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Abstract

Stability is an important aspect of alloys, and proposed alloys may be unstable due to unfavorable 

atomic interactions. Segregation of an alloy may occur preferentially at specific exposed surfaces, 

which could affect the alloy’s structure since certain surfaces may become enriched in certain 

elements. Using density functional theory (DFT), we modeled surface segregation in bimetallic 

alloys involving all transition metals doped in Pt, Pd, Ir, and Rh. We not only modeled common 

(111) surfaces of such alloys, but we also modeled (100), (110), and (210) facets of such alloys. 

We showed that segregation is more preferred for middle transition metals, with early and late 

transition metals being most stable within the parent metal.  We find these general trends in 

segregation energies for the parent metals: Pt > Rh > Pd > Ir. A comparison of different surfaces 

suggests no consistent trends across the different parent hosts, but segregation energies can vary 

up to 1.5 eV depending on the exposed surface. We also developed a statistical model to predict 

surface-dependent segregation energies. Our model is able to distinguish segregation at different 

surfaces (as opposed to generic segregation common in previous models), and agrees well with 

the DFT data. The present study provides valuable information about surface-dependent 

segregation and helps explain why certain alloy structures occur (e.g. core-shell).

1. Introduction

Platinum group metals, such as Pt, Pd, Rh, and Ir often display high catalytic activity for 

catalytic reactions. These metals can be expensive, so alloys are often used to decrease the amount 

of expensive metal being used, while also achieving high catalytic activity. Alloys have been 

investigated for instance in hydrogen generation1,2, dehydrogenation3-5, reforming processes6,7, 

and fuel cells8-11. In order to design viable alloy catalysts, the materials should have high catalytic 

activity, but should also be stable. Depending on how well the two metals mix, different alloy 

structures may form12. For instance, an alloy may form a homogenous structure for metals that mix 
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well, while separation into distinct particles or core-shell particles may occur for metals that prefer 

to segregate. 

Surface segregation leads to the surface of an alloy particle/crystal having a different alloy 

composition than the bulk. Surface segregation can influence many processes such as adsorption, 

wetting, crystal growth, oxidation, corrosion, and catalysis13,14.  Several tools, computational and 

experimental, can be used to study and identify alloy segregation15. Depending on the application 

of interest, surface segregation can be beneficial or detrimental16,17. For instance, segregation of Pt 

atoms to the surface of a Pt75Ni25 alloy enhanced the catalytic activity for the oxygen reduction 

reaction (ORR).18-20 On the other hand, possible segregation of an element M in M (core)-Pt (shell) 

structures may decrease the stability of these alloys in acidic medium21,16. Different parameters 

have been used to explain surface segregation. Atom size and surface energy difference between 

the host metal and the impurity element have been investigated22,16,23. Elastic energy release24, heat 

of solution for the alloy24, composition of the elements in the alloy16, and cohesive energy23 are 

other properties tied to surface segregation. 

Thermodynamics may drive what type of structure forms in an alloy (or nanoalloy for 

nanoparticles), and modeling can be used to predict such structures25. Segregation has already been 

studied in previous reports using tools such as density functional theory (DFT).   Ruban et al26-28 

for instance calculated segregation energies of single impurity atoms in several low-index 

surfaces26-28. Segregation behavior for the (111) surfaces of platinum16,29,30, palladium22,31,32, and 

iridium21 has been investigated.  Segregation behavior can be surface dependent, meaning that it 

can depend on what surface is exposed.  Ruban et al.28 reported that the segregation energy is 

related  to the nature of d-bands which vary across the different transition metals. Other DFT work 

that indicates that the core metal in core/shell structures can affect surface adsorption, and choice 

of core determines alloy stability33.  Other work modeling Pt3M alloys shows that metal choice M 

affects alloy segregation and surface reactivity for the oxygen reduction reaction34. Surface 

segregation at the (111)20, 35-42, (110)20, 35-38, 40-42, and (100)20, 35-43 surfaces of Pt has been studied. 

Surface segregation at the (111)38, 44-46, (110)38,45,46, and (100)38, 43-46 surfaces of Pd has also been 

investigated. Besides DFT, other models have been developed to predict alloy structures, such as 

coordination-dependent models to predict structure and segregation in a Pt-Pd particle and Pt-

Rh(111) surface39, or other bimetallic surfaces/particles47.
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Such studies have shown that segregation behavior could occur differently at various 

surfaces. A potential shortcoming in existing studies is the limited number of impurities that have 

been considered. For instance, several of these studies only considered binary Pt-Ni20, 35, 36, 40, 42 

and Pt-Pd44-46 alloys. The segregation energy, a measure of how much an impurity element prefers 

to segregate from a parent element, can be a good indicator of the alloy’s stability22,21. While 

published literature has determined segregation energies for select metals in select surfaces, a 

comparison of many different surface facets (e.g. open and closed) is not currently available. 

