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Optimizing the Orbital Occupation in the Multiple Min-
ima Problem of Magnetic Materials from the Meta-
heuristic Firefly Algorithm

Adam Payne,a, Guillermo Avedaño-Franco,b, Xu Hec, Eric Bousquetc and Aldo H.
Romerob

We present the use and implementation of the firefly algorithm to help in scanning the multiple
metastable minima of orbital occupations in Density Functional Theory (DFT) plus Hubbard U
correction and to identify the ground state occupations in strongly correlated materials. We show
the application of this implementation with the Abinit code on KCoF3 and UO2 crystals, which
are typical d and f electron systems with numerous occupation minima. We demonstrate the
validity and performance of the method by comparing with previous methodologies. The method
is general and can be applied to any code using constrained occupation matrices.

1 Introduction
The two most widely used approximations for exchange-
correlation potential in density functional theory (DFT), the lo-
cal density approximation (LDA) and the generalized gradient
approximation (GGA), fail to capture the electronic structure of
materials where partially filled d and f-electrons are at play.1,2

This particular failure comes from the tendency of LDA/GGA to
delocalize electrons due to the presence of self-interaction. Sev-
eral methods have been developed to correct this problem, e.g.
the self-interaction correction (SIC)3–6, the inclusion of Hub-
bard U repulsion into the DFT Hamiltonian for some selected
orbitals7, hybrid-functionals7–9 or dynamical mean-field theory
(DFT+DMFT)10–13. Among them, the DFT+U method is the
most widely used because of its simple scheme and its ease of
use, it does not cost much more simulation time than a regular
LDA/GGA calculation (contrary to the other methods). However,
this correction also allows the presence of many metastable oc-
cupation states for the orbitals corrected with the Hubbard U pa-
rameter14–17 (the same problem is also present for hybrid func-
tionals or Hartree-Fock methods). The presence of these numer-
ous metastable states makes the usual self-consistent algorithms
to solve the DFT equation, such as the conjugate gradient algo-
rithm, to fail in finding the orbital occupation that gives the global
energy minimum of the system. If a calculation starts with an ini-
tial occupation which is close to one local minimum, it could con-
verge towards this metastable state without exploring the other
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possibilities even though they are at lower energy. The other way
around, in some cases these metastable states are close enough in
energy to let the minimization algorithm to jump from one to the
other but without the guaranty that the final reached state is the
ground state.

One solution would be to sample the configuration space of all
the allowed possible occupancies of the system such that the low-
est energy orbital configuration can be found. Quasi-annealing,
dynamical mean-field theory (DMFT) and occupation matrix con-
trol have been used to solve this problem, but each has its draw-
backs. In quasi-annealing, a fictitious fluctuation of the external
potential is applied and gradually suppressed to reach the correct
ground state. This method is analogous to gradually annealing
the thermal kinetic energy in a classical system to reach a local
minimum. This provides to a case stuck in a minimum to gain
enough energy to overcome the barrier between it and another
minimum. The main drawback of this method is that it struggles
with locating the correct ground state in systems with many min-
ima which are close in the calculated energy and width around
this18. DMFT consists of mapping the many-body lattice model,
for example, the Hubbard model, to a local quantum impurity
model, in this case, the Anderson impurity model, and subjects
this to a self-consistency condition. Effectively, DMFT finds the
Green’s function for the impurity model which also reproduces
the lattice model’s Green’s function through the interaction with
an effective mean field. While this is an alternative method to
using DFT, it is computationally demanding12,13.

In this paper we propose a new method to sample this con-
figuration space based on the Firefly algorithm (FA)19,20. This
method builds upon manipulating the occupation matrix, effec-
tively exploring the configuration space of the problem, however,
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the approach is not trivial and some caveats must be addressed.
The first is that the occupation control method necessitates the

generation and testing of several initial occupancies. For a single
unit cell with one atom, this is a fairly trivial task. For example,
with an atom that requires d-electron corrections, there are at
most 5!

3!2! = 10 possible configurations. This becomes much more
complex whenever there are multiple atoms, or when supercells
must be constructed to fully capture correlation effects, such as
in antiferromagnets. Instead of trying to determine all possible
configurations by hand, FA selectively explores differing orbital
configurations on the potential energy surface (PES) of possible
orbital configurations. This will be described in further detail in
the methodology section. We will apply this method to two test
cases: the cubic perovskite KCoF3, which requires 3-d electron
corrections, and UO2, which requires corrections to 5-f electrons.

The structure of the paper is as follows: First, the general
methodology of FA will be described. Next, the computational de-
tails of its implementation are discussed. In the final two sections,
the results of FA applied to KCoF3 and UO2 will be presented and
discussed.

