n) (93)

The general equation for the particle pressure takes the form

π = n2 ∂ f
∂n

∣∣∣∣
θ

(94)

= kBθ
n2 ψ ′(n)

ψ(n)
+n2 V ′(n)

The particle entropy function is then

s(u,n) =CV ln
[

u−V (n)
CV θ0

]
− kB lnψ(n) (95)

while the dressed particle entropy is given by

z(u,n) = (CV − kB) ln
[

u−V (n)
CV θ0

]
− kB lnψ(n) (96)

Some special cases are analysed below.

A.1.1 DPDE with many-body, temperature-independent EOS

Let us consider the classical DPDE model20 extended to density-
dependent potential forces17,31,34,35, i.e.,

π

n2 = V ′(n) (97)

Hence,
u(s,n) =CV θ0 es/CV +V (n) (98)

From this expression we arrive at the particle entropy function

s(u,n) =CV ln
[

u−V (n)
CV θ0

]
(99)

Setting V (n) = 0, one recovers the ideal gas with energy conser-
vation.

A.2 Mesoscopic ideal gas MB-FF-EOS

The simplest model that can be addressed within this formalism
is based on the response of the particles following an ideal gas
MB-FF-EOS, i.e.,

π = kBθ n (100)

In this case, assuming again that the heat capacity CV is constant,
we can write

u(s,n) =CV θ0 es/CV nkB/CV (101)

The particle entropy function is then

s(u,n) =−kB lnn+CV ln
(

u
CV θ0

)
(102)

This MB-FF-EOS provides the commonly used factor in the force
definition of the SPH method, namely

π

π0
=

(
n
n0

)kB/CV

(103)

The model parameter γ in SPH would then be identified here as
kB/CV .

A.3 Mesoscopic LJ MB-FF-EOS

An analytical EOS for systems with LJ interactions has been de-
rived from extensive simulations of these systems in terms of
molecular parameters59. A summary of this analytical EOS is
given here. Let us assume that the underlying physical system is
defined in terms of the packing fraction

η =
π

6
nd3

hBH (104)

where dhBH is the particle diameter

dhBH =
∫ Rm

0

[
1− e−u0(r)/(kBθ)

]
dr (105)

If uLJ(r) is the LJ potential

uLJ(r) = 4εLJ

[(
σLJ

r

)12
−
(

σLJ

r

)6
]

then u0(r) ≡ uLJ(r)− uLJ(Rm) and Rm = 21/6σLJ is the position of
the minimum of the LJ potential. The hard sphere contribution to
the particle Helmholtz free energy is given by

fHS = kBθ

[
5
3

ln(1−η)+
η(34−33η +4η2)

6(1−η)2

]
(106)

The final expression for the particle Helmholtz free energy is

f = fHS +nkBθ e−γn2
∆B2,hBH(kBθ)+∑

i j
Ci jθ

i/2n j (107)
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where the residual second virial coefficient is defined as ∆B2,hBH =

B2,LJ− 2π

3 d3
hBH with

B2,LJ =−
1
2

∫ [
1− e−uLJ(r)/(kBθ)

]
dr (108)

being the second virial coefficient of a LJ system. B2,LJ is given in
closed form as

B2,LJ =
2π

3
σ

3
LJ
√

2π

(
εLJ

kBθ

)1/4
H 1

2

(
−
√

εLJ

kBθ

)
where H1/2 represents the Hermite function of order 1/2. The
constants Ci j are given in ref.59.

B Derivation of the statistical properties of
the random terms

In this appendix, we give a detailed derivation of the statisti-
cal properties of the random terms appearing in the stochastic
equations of motion, eq. (75) and eq. (80). Our derivation does
not follow the traditional formulation through the correspond-
ing Fokker-Plank equation20, but instead we calculate the first
and second moment of the probability distribution, either using
eq. (12) or eq. (16), depending on the independent variables
coming into play. This perspective allows us to have a more mech-
anistic view on the processes, as we will use the discrete form of
the algorithms, instead of stochastic differential equations, the
latter entangled with Itô-Stratonovich kind of dilemmas. The al-
gorithm formulation in a discrete form is well defined. Our choice
in eqs. (74) and (78) corresponds to a causal representation of the
dynamics.