Furthermore, the most comprehensive collection27, 28 of segregation energies in the literature uses 

the local density approximation (LDA), while in the present study, we performed DFT calculations 

using generalized gradient approximation (GGA) functionals, which are more common for 

modeling metals. 

We have performed a systematic study of the (111), (110), (100), and (210) surfaces using 

Pt, Pd, Rh, and Ir as host metals. We considered all transition metals as dopants, and investigated 

how segregation compares for the different surface facets. It is important to note that segregation 

energy also depends on the alloy’s composition and depending on how many atoms are being 

segregated, different segregation energies can be obtained. In the present study, we considered 

dilute alloys, specifically we modeled a single impurity (dopant) in the host metal. We also 

addressed how different types of segregation (sub-surface to surface versus bulk to surface) affect 

segregation energy results. Finally, we presented models that may explain these surface 

segregation processes, and can be used to make predictions of alloy segregation. 

2. Methodology
2.1. Simulation Parameters

Density functional theory (DFT) calculations were performed using the CP2K package48-

52 which uses the Gaussian and plane waves (GPW) method50. Electron densities were treated by 

plane waves and electronic orbitals were treated by double-zeta Gaussian basis sets.53 Core 

electrons were represented by Goedecker-Teter-Hutter (GTH) pseudopotentials54,55. All 

calculations were spin-polarized. CP2K uses periodic boundary conditions and samples reciprocal 

space only at the  point. To compensate for any error associated with small k-point sampling, Γ

large cells have been used. We performed several calculations to assess the effect of using different 

parameters for the calculations, and discuss this in more detail in the Supporting Information. 
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These calculations indicate that the chosen parameters (cell size, exchange correlation functional, 

basis set) are adequate for the current study. We also used similar simulation parameters in our 

previous work56, where we showed the approach to give similar results to common DFT plane 

wave calculations.

The Perdew, Burke, and Ernzerhof (PBE) exchange correlation functional57 was used 

throughout the present study. A shortcoming of this functional is that other less-common 

functionals may give slightly better surface energies or lattice parameters58. Other methods, such 

as based on wavefunctions rather than electron density, may also give better descriptions59 (albeit 

at increased computational time). Nonetheless DFT and the PBE functional has been used widely 

to model metal systems because they provide reasonable accuracy60, 61 without protracted 

computational times.  

2.2. Surface Models

In order to build surfaces, first we calculated lattice parameters of bulk metals that were 

used as alloy hosts: 3.86 Å (Ir), 3.96 Å (Pt), 3.95 Å (Pd), and 3.84 Å (Rh). These values match 

well with other density functional theory studies: 3.86 to 3.89 Å for Ir62, 63, 3.99 Å for Pt63, 64, 3.93-

3.96 Å for Pd63, 65-69, and 3.80 Å to 3.86 Å for Rh63, 70-72. Next we modeled surfaces using periodic 

boundary conditions, or the slab approach. For (111) and (100) surfaces, 6 6 super cells were ×

used. Both (111) and (100) surfaces were 5 atomic layers thick consisting of 180 atoms. For (110) 

surfaces, 4 6 super cells with 7 atomic layers consisting of 168 atoms were used. For (210) ×

surfaces, 2 4 supercells with 5 atomic layers consisting of 160 atoms were used. All atoms were ×

allowed to relax for the various slabs. The corresponding slab models are depicted in Figure 1. We 

investigated how the number of layers affected our results. We also examined how freezing the 

bottom layers compared to not freezing the bottom layers affected our results. We discuss these 

aspects in the Supporting Information. 
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Figure 1. Slab models used in the present study. For each surface, the left image shows the top view of the 

surface, while the right image shows the side view of the surface. 