2 Methodology
The Firefly algorithm (FA) is a population-based metaheuristic
which is inspired by the behavior of fireflies in nature19,20. As a
population-based method, an initial population of candidate fire-
flies with randomized properties is first generated. To generate
an initial random population of these candidates, which will be
a collection of different orbital occupation matrices, we apply a
unitary transformation to a fixed occupation matrix. This initial
fixed matrix is determined by the number of electrons that are
being corrected, in the sense of DFT+U, in a given material sys-
tem; the trace of this matrix is equal to the total number of elec-
trons. Since the application of a unitary transformation does not
change the trace, the total number of electrons is not modified
in the considered system. The unitary transformation matrices
can be generated by defining a series of independent parame-
ters, as presented in the work by Hoffman et. al..21 In general,
any N-dimensional unitary transformation can be represented by
1
2 N(N−1) independent parameters. In this work, the parameters
have the following constraints:

−π

2
< θk <

π

2
(1)

−π < θN−1 < π (2)

θN =
π

2
(3)

, with k = 1,2,3, ...,N−2.
In the case of N = 3, these are the ordinary Euler angles, so

these are referred to as generalized Euler angles. In the case of d-
orbitals, the occupation matrix is of 5x5 dimension, which means
ten Euler angles must be generated. For f-orbitals, the occupation
matrix is 7x7, so 21 Euler angles are required. Once this trans-
formation is applied to the initial fixed occupation, a new point
is reached in the orbital configuration space. A set of Euler an-
gles are generated for every member of this initial population as

they allow for the generation of differing initial occupations for
each candidate. Each candidate is then evaluated for how opti-
mal of a solution it is to some problem. How “bright” a candidate
determines how optimal it is as a solution. And just as in na-
ture, multiple spatial distributions of fireflies can have equivalent
brightness, meaning that FA is multi-modal; it can both explore
multiple regions of the PES and have multiple solutions with the
same total energy. This is precisely why it is well-suited to search-
ing for optimal orbital occupations; degenerate occupations are
not uncommon. Fireflies are attracted to any region of brighter
fireflies, and this attraction is modulated by the distance. This
attraction is the rule for how the solution space is explored: As a
candidate moves towards a more optimal candidate, its properties
are modified to become more like the more optimal candidate.
The following expression governs how each candidate firefly is
modified towards more optimal candidates:

xt+1
i = xt

i +∑
j

βe−γr2
i j (xt

j− xt
i)+αtεt (4)

This expression governs how the ith candidate in generation t
is updated to form candidate i in generation t +1. The first term
on the right-hand side is the unmodified candidate in generation
t. In our case, each candidate corresponds to a particular orbital
occupation. The components of candidate i are modified from
generation t to generation t +1 by every candidate configuration
which is lower in energy, as total energies are our measure of
“brightness”. The term βe−γr2

i j defines the attractiveness of firefly
i to firefly j. β defines the overall strength of attraction, since
terms with ri j = 0 evaluate to β . If β = 0, the searcher becomes
a random walk. γ acts as a length scale, and controls the speed
of convergence of the calculation. For the special case γ=0, can-
didate i finds all lower-energy candidates equally attractive, and
the algorithm becomes a particle swarm. The last term adds ran-
domness to the search, where εt is a vector with components that
come from a random selection of a Gaussian distribution. αt es-
sentially controls the amount of randomness in the searcher. Once
all candidates are moved, they checked against each other to en-
sure that none are equivalent. Ideally, by equivalent we mean
they have the same orbital occupation, but from a numerical per-
spective, a tolerance must be introduced to define similarity. If
any candidates are considered equivalent, the redundant candi-
dates are replaced with random candidates. Similarity is defined
in the same terms as the distance between candidates. In our
case, physical distance is meaningless, as the points on our PES
are differing orbital occupations. Since each point on the PES can
be characterized by a unique set of Euler angles, the average dif-
ference between the angles can be used to define this distance.
The functional form of this measure is displayed in Equation 5

ri j =
1
N

N

∑
k
(θ k

i −θ
k
j ) (5)

Here, N is the total number of Euler angles, θ k
i is the kth Euler

angle for candidate i, and θ k
j is the kth Euler angle for candidate

j. After this process, all of the moved candidates are promoted
to the next generation along with the current lowest-energy solu-

2 | 1–11Journal Name, [year], [vol.],

Page 2 of 11Physical Chemistry Chemical Physics



tion. The process continues iteratively until a low-energy candi-
date survives for a specified number of generations. From previ-
ous work, ten generations provides an ideal compromise between
accuracy and efficiency.

3 Computational Details

The ABINIT code22–26 was used for all DFT calculations with the
possibility to have both DFT+U and orbital occupation control.

The LDA/GGA functionals of DFT predict that KCoF3 is metal-
lic27, which calls for a method to go beyond ordinary DFT. As
discussed, we explored the performance of DFT+U as the method
to correct the electron correlation in normal GGA functionals. As
this is an antiferromagnet, it has 4 magnetic cations in the ba-
sic unit cell. This already creates a large set of possible energy
minima states based on the different (U,J) parameters used in
DFT+U. Since FA requires the calculation of multiple candidates
simultaneously for at least ten generations, DFT+U appears the
best option to efficiently test our FA’s accuracy.