Furthermore, the calculation of the moments of the distri-
bution is based on the detailed balance principle satisfied by
physical systems in thermodynamic equilibrium57. Schemati-
cally, the algorithm provides a transition from a space state point
Γ = ({pi},{ri},{ui}) at t into a new point Γ ′ at t + δ t. The new
point is a function of the original one, the dynamic properties of
the system, and of the random numbers Ω. The overall algorithm
can be written in the following general form

Γ
′ = Γd [Γ,Ω;δ t] (109)

where Γd represents the generic function that provides the dy-
namics. Its arguments represent the variables of which this func-
tion depends. The transition probability is thus given by

w
(
Γ→ Γ

′)
δ t = 〈δ

(
Γ
′−Γd [Γ,Ω]

)
〉Ω (110)

The subscript Ω indicates that the average has to be determined
over all the realisations of the random force. From this expres-
sion, due to the causal nature of the algorithm, it follows that∫

dΓ
′w
(
Γ→ Γ

′)
δ t =

∫
dΓ
′ 〈δ
(
Γ
′−Γd [Γ,Ω]

)
〉Ω = 1 (111)

The reverse trajectory is defined as Γ∗ → Γ∗
′

where Γ∗ ≡(
{−p′i},{r′i},{u′i}

)
and Γ∗

′ ≡ ({−pi},{ri},{ui}). The change of
sign depends on the parity under time reversal of the variable57.

Thus, detailed balance indicates that81

Peq (Γ) w
(
Γ→ Γ

′)= Peq (Γ
∗) w

(
Γ
∗→ Γ

∗′
)

(112)

The stochastic process described by the algorithm satisfies a mas-
ter equation with the transition probabilities given by eq. (110).
The calculation of the Fokker-Planck approximation to the master
equation requires the evaluation of the first and second moments
of the distribution of the variable transitions57. This last equation
permits us to calculate the moments of the distribution. If we re-
strain the analysis up to second order moments, we are under
the same degree of approximation as the Fokker-Planck equation
itself.

B.1 Momentum equation

To obtain the first moment of the momentum distribution, we
evaluate∫

dΓdΓ
′Peq(Γ)pi

′w(Γ→ Γ
′) =

∫
dΓdΓ

′Peq(Γ
∗)pi

′w(Γ∗→ Γ
∗′)

=−
∫

dΓ
∗dΓ

∗′ Peq(Γ
∗)p∗i w(Γ∗→ Γ

∗′) (113)

=−
∫

dΓ
∗Peq(Γ

∗)p∗i

= 〈ri〉

Using the equation of motion (73), together with eq. (110), on
the left-hand-side of this last equation, one obtains

∫
dΓPeq(Γ)

(
pi +∑

j 6=i
fCi j δ t +∑

j 6=i
fD
i j δ t +∑

j 6=i
〈δpR

i j〉ξ

)
= 0 (114)

As pi as well as ∑ j 6=i fD
i j, cf. eq. (65), are even functions of mo-

menta, their equilibrium value is zero. Also, in view of eq. (75),
〈δpR

i j〉Ω = 0. Finally, the equilibrium average of the conservative
force requires some more algebra. First, the integration with re-
spect to the momenta and entropies factorises, and can be readily
performed, leaving only an integration over the particle positions.
As the system is invariant under the variation of the centre of mass
R, we introduce

∫
dRδ (R− 1/N ∑i ri) = 1, and integrate with re-

spect to ri to get

∫
dΓPeq(Γ) ∑

j 6=i
fCi j = N

∫
dR
∫

dr1
(i. . .drN P(x̃)