2.3. Segregation definition

In order to model segregation, we considered a dopant atom in the first (top) surface layer, 

in a sub-surface layer, or in a larger bulk structure. The bulk structure was of size 5 5 5 and × ×

had 500 atoms. The dopant atom may transfer from the sub-surface layer to the first surface layer, 

or from the bulk to the first surface. Both segregation processes were considered in this work. The 

positions of a dopant in the alloy for the (111) surface and bulk are depicted in Figure 2. We show 

other dopant positions in Figure S1. There are several possible sub-surface sites that could be 

considered, but we modeled those depicted in Figure S1. The segregation energy, , is 𝐸𝑠𝑒𝑔 ― 1 ― 𝑠𝑢𝑏

defined as the total energy difference of the alloy with dopant in the first layer and sub-layer. An 

alternative definition, , is defined as the total energy difference of the alloy with 𝐸𝑠𝑒𝑔 ― 1 ― 𝑏𝑢𝑙𝑘

dopant in the first layer and bulk structure. The segregation energy is calculated by Equations (1) 

and (2):

                                              (1)𝐸𝑠𝑒𝑔 ― 1 ― 𝑠𝑢𝑏 = 𝐸1𝑠𝑡 𝑙𝑎𝑦𝑒𝑟 ― 𝐸𝑠𝑢𝑏 𝑙𝑎𝑦𝑒𝑟

                (2)𝐸𝑠𝑒𝑔 ― 1 ― 𝑏𝑢𝑙𝑘 = 𝐸𝑝𝑢𝑟𝑒 𝑏𝑢𝑙𝑘 + 𝐸1𝑠𝑡 𝑙𝑎𝑦𝑒𝑟 ― 𝐸𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦 𝑖𝑛 𝑏𝑢𝑙𝑘 ― 𝐸𝑝𝑢𝑟𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒
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In these equations  is the calculated segregation energy,  is the total energy of the 𝐸𝑠𝑒𝑔 𝐸1𝑠𝑡 𝑙𝑎𝑦𝑒𝑟

alloy with the dopant in the first layer, and  is the total energy of the alloy with the dopant 𝐸𝑠𝑢𝑏 𝑙𝑎𝑦𝑒𝑟

in the sub-layer. The bulk energies,  and , are the total energies of a dopant-𝐸𝑝𝑢𝑟𝑒 𝑏𝑢𝑙𝑘 𝐸𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦 𝑖𝑛 𝑏𝑢𝑙𝑘

free bulk cell and the bulk structure with a single atom dopant. A negative segregation energy 

indicates that the dopant prefers to segregate towards the surface, while positive segregation 

energy indicates the dopant does not prefer to segregate towards the surface. Unless noted in the 

text, when we refer to segregation energy, this indicates the  value. We also mention 𝐸𝑠𝑒𝑔 ― 1 ― 𝑏𝑢𝑙𝑘

that we only focus on the thermodynamics of segregation in this paper. Certainly kinetics may play 

an important role in hindering the segregation of two metals, but addressing kinetics is beyond the 

scope of the current paper. 

Figure 2. Illustration of different dopant positions within parent metals in slab and bulk structures. Side 

views of the slabs and bulk are shown.

3. Results and discussion
3.1. Comparison of Segregation on (111) Surfaces

We first examined segregation of transition metals at the (111) surfaces. Calculated 

segregation energies (  are given in Figure 3. The segregation energy curves have a 𝐸𝑠𝑒𝑔 ― 1 ― 𝑏𝑢𝑙𝑘)

characteristic U shape, where early and late transition metals have the most negative segregation 

energies while middle transition metals have the most positive segregation energies. This is similar 

to previous work, such as Ruban et al28, Chelikowsky73, and Mukherjee et al74. However, there is 

anomalous segregation behavior for 3d metals, especially middle metals like Cr, Mn, and Fe. The 

segregation energy curve for the 3d metals does not have a full U shape, but rather dips for the 

middle transition metals, in contrast to the 4d and 5d metals. A similar anomalous dip was 
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predicted by others28. 3d metals have anomalous behavior compared to 4d and 5d, due to stronger 

magnetic effects arising from narrow d bands75. This dip for mid transition metals occurring in the 

3d row can be observed for other properties, such as surface enthalpy73 or DFT-calculated cohesive 

energies (which agree well with experimental cohesive energies also showing this dip)76. DFT may 

not be able to fully describe such magnetic effects, and multireference methods may be need to 

better describe such metals, but DFT is able to reasonably capture these magnetic effects77. Our 

results for 3d metals are consistent with experimental work showing that middle 3d metals display 

anomalous behavior compared to 4d and 5d metals. 