The initial occupancy remains fixed for 20 electronic self-
consistent iterations. After these initial 20 iterations, the occu-
pation matrix is allowed to relax, which causes it to converge to
the nearest low-energy state. For KCoF3, an energy cutoff of 708
eV and a k-point mesh of 4x4x4 was found to allow relaxation of
the orbitals to a residual of the potential to a tolerance of 10−16.
The same tolerance was reached for UO2 with an energy cutoff
of 544 eV and a k-point grid of 2x8x8. Additionally, all calcu-
lations used the JTH v1.0 pseudopotentials with LDA exchange-
correlation functionals.28,29. For Co, 17 valence electrons were
considered, and for U 14 were considered. ABINIT allows for
straightforward control of the occupancy matrices with the use
of the dmatpawu variable.26 For d-electron corrections, these are
5x5 matrices for each atom which requires d-orbital corrections
using the DFT+U method, in particular Liechtenstein’s rotational
invariant method + FLL double-counting corrections30,31. For f-
electron corrections, 7x7 matrices for each U atom are used. The
initial values for these matrices were determined by considering
the total number of electrons per corrected atom and defining di-
agonal matrices such that the trace of these matrices is equal to
the total number of electrons in the f orbitals. FA handles the gen-
eration of new occupation matrices for each random candidate
by selecting random Euler angles and applying the corresponding
unitary transformation to each of these diagonal matrices. The
implementation of FA in the PyChemia software package is used
for performing all searches. A link to the GitHub repository for
the package is contained in the reference.32

After a set of occupation matrices have been chosen to be the
lowest energy, we have calculated the magnetic exchange cou-
plings as a function of the U parameter. For each candidate KCoF3

state, the magnetic exchange interaction parameters are calcu-
lated using the magnetic force theorem (MFT)33, which use local
spin rotation as a perturbation and calculate the response with
Green’s function method. To get the local perturbation, Maxi-
mally localized Wannier functions (MLWF) 34 for Co 3d and F 2p
orbitals were constructed and the Kohn-Sham Hamiltonian from
Abinit is mapped onto this basis set. Thus we can apply MFT to

the Hamiltonian and get the exchange parameters35.

4 Results

4.1 KCoF3

The first system chosen to show the application of our FA imple-
mentation for orbital occupations is the cubic perovskite KCoF3

with space group Pm-3m, an anti-ferromagnetic Mott insula-
tor36,37. The cell parameters are a = b = c = 4.105Å. The Wyckoff
positions for the cell used are listed in Table 1. A 2x2x2 supercell
built from this unit cell is used for all calculations. This supercell
is shown in Figure 1. The structures for both KCoF3 and UO2 are
taken from the Materials Project.38

KCoF3 Pm-3m
Atom Wyckoff Position x y z

K1 a 0.00 0.00 0.00
Co2 b 0.50 0.50 0.50
F1 3c 0.00 0.50 0.50

Table 1 Structural information for KCoF3. Coordinates for each atom are
in reduced coordinates.

The F atoms octahedron crystal field (CF) splits the Co 3d-
orbitals into three degenerate t2g (dxy, dxz, and dyz) and two eg

degenerate orbitals (d3z2−r2 , and dx2−y2 )39. In general, for Co2+

in an octahedral crystal field, the CF splitting ∆ is small, which
yields the high-spin occupancy t5

2ge2
g with a nominal magnetic

moment of 3µB. If ∆ is large, the low-spin configuration is fa-
vored with the occupancy t6

2ge1
g and a nominal magnetic moment

of 1µB. Experimentally, the magnetic moment of Co in KCoF3 is
3.33 µB

39, which corresponds to the high-spin configuration, and
its band gap is 2.1 ± 0.2 eV.40 Table 2 lists the band gaps for the
best candidates for each value of U and J considered. In regards
to band gap, both U=4eV J=0eV and U=3eV J=0eV are within
the range of reported experimental values. However, from the
values for the magnetic moment, the U=4eV J=0eV case is the
closest to the experimentally reported value.

U (eV) J (eV) Band Gap (eV)
Magnetic

Moment (µB)
1 0 0.67 2.60
2 0 0.78 2.67
3 0 2.31 2.69
3 1 1.48
4 0 1.90 2.81

Experiment39,40 2.1 ± 0.2 3.33

Table 2 Band gaps and magnetic moments for the best candidate for all
values of U and J considered for KCoF3.

To show that FA can find these states, as well as any metastable
states, the searcher must satisfy the following:

1. The lowest-energy candidate improves as the generation
number increases.

2. The diversity of candidates increases as the generation num-
ber increases.
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(a)

(b)

Fig. 1 Cells used for each calculation. (a) KCoF3. Octahedra are shown in blue. (b) UO2.

While the use of any metaheuristic can never guarantee that the
lowest-energy solution is the ground state, it should at the very
least approximate it or approach it. Improvement of the lowest-
energy candidate as the searcher explores more of the PES is a
necessary criterion for this. In addition, as the searcher evolves
(meaning that the total number of generations is increasing), the
area of the PES which it explores also increases. This means that
the total diversity of candidates should also increase. To show the
first point, the energy differences between the low-energy candi-
date of each generation and the best candidate can be plotted as
a function of the generation number, as we show in Figure 2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Generation

10 4

10 3

10 2

10 1

100

E 
m

eV

U=2 J=0
U=2 J=1
U=3 J=0
U=3 J=1
U=5 J=0
U=5 J=1
U=6 J=0
U=7 J=0

Fig. 2 Differences in energy of the best candidate in each generation rel-
ative to the energy of the lowest energy candidate found. As the semilog
of zero diverges, an energy difference of 10−4 meV was used when the
search have reached the best candidate during search.