1
N ∑

j 6=i

∂U(x̃)
∂r j

∣∣∣∣∣
si

where U ≡∑i ui. We have also used the fact that due to the trans-
lational invariance, ∂U/∂ri =−∑ j 6=i ∂U/∂r j. In this equation we
have written x̃ = (r1,r2, . . . , [NR−∑ j 6=i r j], . . . ,rN), where the ex-
pression between brackets replaces the vector ri. Notice the over-
all factor N that appears from the integration of the δ -function
with respect to ri. The factor 1/N has been explicitly introduced
because of an important point that we demonstrate in the follow-
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ing. Let us calculate the derivative in this last equation

∂

∂r j
U(x̃) =

∂

∂r j
∑
k

uk(x̃)

= ∑
k 6= j

(
∂u j

∂n j
w jk−

∂uk

∂nk
wk j

)
s j

−∑
k 6=i

(
∂ui

∂ni
wik−

∂uk

∂nk
wki

)
si

(115)

=−fCj + fCi

where we have defined w jk ≡ ei jw′/[w] for the ease of notation.
The second term appears due to the constrained integration of
the ith coordinate in x̃. The summation over j then yields

∑
j 6=i

∂

∂r j
∑
k

uk(x̃) =−∑
j 6=i

fCj +(N−1)fCi = N fCi

where ∑ j fCj = 0 has been used. Hence, we can write

∫
dΓPeq(Γ)∑

j 6=i
fCi j =−NkBT

∫
dR
∫

dr1
(i. . .drN

1
N ∑

j 6=i

∂

∂r j
P(x̃)

∣∣∣∣∣
si

= 0 (116)

Partial integration has been used to give the last equality.

The calculation of the first moment simply demonstrates the
consistency of the algorithm. If the left-hand-side of eq. (113)
were not zero, it would indicate that extra terms, often mislead-
ingly called spurious drift, should be added.

More interesting is the evaluation of the second moment of the
momenta. Similarly as in eq. (113), we aim at calculating here∫

dΓdΓ
′Peq(Γ)pi

′p j
′w(Γ→ Γ

′) =
∫

dΓdΓ
′Peq(Γ

∗)pi
′p j
′w(Γ∗→ Γ

∗′)

=
∫

dΓ
∗dΓ

∗′ Peq(Γ
∗)p∗i w(Γ∗→ Γ

∗′) (117)

=
∫

dΓ
∗Peq(Γ

∗)p∗i p∗j

= 〈pip j〉

for j 6= i. Integrating the left-hand-side of this equation with re-
spect to Γ′ and using eq. (110), one can write

∫
dΓPeq(Γ)

[
pi ∑

k
γγγ jk ·

pk

m
δ t +p j ∑

l
γγγ il ·

pl

m
δ t (118)

+∑
k 6=i

∑
l 6= j

〈
δpR

ikδpR
jl

〉
ξ

]
= 0

where only terms up to O(δ t) have been retained. Moreover,
terms linear in δpR vanish because the random force is not corre-
lated with variables at the same time, due to the implicit causal
hypothesis. The terms concerning the conservative force also
vanish due to the fact that the average over momenta and av-
erage over positions can be independently performed, and in
the calculation of the first moment we have seen that both van-

ish. Here for compactness, we have introduced the shorthand
notation γγγ i j = γi jei jei j, together with the definition of the self-
coefficient γγγ ii ≡ −∑ j 6=i γγγ i j. We then proceed to the calculation of
the average of the quadratic terms in the momenta with respect
to the momenta distributions, i.e.,

∫
dp1 . . .dpN e−∑l p2

l /(2ml kBT )
δ

(
∑
l

pl

)
pi

m
γγγ jk ·

pk

m
(119)

where we have introduced the constraint that the total momen-
tum is conserved, which we have chosen to be zero without loss
of generality. Let us initially consider explicitly the case j 6= i.
Integrating with respect to p j, the previous expression is equal to

− kBT
∫

dp1
( j. . .dpN

pi

m
γγγ jk ·

∂

∂pk
e−∑l 6= j p2

l /(2ml kBT )e−(∑l 6= j pl)
2
/(2ml kBT )

(120)
Partial integration and the fact that the remaining momenta (all
but p j, which is not present in the argument) are independent,
permits us to write that this last expression is equal to

kBT
m

γγγ jkδik (k 6= i)

