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Here we propose and implement a universal signature of the van der Waals interactions based on the cumulant
part of the two-electron reduced density matrix (2-RDM). Due to the connected property of the cumulant,
we can use it to detect the van der Waals interactions between two molecular moieties. In particular, we use
the squared Frobenius norm of the cumulant of the 2-RDM, which has been previously shown to provide a
size-extensive measure of the electron correlation. As two moieties are separated to infinity, the cumulant
Frobenius norm exhibits an r−6 decay to its asymptotic limit, providing a density-based measure of the van
der Waals interaction. We study this signature of van der Waals forces in a collection of small molecules of
varying geometries. These computations agree with experimental trends of known literature values.

I. INTRODUCTION

Van der Waals forces are universally experienced by
any two molecules. This ubiquity makes them of ut-
most importance, as seen in their prevalence from micro-
scopic systems involving protein interactions to macro-
scopic bodies exhibiting adhesion.1–4 However, comput-
ing van der Waals forces and measuring their signature is
particularly challenging.5 This is due to the short-range
impact of the forces, the fast decay rate of the energy,
which is r−6 where r is the internuclear separation, and
most importantly, their origin in intermolecular electron
correlation.6

Here we propose a density-based approach to measur-
ing and studying van der Waals interactions by using
of the cumulant of the two-electron reduced density ma-
trix (2-RDM).7,8 Recent work by Via-Nadal, Rodŕıguez-
Mayorga, and Matito6 has shown that van der Waals
forces can be detected in the intracule of the pair den-
sity. We extend this approach by using the cumulant part
of the 2-RDM which includes the connected part of the
pair density as well as additional information. Because
van der Waals forces arise from the interaction of induced
dipoles, the forces arise from intermolecular electron cor-
relation. The participating electrons on each moiety are
statistically dependent on each other, and consequently,
the van der Waals forces are contained in the part of the
2-RDM in which the two electrons are statistically depen-
dent, known as the cumulant (or connected) part of the
2-RDM.7–10 The van der Waals forces are not describ-
able with a mean-field method or a traditional density
functional method.11

To obtain a signature of the van der Waals interac-
tion, we consider the squared Frobenius norm of the
cumulant, the trace of the squared cumulant.12–14 The
squared Frobenius norm of the cumulant, which is non-
negative and size extensive, meaning that it scales lin-
early with system size, has been used as a measure of
electron correlation and electron entanglement between

a)Electronic mail: damazz@uchicago.edu

different chemical domains. Here, we use the squared
Frobenius norm to detect the electron entanglement be-
tween the two molecular moieties experiencing the van
der Waals interaction. Because the squared Frobenius
norm is size extensive, we can use its deviation from its
value at infinite separation to measure the electron cor-
relation associated with the interaction. We show that
in the presence of van der Waals interactions the square
Frobenius norm exhibits an r−6 decay with the distance r
between two molecules. This density-based analysis pro-
vides a fundamental, correlation-driven perspective on
the nature of the van der Waals forces. Applications of
the cumulant norm are made to a selection of small atoms
and molecules to demonstrate the utility of the norm as
a detector and quantifier of van der Waals interactions.

II. THEORY

A. Cumulant of the 2-RDM

To treat van der Waals forces, we begin with a general
construction of the 2-RDM and its cumulant part. Inte-
grating the N -electron density matrix over all electrons
save two yields the 2-RDM

2D(1, 2; 1̄, 2̄) =

∫
D(123..N ; 1̄2̄3..N)d3..dN, (1)

which describes the probability distribution of two elec-
trons in the field of the remaining N electrons.15–18

One- and two-electron properties of the electronic sys-
tem are captured by the 2-RDM because electrons are
indistinguishable with pairwise interactions.18 The 2-
RDM can be described mathematically as the sum of
the wedge product between one-electron reduced den-
sity matrices (1-RDMs), 1D, and a cumulant term,
2∆jk

kl ,
8,9,12,13,15,16,19–24

2Djk
kl = 21Di

k ∧ 1Dj
l + 2∆jk

kl , (2)

where the 2-RDM is normalized to N(N − 1) and the
Grassmann wedge product7,25,26 is an antisymmetric ten-
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sor product

2 1Di
k ∧ 1Dj

l = 1Di
k
1Dj

l −
1Di

l
1Dj

k. (3)

This cumulant (or connected) term is the part of the
2-RDM that cannot be written as a wedge product of
lower RDMs.7,27 Because the cumulant term is the part
of the 2-RDM in which the two electrons are statistically
dependent, it scales linearly with the size of the molecu-
lar system (size extensive). The cumulant 2-RDM’s size
extensivity formally follows from its derivation from an
exponential generating functional.7 Reconstruction of the
3- and 4-RDMs in terms of the cumulant 2-RDM has been
used in electronic structure methods like the contracted
Schrodinger equation method,28,29 the anti-Hermitian
contracted Schrodinger equation method,30–32 canonical
transformation,33 the parametric 2-RDM method,34,35

driven-similarity renormalization group,36 and density
cumulant functional theory.37,38