As this is a semilog plot, the best candidate cannot be shown,
as the semilog of zero is undefined, and approaches infinity. To
rectify this, the points corresponding to the best candidate are au-
tomatically set to 10−10 eV, as this is significantly lower than any
order of magnitude decrease as the searcher evolves. Discounting

this, it can be seen from this figure that the candidates mostly im-
prove by two-to-three orders of magnitude. As a secondary point,
the best candidate should survive for 10 generations to prove that
the stabilization limit is reached. To further show improvement,
the first row of Figure 3 displays the total number of unique can-
didates found up to a given generation. The total number tends to
increase as the generation number increases, up to a point where
the total number stalls. Still stalling occurs because of two rea-
sons. The first is that the lowest-energy candidate has remained
stable; no new low-energy candidate is found. The second is that
the region local to the lowest-energy candidate has been ade-
quately explored; no new candidates are found because there are
no more to be found. This second point is further clarified in the
second and third rows of the figure.

The second row of Figure 3 displays the distance graphically
between pairs of unique candidates found after the search com-
pletes. The diagonal is dark blue, indicating that the distance be-
tween a candidate with itself is zero. The more yellow a square,
the greater the distance between candidates. For the most part,
the majority of the squares are a shade of yellow, showing that
the distances between candidates is small. This indicates that the
searcher is targeted, as it is primarily searching over local regions
of the PES. This is further clarified in the third row, which displays
a network plot for the unique candidates. Connected nodes are
those in which the distance between the two candidates is less
than 0.4 radians. This value must be chosen carefully, as select-
ing a tolerance which is too small will cause the plot to be totally
disconnected, and selecting too large of a value will connect ev-
ery node to every other node. Essentially, it must be selected so
that minima which are close to one another are connected, but
minima which are far are not. The total number of clusters was
determined as a function of the distance cutoff. This is shown in
Figure 4.

For all values of U and J, if the tolerance was set to 0.55 radi-
ans, only one cluster existed, showing the network was fully con-
nected. This indicates that 0.55 radians is too large of a tolerance.
If the tolerance was set to lower than 0.2 radians, the clustering
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Fig. 3 Population diversity and improvement per iteration of the orbital occupation optimization for KCoF3 case. Each column represents values
for a particular U and J. The first row shows bars representing the cumulative number of non-equivalent candidates found up to a given number of
generations. The second row shows the distance matrix for all different candidates at the end of the search. Yellow on the cell (i,j) represents candidates
with very different generalized Euler angles between candidates i and j. Dark blue colors like the diagonal shows candidates with very similar Euler
angles. The third row is a network representation of all different candidates found at the last iteration. Edges connecting two nodes mean that the
distance value is less than 0.4. The size of each node is inversely proportional to the energy of the corresponding orbital configuration. The larger the
node, lower is the energy. The last row shows the differences in energy for all candidates relative to the minimal energy found for that particular U and
J.
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vanishes and a totally disconnected network plot is generated.
From this, 0.4 was chosen, as it strikes a balance between the two
extremes. With this chosen value, a number of clustered nodes
can be seen in each network plot. In addition, the larger a node
is, the more energetically favorable it is. It can also be seen that
the clustering primarily occurs between the lower-energy candi-
dates. This clustering around low-energy candidates is precisely
why FA is useful for orbital occupation optimization, it primarily
searches in areas local to low-energy candidates on the PES. So,
the search is both targeted and exploratory; it devotes candidates
searching around the region which lies close to good minima, but
at the same time explore random regions of the PES for poten-
tially other competitive minima.

The lowest energy candidate for non-zero values of U and J al-
ways had the high-spin configuration t5

2ge2
g, as expected for this

crystal. Unsurprisingly, for U = 0 eV and J = 0 eV, the electrons
are delocalized. The energy differences between all candidates
in the final generation for different U and J values are displayed
in the bottom panel of Figure 3. This figure also shows the large
diversity of population elements as the search evolve. The or-
bitals for the lowest-energy candidate are displayed in Figure 5.
There is a two-fold degeneracy found for the lowest-energy can-
didate; there are two candidates with different occupations with
the same energy. While there should be three degenerate occu-
pancies by symmetry, the failure of FA to locate all three is not a
failure of the algorithm. These two-candidates appear for U 6= 0.
In both of these candidates, the majority spin channel has 5 elec-
trons occupying all possible d-orbital; they differ in the minority
spin channel. In one case, one electron occupies the xy orbital,
the other in a linear combination of xz and xy. In the other case,
one electron occupies xz while the other is in a linear combination
of xy and yz. For the linear combination of orbitals, every single
term has a half contribution. These are shown in Figure 5.
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Tolerance value for network connectivity
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Fig. 4 Total number of clusters vs. distance tolerance for connectivity for
KCoF3. This distance tolerance determines how nodes are connected.
If the distance between two nodes is less than this tolerance, the nodes
are connected. If the distance is greater than this tolerance, they are not
connected. The total number of clusters is the number of disconnected
regions in the network plot. If the distance tolerance is small, then no
nodes will be connected, so the total number of nodes will be equal to
the total number of clusters. If the distance tolerance is too large, then
all nodes are connected, so there is only one cluster. This clustering is a
measure of how close minima are to one another on the PES.