We calculated the average segregation energies in the different host metals Pt, Pd, Ir, and 

Rh to be 0.99, 0.52, -0.24, and 0.55 eV, respectively. Ranges of segregation energies in the host 

metals were as follows: Pt (-0.77 to 2.26 eV), Pd (-0.56 to 1.97 eV), Ir (-3.10 to 1.30 eV), and Rh 

(-1.40 to 2.15 eV). The segregation energies in general follow this trend: Pt > Rh > Pd> Ir for 4d 

and 5d dopants. That is, the segregation energies in the Pt (111) surface tend to be most positive, 

while the segregation energies in the Ir (111) surface tend to be most negative. Thus, segregation 

is least likely to occur within Pt and most likely to occur within Ir. For 3d transition metals 

however, Pd and Ir possess the least segregation energy values among other hosts. Due to 

oscillatory behavior of surface segregation in 3d transition metals, it is hard to report a monotonic 

segregation trend as was done for 4d and 5d dopants.

One factor affecting surface segregation is the metal atomic size. When the dopant atom is 

bigger than the host metal, strain occurs. In order for this strain to be released, the dopant could 

segregate to the surface and leave the metal lattice. For a given dopant, the bigger the host metal, 

the less likely segregation occurs due to strain. Pt has the largest van der Waals radius among the 

four host metals, while Rh and Ir have the smallest radii. As a result, surface segregation is least 

likely to occur in Pt, and more likely to occur in other hosts. As we show in section 3.e, there are 

also other factors affecting surface segregation. Therefore, our results cannot be interpreted merely 

by metal atomic size.

As can be seen in Figure 3, segregation energies are most negative for early and late 

transition metals and most positive for the middle transition metals. In other words, early and late 

transition metals are most likely to segregate from the parent metal. Chelikowsky et al.73 used 

Miedema78 theory to examine such trends. Chelikowsky showed that the segregation energy is 
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proportional to the cohesive energy of the metal. As discussed by Sutton75, a transition metal’s 

cohesive energy can be estimated from the  number of d electrons (nd) based on a Friedel model 

approximation. The maximum cohesive energy occurs for when nd = 5, or for middle transition 

metals. Thus, middle transition metals have the largest cohesive energies and correspondingly the 

largest segregation energies. Brejnak and Modrak79 attempted to explain segregation based on 

number of d electrons, and suggest that for host metals with nd-host > 5, segregation will occur when 

nd-dopant > nd-host. We do observe favorable segregation for metals having nd-dopant > nd-host, as seen in 

Figure 3, but favorable segregation also occurs for some early transition metals, in contrast to the 

predictions of Brejnak and Modrak79. 

Figure 3. Calculated segregation energies (  of single transition metal atoms within the 𝐸𝑠𝑒𝑔 ― 1 ― 𝑏𝑢𝑙𝑘)

(111) surfaces of Pt, Pd, Ir, and Rh.
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3.2. Comparison of Segregation in the (111), (100), (110), and (210) 
Surfaces of Pt

Surface segregation can be surface dependent, meaning that it may depend on what parent 

surface the segregation is occurring at.  For instance, Duan et al.45 studied surface segregation with 

Pt-Pd alloyed nanoparticles and observed different segregation tendencies for (100), (110) and 

(111) surfaces of these particles. To demonstrate this point, we show surface segregation energies 

for Pt (111), (100), (110), and (210) surfaces in Figure 4. For some dopants, there is a large 

segregation energy difference between the Pt surfaces. For instance, several dopants (e.g. Co, Ti, 

V, Sc) have large segregation energy differences (0.9 to 0.6 eV) between the (110) and (100) 

surfaces. In general the lowest segregation energies occur for the (110) surface, while the highest 

segregation energies occur for the (100) surface. Other metals (e.g. Pd, Os, Ir, Au) have much 

smaller differences ( 0.1 eV) between the (110) and (100) surfaces.  The average segregation ≈  

energies are 1.2, 1.1, 1.0, and 0.7 eV for the Pt (100), (111), (210), and (110) surfaces, respectively, 

or (100) > (111) > (210) > (110).  
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Figure 4. Segregation energy (  comparisons between difference surfaces of Pt, Ir, Pd, and 𝐸𝑠𝑒𝑔 ― 1 ― 𝑏𝑢𝑙𝑘)

Rh.