The term i = j follows by writing p j = −∑l 6= j pl in eq. (120) and
repeating the evaluation. Hence, the average in eq. (119) has the
form ∫

dp1 . . .dpN e−∑l p2
l /(2ml kBT )

δ

(
∑
l

pl

)
pi

m
γγγ jk ·

pk

m

=
kBT
m

γγγ jk
[
δik(1−δi j)−δi j

]
Further, we can write, from eq. (118)

∫
dΓPeq(Γ)

{
2

kBT
m

[
γγγ i j(1−δi j)−δi j ∑

k
γγγ ik

]
δ t (121)

+∑
k 6=i

∑
l 6= j

〈
δpR

ikδpR
jl

〉
ξ

}
= 0

where the symmetry of the friction matrices γγγ i j = γγγ ji has been
used. On the other hand, the random momenta satisfy

∑
k 6=i

∑
l 6= j

〈
δpR

ikδpR
jl

〉
ξ
= ∑

k 6=i
∑
l 6= j

σikσ jl
〈
ξikξ jl

〉
eike jl δ t (122)

=

[
∑
k 6=i

σ
2
ikδi jeikeik−σ

2
i j(1−δi j)ei jei j

]
δ t

The choice
σi j =

√
kB(θi +θ j)γi j (123)

identically satisfies eq. (121), and therefore is the appropriate
fluctuation-dissipation theorem. Notice that as the equilibrium
average in the first term in eq. (121) is proportional to T , the
fluctuation-dissipation theorem should be proportional to the
proper particle temperature estimator, namely θ .

18 | 1–21Journal Name, [year], [vol.],

Page 18 of 22Physical Chemistry Chemical Physics



B.2 Energy equation

To begin, we calculate the first moment of the energy distribution
using eq. (112). Analogously as in the previous case, we can write∫

dΓdΓ
′Peq(Γ)ui

′w(Γ→ Γ
′) =−

∫
dΓ
∗Peq(Γ

∗)u∗i (124)

= 〈ui〉

According to the transition probability in eq. (110), using
eq. (78), we can write

∫
dΓPeq(Γ)

[
1
2 ∑

j 6=i

(
vi−v j

)
· ei j γi jei j ·

(
vi−v j

)
δ t (125)

− 1
2mi

∑
j 6=i

∑
l 6=i
〈δpR

i j ·δpR
il〉ξ + q̇iδ t +∑

j 6=i
〈δuR

i j〉ξ

]
= 0

The contribution due the conservative force has not been in-
cluded since it identically vanishes because positions and veloc-
ities are uncorrelated in equilibrium. The same occurs with the
term 1/2∑ j 6=i

(
vi−v j

)
· δpR

i j, as causality indicates that the ran-
dom momenta is not correlated with the actual value of the ve-
locity. Moreover, the first and second term identically cancel, in
view of the fluctuation-dissipation theorem derived in the previ-
ous subsection. Therefore, we are left with

∫
dΓPeq(Γ)

(
q̇iδ t +∑

j 6=i
〈δuR

i j〉ξ

)
= 0

We can now introduce the explicit expression for the heat flow,
and of course, a change in the integration variables from Γ to Γ̃ is
in order∫

dΓ̃Peq(Γ̃)

[
−∑

j 6=i
κi j

(
1
τ j
− 1

τi

)
δ t−κi

(
1
T
− 1

τi
δ t
)
+∑

j 6=i
〈δuR

i j〉ξ

]
= 0

As 〈1/τi〉 = 1/T , it follows that 〈δuR
i j〉ξ = 0. Therefore, this par-

ticular form of the heat flow introduces no spurious drift in the
equation of motion that should be compensated.