Besides, the value of the magnetic exchange constants was cal-
culated for the lowest energy candidate for all values of U and J
considered. The values along several spatial directions, Jx= a+b,
Jy= −a+b, and Jz= c, are listed in Table 3.

U (eV) J (eV) Jx (meV) Jy (meV) Jz (meV)
0 0 -12.02 -11.456 -11.46
1 0 -12.75 -9.37 -11.73
2 0 -10.99 -8.24 -10.16
2 1 -8.20 -8.41 -8.41
3 0 -5.34 -3.82 -1.47
3 1 -6.36 -10.33 -10.33
4 0 -4.78 -1.31 -3.47

Experiment37 1.2
Experiment41 4.5

Table 3 Magnetic exchange constants for the lowest-energy candidates
of KCoF3. U=3eV J=0eV and U=4eV J=0eV have values within the range
of those previously reported. The reported values are spatial averages.

Both U=3 eV J=0 eV and U=4 eV J= 0 eV have magnetic ex-
change values within the range of accepted experimental values,
which are 1.2 meV to 4.5 meV.37,41,42. However, from our cal-
culated values of the band gap and the magnetic exchange, U=4
eV J=0 eV is the best set of parameters to reproduce most of the
experimental values together.

Fig. 5 Occupied orbitals of the minority spin-channel for the best candi-
date for U=4 eV J=0 eV. The Wannier function for a single Co is identical
on each site.

4.2 UO2

The second system chosen as a test case for our FA is Fm-3m ura-
nium dioxide (UO2). UO2 is the standard fuel used in pressurized
water nuclear reactors. Due to this, it has been extensively stud-
ied both experimentally and theoretically. Both LDA and GGA
predict that UO2 is a metallic ferromagnetic, but it is known ex-
perimentally to be an antiferromagnetic Mott insulator43. While
UO2 has been shown from both experiment and calculation44,45

to have 3K antiferromagnetic (AFM) order, we have assumed 1K
AFM order, as the uranium atom’s spins change sign along the z-
axis. This changes the point symmetry group of UO2 from Oh to
D4h. The crystal field then splits the 5f orbitals of uranium into
two two-fold degenerate levels, Eu, and three non-degenerate lev-
els, A2u, B1u, and B2u. In UO2, only two electrons are in the 5 f
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shell, so the initial diagonal matrix from which all other candi-
dates are generated will have a trace equal to two. We start
with the primitive cell for UO2, and note that it only contains
one uranium atom. The cell parameters for the primitive cell are
a = b = c = 3.83Å, and its Wyckoff positions are listed in Table
4. Since there is only one uranium atom in the primitive cell, a
supercell must be constructed from the primitive cell in order to
capture the AFM nature of UO2. We use a 4x1x1 supercell and this
is used for all calculations. The supercell is displayed in Figure 1.

UO2 Fm-3m
Atom Wyckoff Position x y z
U1 4b 0.50 0.50 0.50
O1 8c 0.75 0.75 0.75

Table 4 Structural information for UO2. Coordinates for each atom are in
reduced coordinates.

As in the case of KCoF3, we wish to show that the lowest-energy
candidate converges with respect to the generation number, and
that the PES is adequately explored. Unlike in the case of KCoF3,
there are several computational studies46,47 which have been per-
formed to determine the orbital occupations of the ground state of
UO2, so our results can be directly compared to previous studies.
As a word of caution, however, in each of these studies, the meth-
ods used are not exhaustive, and it is emphasized that there was
no guarantee that the full orbital occupation space is explored.

In the work performed by Dorado et. al.47, the occupation
matrix control method was used to find the lowest energy state
in UO2 with fluorite-structure with a twelve atom cell. They
also presumed 1K AFM ordering. With the presumption of no
symmetry (therefore allowing the cubic symmetry to be broken),
they found two degenerate low-energy states and ten metastable
states. Using values U = 4.50 eV and J = 0.51 eV, Dorado et.
al. relaxed UO2 to the ground state when the occupancy matrices
were initially imposed to have integer occupancy for the m=-1,
m=0 or the m=0, m=1 orbitals. These initially defined occupa-
tion matrices are then relaxed. These two cases had band gaps
which were comparable to the experimentally reported value of
2 eV. However, as previously stated, it is not guaranteed that this
corresponds to the true ground state. This is emphasized by the
energy differences found between the lowest energy state and the
next highest energy state, which differed only by 0.02 eV.

This makes UO2 an ideal complex test case for our FA imple-
mentation to explore the multiple f -orbital occupation minima.
As previously shown for KCoF3, it must be shown that the lowest-
energy candidate improves in each subsequent generation and a
significant area of the PES is explored. Unlike the previously cited
work, we use combinations of U=2,3,4 and 5 eV with J=1 and 2
eV, with U > J.