An examination of the different dopant metals provides details on segregation. Surface-

dependent segregation is most pronounced for the 3d transition metals. The average segregation 

energy difference between (100) and (110) surfaces for 3d metals was calculated to be 0.6 eV. The 

average segregation energy differences between (100) and (110) surfaces for 4d and 5d transition 

metals was calculated to be 0.3 eV for both cases. The relative order of segregation energies across 

the various surfaces were different for the 3d, 4d, and 5d metals. For 3d metals the segregation 
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energies were generally as follows: (100) > (111) > (210) > (110). For a few later transition metals 

(Ni, Cu, Zn), however, the (111) segregation energies are higher than the (100) segregation 

energies. The segregation energies of many middle 4d and 5d transition metals follow this trend: 

(100)  (210) > (111) > (110).  For early and late transition 4d and 5d metals, however the ≈

segregation energies across the different surfaces become closer, and it becomes difficult to 

distinguish surface-dependent segregation. For instance, segregation energies of 5d metals for the 

(100) and (210) surfaces are very close, with a mean absolute difference of 0.04 eV between the 

two surfaces. Of note is that segregation energies with 4d and 5d metals have a much greater range 

(-0.8 to 2.3 eV) than the range of the 3d segregation energies (0.2 to 1.9 eV). 3d metals behave 

differently than 4d and 5d metals due to their unique magnetic properties as discussed before75.

3.3. Surface Segregation in Pt, Ir, Pd, and Rh

Segregation energy comparisons between different surfaces of Pt, Ir, Pd, and Rh are shown 

in Figure 4. In the case of Pt and Pd as host, segregation energies for (111), (100), (110), and (210) 

surfaces converged to almost the same value at the start and the end of the transition metal series. 

For Ir and Rh, this is not the case and for Ir as host, and the values of segregation energies at the 

beginning and the end of transition metals differ the most for (111), (100), (110), and (210) 

surfaces (compared with Pt, Pd, and Rh as hosts). The segregation energies with Ir as host are 

between -3.10 and 1.30 eV. The corresponding ranges for Pt, Pd, and Rh surfaces as hosts are -

0.77 to 2.26, -0.56 to 1.97, and -1.40 to 2.15 eV, respectively. The most positive segregation 

energies occurred with Pt as the host. Pt had the highest segregation energy, at 2.26 eV for W in 

the (210) surface. The lowest segregation energy value occurred with Ir, at -3.10 eV for Y in the 

(210) surface. The average segregation energies for Pt, Ir, Pd, and Rh are 0.99, -0.24, 0.52, and 

0.55 eV, respectively. The segregation energy trends are thus roughly Pt > Rh > Pd > Ir when 

considering all the (111), (100), (110), and (210) surfaces. Full results for the (111) surfaces are 

shown in Figure S5 in the SI.

As evident from Figure 4, segregation energies appear to be surface dependent. For Pt and 

Ir as host, the 3d dopant segregation energies depended strongly on the surface, meaning that there 

is up to 1.4 eV energy difference between segregation of 3d dopants when different facets occur 

in the parent Ir or Pt metals. In the case of Pd as a host, there is up to a 1.0 eV energy difference 

Page 11 of 24 Physical Chemistry Chemical Physics



12

in segregation for 4d and 5d dopants within different facets of Pd. For Rh as host the surface 

dependent segregation is most pronounced for 5d transition metals with about an 0.8 eV energy 

difference between difference facets. From Figure 4 it can be observed that there is not a consistent 

trend in preferred surface dependent segregation. For example, with Pt as host and 3d transition 

metals as dopants the segregation energies follow this trend: (100) > (111) > (210) > (110). On the 

other hand with Rh as host and 5d transition metals as dopants this trend occurs: (210) > (100) > 

(110) > (111). In some cases, such as Pd as host and 3d transition metals as dopants, there is not 

an obvious trend in surface dependent segregation energy. In order to further explain such trends, 

we have developed a model to predict surface dependent segregation energies, as discussed in 

Section 3.5. 

3.4. Bulk versus Sub-Layer Segregation

We next address segregation from sub-surface sites to the surface compared to segregation 

from the bulk to surface. Both processes have been studied in the literature16, 22, 24, 28. Figure 5 

shows the calculated segregation energies using Equation (1) (sub-surface to surface segregation) 

and Equation (2) (bulk to surface segregation) with Pt as the host. A clear trend in the results is 

that sub-surface segregation energies are lower than bulk segregation energies, indicating that bulk 

segregation is harder. This would suggest that as the dopant metal gets closer and closer to the 

surface, it becomes less stable relative to the bulk, until at the surface it may or may not reach a 

stable state. The plots all have similar shapes indicating that the segregation energies are largely 

just shifted relative to each other. The mean absolute differences between bulk and sub-surface 

segregation energies are 0.49 eV (111), 0.54 eV (100), 0.60 eV (110), and 0.82 eV (210), with 

standard deviations of 0.35 eV (111), 0.38 eV (100), 0.42 eV (110), and 0.58 eV (210). The 

corresponding graphs for Ir, Pd, and Rh as hosts are depicted in Figures 6-8. For Ir and Pd as host, 

the two segregation processes have similar segregation energies, as evident in Figures 6 and 7. The 

mean absolute difference between bulk and sub-surface segregation energies for Ir was 0.24 eV, 

while the similar value for Pd was 0.13 eV. The differences are more noticeable for Rh (Figure 8), 

but the trends are similar between the two segregation processes.
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Figure 5. Calculated segregation energies in a Pt host metal involving sub-surface to surface segregation 

and also bulk to surface segregation. Segregation energies were calculated with Equations (1) and (2). 