The evaluation of the second moment of the energy distribution
is more involved due to the number of terms that appear in its
evaluation. Effectively proceeding as in eq. (117), we can write∫

dΓdΓ
′Peq(Γ)ui

′u j
′w(Γ→ Γ

′) =
∫

dΓ
∗Peq(Γ

∗)u∗i u∗j

= 〈uiu j〉 (126)

Then, using the dynamics equation (110), one can write

∫
dΓPeq(Γ)

({
ui

[
1
2 ∑

k 6= j

(p j

m
− pk

m

)
· γγγ jk ·

(p j

m
− pk

m

)
δ t (127)

− 1
2m ∑

k 6= j
∑
l 6= j
〈δpR

jk ·δpR
jl〉ξ

]}
+(i↔ j)

+
(
ui q j +u j qi

)
δ t +

〈
δuR

i δuR
j

〉
ξ

+
1
4 ∑

k 6=i
∑
l 6= j

(pi

m
− pk

m

)
· 〈δpR

ikδpR
jl〉ξ ·

(p j

m
− pl

m

)
δ t

)
= 0

We can perform the integration with respect to momenta and
use the fluctuation-dissipation theorem for the random momenta
[eq. (122)]. Then, the terms involving momenta exactly cancel
as∫

dΓPeq(Γ)

{(
ui

kBT
m ∑

l 6= j
γ jl +u j

kBT
m ∑

k 6=i
γik

)
(128)

− 1
2m

[
ui ∑

l 6= j
kB(θ j +θl)γ jl +u j ∑

k 6=i
kB(θi +θk)γik

]

+
kBT
2m

[
∑
k 6=i

kB(θi +θk)γik δi j + kB(θi +θ j)γi j

]}
= 0

The third term is precisely the correlation between u and θ ap-
pearing in the second term, given by∫

ds j ui θ j es j/kB−u j/(kBT )

= Tui− kBT
∫

ds j ui
∂

∂ s j
es j/kB−u j/(kBT ) (129)

= Tui + kBT 2
δi j

We are then left with∫
dΓPeq(Γ)

[(
ui q j +u j qi

)
δ t +

〈
δuR

i δuR
j

〉
ξ

]
= 0 (130)

and ∫
dΓPeq(Γ)

(
−u j ∑

k
κik

1
τk

δ t−ui ∑
l

κ jl
1
τl

δ t (131)

+
〈

δuR
i δuR

j

〉
ξ

)
= 0

where we have introduced κii ≡ −∑ j 6=i κi j, for compactness. Ac-
cording to eq. (80), the random energy correlation has the form〈

δuR
i δuR

j

〉
ξ
= ∑

k 6=i
∑
l 6= j

αikα jl

〈
ξ ikξ jl

〉
δ t (132)

=

[
∑
k 6=i

α
2
ikδi j−α

2
i j(1−δi j)

]
δ t
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On the other hand, let us assume for the moment that j 6= i, and
focus our attention primarily on the integration with respect to
the internal energy. Noticing that as the algorithm proposes the
exchange of heat at constant volume (ni = const), then ∑ j κ jl/τl =

0 and ∑i ui = U = const in the process. Then, imposing this last
constraint in the integrand, changing the independent variables,
we can readily integrate with respect to u j, to obtain

∫
du1 . . .duN eZ/kB

(
ui ∑

k
κ jk

1
τk

)
(133)

= kB

∫
du1

( j. . .duN

(
ui ∑

l 6= j
κ jl

∂

∂ul
eZ̃/kB

)

where Z ≡ ∑i zi, and Z̃ represents Z with u j = U −∑l 6= j ul . Then,
using partial integration with respect to ul , we obtain

−
∫

du1 . . .duN eZ/kB

(
ui ∑

k
κ jk

1
τk

)

= kB

∫
du1

( j. . .duN

(
∑
l 6= j

κ jlδil

)
eS̃/kB (134)

= kB κi j

The term i = j can be readily obtained by realising that u j =

U −∑l 6= j ul , which is introduced instead of ui in eq. (133). The
integration can be carried out in the same way to give

−
∫

du1 . . .duN eZ/kB

(
ui ∑

k
κ jk

1
τk

)
(135)

=−kB ∑
l 6= j

κ jl

Comparing eq. (132) with eqs. (134) and (135), we arrive to the
fluctuation-dissipation theorem, namely

αi j =
√

2kB κi j (136)

which agrees with eq. (81).
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