In Figure 6 we show the convergence of the lowest-energy can-
didate found with respect to the generation for all values of U
and J considered for UO2. Just as with KCoF3, the lowest-energy
candidate improves by 2-3 orders of magnitude. Additionally, the
total number of unique candidates found up to a given genera-
tion is displayed in Figure 7. Just as with KCoF3, the total num-
ber increases until the search has explored all minima local to the

low-energy candidates.
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Fig. 6 Semilog plot of the energy of the best candidate in each gener-
ation relative to the energy of the lowest energy candidate found for all
values of U and J considered for UO2. As the semilog of zero diverges,
an energy difference of 10−8 meV was used for candidates which have
the same energy as this candidate, as this value of energy is at least
two orders of magnitude lower than the energy difference between any
candidate with this lowest energy candidate.

Using the same distance cutoff as with KCoF3, we see that the
unique candidates lie closer to one another from the distance plot
in the second row of Figure 7. In addition, the network plot in the
third row of this figure is even more connected than KCoF3. This
indicates that the candidates for UO2 lie very close to one another
on the PES. Just as before, this is precisely why FA is useful to
the problem of orbital occupation optimization, as it allows for
efficient exploration over local regions of the PES.

For all values of U and J considered, all of the metastable states
previously reported were located by FA. Furthermore, since the
search is performed over several different pairs of values, the low-
energy states can be compared across the selected values of U and
J. For the values of U and J considered, the low-energy state found
by FA has a different occupation than what is reported previously.
This indicates that for UO2 the particular orbitals occupied de-
pends on the choice of U and J. Unlike KCoF3, UO2 shows that
the variations in the occupied orbitals differ across the different
values of U considered. The variation of the occupancy across
U for J= 1 eV is shown in Figure 8. For the values of U and J
which are the most similar to Dorado et. al., which in their case
are U=4.5, J=0.51, we find for U=4 eV J=1 eV that the two elec-
trons occupy fyz2 and a linear combination of fz(x2−y2) and fxyz. The
orbitals for this low-energy configuration are displayed in Figure
9 In comparison, the ground state found by Dorado et. al. was
fz(x2−y2) and a linear combination of fx(x2−3y2) and fz3). However,
care must be taken here as the values of U and J are not identical,
and we have found that the low-energy occupation for UO2 is sen-
sitive to the choice of U and J (Figure 8). In their work, this state
was found when non-diagonal occupation matrices were consid-
ered and is 0.02 eV lower in energy than the ground state found
when only integer occupations were considered. We are also able

Journal Name, [year], [vol.], 1–11 | 7

Page 7 of 11 Physical Chemistry Chemical Physics



1 3 5 7 9 11 13 15 17 19
0

2

4

6

8
U=3 J=1

U=3 J=1

1 3 5 7 9 11 13 15 17 19
0

2

4

6

8
U=4 J=1

U=4 J=1

1 3 5 7 9 11 13 15 17 19
0

2

4

6

8
U=5 J=1

U=5 J=1

0

1

2

3

4

5

6

7

0

1
2

3

4

5
6

0

1
2

3

4

5
6

0 50 100 150 200 250 300 350 400 450
Energy (meV)

Fig. 7 Population diversity and improvement per iteration of the orbital occupation optimization for UO2 case. Each column represents values for
a particular U and J. The first row shows bars representing the cumulative number of non-equivalent candidates found up to a given number of
generations. The second row shows the distance matrix for all different candidates at the end of the search. Yellow on the cell (i,j) represents
candidates with very different generalized Euler angles between candidates i and j. Dark blue colors like the diagonal shows candidates with very
similar Euler angles. The third row is a network representation of all different candidates found at the last iteration. Edges connecting two nodes
mean that the distance value is less than 0.4. The size of each node is inversely proportional to the energy of the corresponding orbital configuration.
The larger the node, lower is the energy. The last row shows the differences in energy for all candidates relative to the minimal energy found for that
particular U and J.
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Fig. 8 Orbital occupations of the ground states obtained for UO2 for U =

3, 4 and 5 eV with J=1 eV.

to find their reported low-energy state when integer occupations
were enforced, with the two electrons occupying fxyz and fxz2 , and
similarly, it is one of the metastable states found with FA. For U=
4 eV, J = 1 eV, this state is 1.98 eV higher in energy than the low-
energy state found with FA, indicating that our low-energy state is
even lower in energy than that previously reported, which proves
that using a metaheuristic search of occupation matrices could be
more powerful than “hand-made” techniques.

Fig. 9 Occupied orbitals for the best candidate for U=4 eV J=1 eV. The
Wannier functions are identical on each U site.

5 Conclusion
In this paper, we have demonstrated that the firefly algorithm is a
powerful technique to explore multiple regions of orbital occupa-
tion PES in the d-electron and f-electron systems. Since multiple

regions are simultaneously probed, a multitude of stable orbital
configurations can be obtained quickly. The method does not de-
pend on specific details of the system other than the particular
orbitals which are being corrected, which also means that any
DFT code that can constrain the occupation matrix can be used.
The efficiency of the method coupled with its independence with
respect to system-dependent details, makes FA well-suited to the
problem of locating possible stable orbital configurations.