Figure 6. Calculated segregation energies in a Ir host metal involving sub-surface to surface segregation 

and also bulk to surface segregation. Segregation energies were calculated with Equations (1) and (2). 
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Figure 7. Calculated segregation energies in a Pd host metal involving sub-surface to surface segregation 

and also bulk to surface segregation. Segregation energies were calculated with Equations (1) and (2). 

Figure 8. Calculated segregation energies in a Rh host metal involving sub-surface to surface segregation 

and also bulk to surface segregation. Segregation energies were calculated with Equations (1) and (2). 
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3.5. Explanation and Analysis of Results

We next sought to develop a mathematical model that could explain and predict surface 

segregation. Such a model could be used to quickly screen potential alloys without having to run 

more time-intensive DFT calculations. For instance, many of our DFT calculations took about 18-

24 hours to converge, while some calculations took several days to converge. A statistical model 

would be able to calculate segregation energies in a fraction of this time. Several models have 

already been published to predict segregation energies. Brejnak and Modrak79 developed a model 

to predict segregation energies using properties of pure metals, such as lattice structure, d-band 

center, d-band width, d-band filling, and atomic volume. They discussed that the sign of the 

product of  determines whether a dopant atom would segregate to the surface. In the above ∆𝑁 𝛼𝑠

product,  is the difference between number of d-electrons for alloy components (solute and the ∆𝑁

solvent) and  denotes the surface potential. They used d-band properties of the surface and the 𝛼𝑠

bulk simultaneously in order to predict surface segregation, although they did not distinguish 

between different surfaces. Motivated by this, we also calculated the d-band filling, d-band center, 

and d-band width for the different surfaces of our host metals that we studied. These results are 

tabulated in Table S8 in the SI. We plotted d-band properties of Pt along with segregation energy 

of vanadium as dopant as an example to see if there is a correlation between d-band properties and 

segregation energy. As it can be seen in Figure S6 in the SI, there is no direct correlation between 

d-band properties of the host and segregation energies in (111), (100), (110), and (210) surfaces of 

Pt. This suggests that other properties of the dopants and hosts may be needed for a more complete 

prediction of segregation energies. 

Ruban et al.28 used Friedel’s rectangular state density model80, 81 to predict segregation 

energies in transition metal alloys. In their paper they directly compared surface segregation 

energies of 4d metals calculated using both DFT and their model. Comparing their DFT data with 

their model indicates how closely the two match. We analyzed their data to calculate an R2 value 

of 0.53 between the two data sets, and a root mean square error (RMSE) between the two data sets 

of 0.41 eV. However, Ruban et al.28 acknowledged that their model is limited in how it considers 

the structure of surfaces. A more robust model is needed to better consider segregation behavior 

between different surfaces. 
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Another model, based on universal tight-binding (TB) and Friedel’s model, developed by 

Wang and Johnson23 was used to predict segregation in alloy particles. Wang and Johnson 

compared segregation energies obtained from their model to their DFT segregation energies in 

their work. Their model captured the general segregation trends correctly, but there was up to a 3 

eV energy difference between their DFT and model results.  The R2 and a root mean square error 

(RMSE) from comparing their DFT data and model was 0.19 and 0.93 eV respectively. 

Yu et al24. developed a model to predict segregation energies based on the surface energy, 

elastic energy, and heat of solution of the impurity and the host metal. Unlike the two previous 

models which used Friedel’s model and tight-binding theory without any regression to fit their 

data, Yu et al24, took advantage of linear regression to find coefficients for their utilized 

parameters. They only modeled Ni (111) as a host metal. We refitted their parameters to our own 

DFT data (including all host surfaces), and calculated a RMSE of 0.60 eV, R2 of 0.61, and adjusted 

R2 of 0.61 when using their model (with refitted parameters) compared to our DFT data.   The 

drawback of this model however is that it does not predict surface dependent segregation energies 

since it uses generic experimental surface energies. When we used DFT-calculated surface 

energies (for the host metals), the RMSE and R2 were calculated to be 0.50 eV and 0.73, 

respectively, which was a slight improvement. Unlike a previous model28, which predicted 

segregation energies to follow an exact parabola for each facet of Pt with the trend of (210) > (110) 

> (100) > (111) (contradictory to DFT results), this modified version of Yu et al.’s model captured 

segregation trends much more realistically. It even captured the oscillatory behavior of the 3d 

dopants. Segregation energies using this model for Pt as host are plotted in Figure S7 in the SI. 