We have tested our implementation on two examples: the per-
ovskite KCoF3 with d-orbitals and UO2 with f -electrons where in
both cases the FA was able to identify a multitude of metastable
states with different occupations and to identify the lowest energy
one among the series. Moreover, the method itself could be used
to sweep over many values of U and J to locate the values which
yield an occupancy which is in agreement with experiment. This
method improves upon the currently used brute-force methods
in which the ground state is found through changing the initial
occupation matrix by hand. At the same time, it can be used in
conjunction to the optimization of magnetic orientation in non-
collinear calculations, by interfacing this methodology with the
one reported in Ref20 The method could be also very important
for hybrid functionals, which have the same problem of multi-
ple minima in the orbital occupations. The addition of spin-orbit
coupling could worsen the problem and such metaheuristic meth-
ods could be handful to identify the lowest energy occupations of
non-collinear magnets.20.

We hope our method to be helpful in many systems with
strongly correlated electrons where multiple minima occupations
make their study difficult for DFT calculations.

Conflicts of interest
There are no conflicts of interest to declare.

Acknowledgments
The authors thank Bernard Amadon for useful discussions. This
work used the XSEDE which is supported by National Science
Foundation grant number ACI-1053575. XH and EB acknowl-
edge the ARC project AIMED and the F.R.S-FNRS PDR project
MaRePeThe (GA 19528980). The authors also acknowledge the
computational support from the Texas Advanced Computer Cen-
ter (TACC) (for Stampede2) and Pittsburgh Supercomputing Cen-
ter (PSC) (for Bridges), the PRACE project TheDeNoMo, the CECI
facilities funded by F.R.S-FNRS (Grant No. 2.5020.1) and Tier-1
supercomputer of the Fédération Wallonie-Bruxelles funded by
the Walloon Region (Grant No. 1117545). Calculations were
performed on Spruce Knob and Thorny Flat, supercomputers at
West Virginia University, which were funded in part by the Na-
tional Science Foundation (NSF) Major Research Instrumenta-
tion Program (MRI) Award #1726534. This work was supported
by the DMREF-NSF 1434897, NSF OAC-1740111 and DOE DE-
SC0016176 projects.

Notes and references
1 A. J. Cohen, P. Mori-Sánchez and W. Yang, The Journal of

Chemical Physics, 2008, 129, 121104.

Journal Name, [year], [vol.], 1–11 | 9

Page 9 of 11 Physical Chemistry Chemical Physics



2 A. J. Cohen, P. Mori-Sánchez and W. Yang, Science, 2008, 321,
792–794.

3 J. P. Perdew and A. Zunger, Phys. Rev. B, 1981, 23, 5048–
5079.

4 A. Filippetti and N. A. Spaldin, Phys. Rev. B, 2003, 67, 125109.
5 M. Cococcioni, in Correlated Electrons: From Models to Ma-

terials Modeling and Simulation, ed. E. Pavarini, E. Koch,
A. Frithjof and M. Jarrell, 2012, ch. The LDA + U Approach :
A Simple Hubbard Correction for Correlated Ground States.

6 D.-K. Seo, Phys. Rev. B, 2007, 76, 033102.
7 V. I. Anisimov, F. Aryasetiawan and A. I. Lichtenstein, Journal

of Physics: Condensed Matter, 1997, 9, 767–808.
8 S. Grimme, The Journal of Chemical Physics, 2006, 124,

034108.
9 F. Tran, P. Blaha, K. Schwarz and P. Novák, Phys. Rev. B, 2006,

74, 155108.
10 V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, A. O. Anokhin

and G. Kotliar, Journal of Physics: Condensed Matter, 1997, 9,
7359–7367.

11 G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Par-
collet and C. A. Marianetti, Rev. Mod. Phys., 2006, 78, 865–
951.

12 A. Georges, G. Kotliar, W. Krauth and M. J. Rozenberg, Rev.
Mod. Phys., 1996, 68, 13–125.

13 H. Park, A. J. Millis and C. A. Marianetti, Physical Review B,
2014, 90, 235103.

14 P. Larson, W. R. L. Lambrecht, A. Chantis and M. van Schilf-
gaarde, Phys. Rev. B, 2007, 75, 045114.

15 B. Dorado, B. Amadon, M. Freyss and M. Bertolus, Phys. Rev.
B, 2009, 79, 235125.

16 G. Jomard, B. Amadon, F. Bottin and M. Torrent, Phys. Rev. B,
2008, 78, 075125.

17 B. Amadon, F. Jollet and M. Torrent, Phys. Rev. B, 2008, 77,
155104.

18 H. Y. Geng, Y. Chen, Y. Kaneta, M. Kinoshita and Q. Wu, Phys.
Rev. B, 2010, 82, 094106.

19 G. Avendaño Franco and A. H. Romero, Journal of Chemical
Theory and Computation, 2016, 12, 3416–3428.

20 A. Payne, G. Avendaño Franco, E. Bousquet and A. H. Romero,
Journal of Chemical Theory and Computation, 2018, 14, 4455–
4466.

21 D. K. Hoffman, R. C. Raffenetti and K. Ruedenberg, Journal of
Mathematical Physics, 1972, 13, 528–533.

22 X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bot-
tin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas,
M. Côté, T. Deutsch, L. Genovese, P. Ghosez, M. Giantomassi,
S. Goedecker, D. Hamann, P. Hermet, F. Jollet, G. Jo-
mard, S. Leroux, M. Mancini, S. Mazevet, M. Oliveira,
G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. San-
galli, R. Shaltaf, M. Torrent, M. Verstraete, G. Zerah and
J. Zwanziger, Computer Physics Communications, 2009, 180,
2582 – 2615.

23 X. Gonze, G. Rignanese, M. Verstraete, J. Betiken, Y. Pouil-
lon, R. Caracas, F. Jollet, M. Torrent, G. Zerah, M. Mikami,

P. Ghosez, M. Veithen, J.-Y. Raty, V. Olevano, F. Bruneval,
L. Reining, R. Godby, G. Onida, D. Hamann and D. Allan,
Zeitschrift für Kristallographie.(Special issue on Computational
Crystallography.), 2005, 220, 558–562.

24 X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs,
G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet,
M. Torrent, A. Roy, M. Mikami, P. Ghosez, J.-Y. Raty and D. Al-
lan, Computational Materials Science, 2002, 25, 478 – 492.

25 M. Torrent, F. Jollet, F. Bottin, G. Zérah and X. Gonze, Com-
putational Materials Science, 2008, 42, 337 – 351.

26 X. Gonze, F. Jollet, F. A. Araujo, D. Adams, B. Amadon, T. App-
lencourt, C. Audouze, J.-M. Beuken, J. Bieder, A. Bokhanchuk
et al., Computer Physics Communications, 2016, 205, 106–
131.

27 J. P. Perdew, International Journal of Quantum Chemistry,
1985, 28, 497–523.

28 M. van Setten, M. Giantomassi, E. Bousquet, M. Verstraete,
D. Hamann, X. Gonze and G.-M. Rignanese, Computer Physics
Communications, 2018, 226, 39 – 54.

29 F. Jollet, M. Torrent and N. Holzwarth, Computer Physics Com-
munications, 2014, 185, 1246 – 1254.

30 V. I. Anisimov and O. Gunnarsson, Phys. Rev. B, 1991, 43,
7570–7574.

31 A. I. Liechtenstein, V. I. Anisimov and J. Zaanen, Phys. Rev. B,
1995, 52, R5467–R5470.

32 PyChemia, https://github.com/

MaterialsDiscovery/PyChemia.
33 A. Liechtenstein, M. Katsnelson, V. Antropov and V. Gubanov,

Journal of Magnetism and Magnetic Materials, 1987, 67, 65 –
74.

34 A. A. Mostofi, J. R. Yates, G. Pizzi, Y.-S. Lee, I. Souza, D. Van-
derbilt and N. Marzari, Computer Physics Communications,
2014, 185, 2309 – 2310.

35 D. M. Korotin, V. V. Mazurenko, V. I. Anisimov and S. V.
Streltsov, Phys. Rev. B, 2015, 91, 224405.

36 K. Knox, Acta Crystallographica, 1961, 14, 583–585.
37 T. M. Holden, W. J. L. Buyers, E. C. Svensson, R. A. Cowley,

M. T. Hutchings, D. Hukin and R. W. H. Stevenson, Journal of
Physics C: Solid State Physics, 1971, 4, 2127–2138.

38 A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards,
S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder and K. a.
Persson, APL Materials, 2013, 1, 011002.

39 G. Pari, S. Mathi Jaya and R. Asokamani, Phys. Rev. B, 1994,
50, 8166–8169.

40 V. Manivannan, P. Parhi and J. W. Kramer, Bulletin of Materials
Science, 2008, 31, 987–993.

41 D. Breed, K. Gilijamse and A. Miedema, Physica, 1969, 45,
205 – 216.

42 T. Onishi and Y. Yoshioka, e-Journal of Surface Science and
Nanotechnology, 2007, 5, 17–19.

43 S.-W. Yu, J. G. Tobin, J. C. Crowhurst, S. Sharma, J. K. De-
whurst, P. Olalde-Velasco, W. L. Yang and W. J. Siekhaus,
Phys. Rev. B, 2011, 83, 165102.

44 R. Caciuffo, G. Amoretti, P. Santini, G. H. Lander, J. Kulda and

10 | 1–11Journal Name, [year], [vol.],

Page 10 of 11Physical Chemistry Chemical Physics

https://github.com/MaterialsDiscovery/PyChemia
https://github.com/MaterialsDiscovery/PyChemia


P. d. V. Du Plessis, Phys. Rev. B, 1999, 59, 13892–13900.
45 A. M. Chaka, G. A. Oxford, J. E. Stubbs, P. J. Eng and J. R.

Bargar, Computational and Theoretical Chemistry, 2012, 987,
90 – 102.

46 J. P. Allen and G. W. Watson, Phys. Chem. Chem. Phys., 2014,
16, 21016–21031.

47 B. Dorado, G. Jomard, M. Freyss and M. Bertolus, Phys. Rev.
B, 2010, 82, 035114.

Journal Name, [year], [vol.], 1–11 | 11

Page 11 of 11 Physical Chemistry Chemical Physics