This model distinguishes between the (111) surface of Pt and the other surfaces and predicts 

segregation trends to be (111) > (100)  (110)  (210). However DFT predicts the following ≈ ≈

order of segregation energies: (100) > (111) > (210) > (110). Therefore, similar to previous 

segregation models, the Yu et al.24 model did not fully capture surface dependent segregation 

energies.

We therefore developed our own model to predict surface-dependent segregation energies. 

We took common features of previous models to derive the model shown in Equation (3). Our 

model uses d-band width ( ), d-band filling of the dopant ( ), coordination number in the 𝑊𝐵 𝑁𝐵
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surface (  and in the bulk ( , a term representing the elastic energy release ( ), 𝑍𝑠) 𝑍𝑏) [(𝑟𝐵

𝑟𝐴)3
― 1]2

𝑟3
𝐴

and surface energy difference of the host and the dopant ( . This model takes 𝐸𝐵
𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ― 𝐸𝐴

𝑠𝑢𝑟𝑓𝑎𝑐𝑒)

elements of Ruban et al28 (coordination numbers and d-band properties), but also adds in features 

from Yu et al24 (difference in surface energies and elastic energy). The model also includes 

adjustable parameters, which allows more flexibility. This model was directly fitted to all our DFT 

data (all Pt, Ir, Pd, Rh host surfaces), and is given in Equation (3), where the β coefficients are the 

fitted parameters. The model gave a RMSE of 0.43 eV and an adjusted R2 of 0.77. The exact 

parameters of the model can be found in the SI.

                                               𝐸𝐵→𝐴
𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 = 𝛽0 + 𝛽1𝑊𝐵 + 𝛽2𝑁𝐵 + 𝛽3(𝐸𝐵

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ― 𝐸𝐴
𝑠𝑢𝑟𝑓𝑎𝑐𝑒) + 𝛽4[(𝑟𝐵

𝑟𝐴)3
― 1]2

𝑟3
𝐴 + 𝛽5[1 ― (𝑍𝑏

𝑍𝑠)
1
2]

(3)

Further explanation of all the parameters and how we developed this model can be found in the 

SI. Figure 9 shows how our DFT data compares to our model. Table 1 shows a summary of how 

our model compares to our DFT data, as well as some other models in the literature. Overall, our 

model captures the features of the DFT model quite well.

The large adjusted  value of 0.77 and low  of 0.43 eV indicate the accuracy of our 𝑅2 𝑅𝑀𝑆𝐸

model. The largest difference between the DFT data and our model belongs to Ir as the host with 

a difference of 1.62 eV. The comparison between segregation energies calculated with DFT and 

our model for (111), (100), (110), and (210) surfaces of Pt is depicted in Figure 9. As is evident 

from the figure, our model mirrors the DFT results well. Our model is able to describe surface-

dependent segregation, a feature previously not included in segregation models. The corresponding 

figures for Ir, Pd, and Rh can be found in Figures S8-S10. Our model takes into account d-band 

properties of the dopant (d-band filling and d-occupation number), surface energy of the host and 

dopant, atomic radii of the host and dopant, and also coordination numbers in the bulk and at the 

surface. All these parameters combined give a surface dependent segregation model that agrees 

well with DFT. Previous models did not consider all these parameters at the same time and as a 

result were not able to achieve such good agreement with DFT, especially for different surfaces. 

One particular danger is using a model for predictions that the model was not intended for 

or incapable of making. To test our model we compared DFT calculations of the Pt (211) surface 
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with predictions of our model to determine how our model may perform for surfaces outside the 

training set. Table S10 shows such results, and indicates that our model does very well in predicting 

segregation energies for this surface. Thus our model is robust in making predictions for other 

surfaces of the host metals. We will acknowledge that the β parameters were fitted using a select 

number of transition metal hosts, and that different hosts may require re-fitting to determine 

relevant parameters. We expect however that the same features (e.g. d-band properties, surface 

energies, etc.) will be relevant for such hosts. 

Table 1. Comparison between various models to predict surface segregation and DFT data. In the case of 

Ruban et al.28 and Wang et al.23 the models were compared with the DFT data in the original papers, 

while for Yu et al.24 and our model our own DFT data was used for comparison.

Model R2 Adjusted R2 RMSE (eV) Largest 
Difference 

(eV)

Smallest 
Difference 

(eV)

Ruban et al.28 0.53 - 0.41 1.32 0.01

Wang et al.23 0.19 - 0.93 3.16 0.00

Yu et al.24 0.61 0.61 0.60 1.74 0.00

Our Model 0.77 0.77 0.43 1.62 0.00

Our model shows good agreement with DFT calculations, but such a model should be more 

than just a highly fitted model with non-relevant features. The model should reflect the chemistry 

and physics of segregation processes, and materials involved. The model should also help explain 

what underlying physical features determine segregation phenomena. Our model includes several 

features; interplay between the various forces/influences that these features represent determines 

to which degree segregation will occur between two metals. The model includes d-band filling and 

d-occupation number. The electronic properties of the dopant metal are surely important for 

segregation, as the electronic structure determines the strength on bonding interactions between 

the dopant metal and host metal. Metals with wide d-bands and larger number of d electrons have 

more opportunities to form favorable bonds with the host metal. The surface energy difference 

between the host and dopant metal is also one of the parameters. The surface energy difference is 
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important because it indicates the relative preference for such metals to form structures with 

undercoordinated atoms, i.e. surfaces. When the dopant metal more readily forms a surface than 

the host metal ( , this is indicative that such dopant metals are more stable in 𝐸𝐵
𝑠𝑢𝑟𝑓𝑎𝑐𝑒 > 𝐸𝐴

𝑠𝑢𝑟𝑓𝑎𝑐𝑒)

undercoordinated environments, and in the host metal may more readily migrates to the surface, 

or may segregate. Surface energy is related to the related to the number of unfilled orbitals: early 

and late transition metals tend to have lower surface energies than mid transition metals24 which 

reflects the number of unfilled d orbitals, and hence the desire of such atoms for forming bonds. 

The relative atomic radii of both the host and dopant metal are also part of the model. If 

the host metal is much smaller than the dopant metal (rB/rA large), this adds strain to the alloy and 

favors segregation, which our model reveals. The relative coordination numbers of the host metal 

in the surface and at the surface are also included in the model. The model includes the term 1-

(Zb/Zs)½. Different surfaces will have different coordination numbers, and segregation is less likely 

to occur at surfaces with smaller coordination numbers since any dopant atoms on the surface 

would be less stable, having less coordination, than in the bulk. In summary, the size, coordination, 

and electronic properties of the host/dopants all play important roles in determining whether 

segregation will occur, as reflected by our model.
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Figure 9. Comparison between segregation energies of various dopants in the (111), (100), (110), and 

(210) surfaces of Pt obtained with DFT and our developed model.

4. Conclusions
 

We calculated segregation energies using DFT for alloys involving Pt, Pd, Ir, and Rh as host 

and transition metals as dopants. Segregation energies may very well depend on the exposed 

surface, which is what we show in our results. For instance, with Pt as the host and 3d transition 

metals as dopants the segregation energies follow the trend of: (100) > (111) > (210) > (110). 

However, for Pt as the host and 4d and 5d transition metals as dopants the following trend was 

observed: (100)  (210) > (111) > (110). In general, early and late transition metals segregate ≈

more and have more negative segregation energies, while mid-transition metals possess positive 

segregation energies and do not tend to segregate. An oscillatory segregation behavior is observed 

in 3d transition metals. We also calculated segregation energies in other hosts including Ir, Rh, 
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and Pd. When considering all the (111), (100), (110), and (210) surfaces, the general trend in the 

segregation energies for the various hosts is Pt > Rh > Pd > Ir. We also compared bulk and sub-

surface segregation energies (segregation from the bulk or from the sub-layer) and found the 

segregation trends to be very similar between the two segregation processes. 

We further developed a statistical model which predicts segregation of the transition metal 

dopants. This model used several parameters, including d-band width and d-band filling of the 

dopant, surface energies of the host and impurity, an elastic energy release term, and coordination 

number. This model is able to predict surface-dependent segregation, and is in good agreement 

with the DFT data. Our model is an improvement on previous models in that it can distinguish 

segregation at different host surfaces, and has high accuracy. Such results are important for 

predicting and understanding the stability of different metal alloy crystals/particles, and will allow 

for faster screening of potential alloys.  
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