The squared Frobenius norm of the cumulant 2-RDM

||2∆||2F = Tr[(2∆)2], (4)

is a nonnegative, size-extensive quantity that is a use-
ful measure of electron correlation and entanglement.12,13

In a pure-state quantum system the squared Frobenius
norm of the cumulant is nonzero if and only if the sys-
tem is not correlated. Because the cumulant norm is
sensitive to the correlation of electrons (orbitals) on two
separated molecules, it can serve as a measure of the
electron entanglement of the molecules. When the two
molecules are infinitely separated and not spin entangled,
the squared Frobenius norm will equal the sum of each
molecules’s squared Frobenius norm. The change in the
Frobenius norm as the separation between the molecules
decreases reflects the intermolecular entanglement of the
electrons, which is the quantum-mechanical origin of the
intermolecular force or potential.

B. Measures of van der Waals interactions

The cumulant’s squared Frobenius norm can be ap-
plied to detect and quantify intermolecular forces. While
the change in the energy with distance gauges the in-
termolecular potential’s contribution to the potential en-
ergy surface, the cumulant norm reflects the entangle-
ment of the electrons across the molecules that generates
the intermolecular potential. Recent work by Via-Nadal,
Rodŕıguez-Mayorga, and Matito6 has established that
the signature of the van der Waals interactions can be
calculated for H and He based on the intracule pair den-
sity, which decays at a rate of r−3. Here we employ the
cumulant 2-RDM and its squared Frobenius norm rather
than the correlated part of the intracule pair density to
study these interactions. A potential computational ad-
vantage of the cumulant 2-RDM is that can be used to
detect the van der Waals forces in any representation—
position, momentum, or otherwise. While the cumu-
lant 2-RDM’s norm is invariant to one-electron unitary

transformations,39 its diagonal part, such as the corre-
lated pair density in the position representation, is not
invariant.

The distance dependence of the cumulant 2-RDM for
van der Waals forces can be estimated from: (1) the scal-
ing of the van der Waals energy with respect to distance
and (2) the scaling of the effective van der Waals Hamil-
tonian with respect to distance. It is well-known that
the energy of the van der Waals potential scales as r−6

and that the effective van der Waals Hamiltonian scales
as r−3.40 The electronic energy is expressible in 2-RDM
theory as

E = Tr(2K2D), (5)

where 2K is the two-electron reduced Hamiltonian con-
taining the one-electron and two-electron molecular inte-
grals. If we replace the 2K by an effective two-electron
reduced Hamiltonian for the van der Waals interactions
2KvdW and the 2D by its cumulant part 2∆, we obtain
a theoretical expression for the van der Waals energy

EvdW ≈ Tr(2KvdW
2∆). (6)

Because the van der Waals energy and reduced Hamil-
tonian are known to scale as r−6 and r−3 respectively,
we have that the cumulant 2-RDM scales as r−3. This
result is consistent with that obtained for the correlated
pair density derived by Matito and co-workers.6 From the
definition of the squared Frobenius norm, we have that
in the case of van der Waals interactions the squared
Frobenius norm of the cumulant 2-RDM scales as r−6.

III. APPLICATIONS

We apply this theory to model van der Waals forces
in a variety of small atomic and molecular dimers and
compare these results to experimental data. The variety
of geometries in these test systems indicates the relevance
for this method for more complex systems.

A. Computational Methodology

All of the 2-RDM calculations were performed us-
ing PySCF.41 In particular, the 2-RDMs were com-
puted with the coupled cluster singles-doubles (CCSD)42

method in a correlation-consistent double-zeta basis set
(cc-pVDZ).43–46 The 2-RDMs in the molecular-orbital
basis set were obtained for dimer separation distances be-
tween 4 and 20 Å at 0.5 Å intervals. With these density
matrices we computed the cumulant part of the 2-RDM
and the associated squared Frobenius norm. We then
fit this data to r−6, as this is the asymptotic scaling of
the van der Waals force. Tables S1 through S3 of the
Supplemental Information report the computed cumu-
lant norms employed in the fits, and Tables S4 through
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S13 of the Supplemental Information report the geome-
tries of all studied molecular dimers at a separation of
6 Å.

B. Results

First, we consider the classic, isotropic van der Waals
interactions in the argon noble gas dimer. As shown in
Fig. 1a, the squared Frobenius norm of the cumulant in-
creases and then plateaus as the argon atoms are sepa-
rated in the range of 4 Å to 12 Å. The Frobenius norm
plateaus at a finite, non-zero value that reflects the elec-
tron correlation within each of the argon atoms. The de-
crease in the norm as the atoms are brought together is
due to the electron correlation between the argon atoms
which gives rise to the van der Waals forces. The circles in
the plot represent computed Frobenius norms while the
solid line denotes an α/r−6 + β least-squares fit. As ex-
pected from the theory, we find that the r−6 fit is highly
accurate. For comparison, we show the errors from r−5,
r−6, and r−7 least-squares fits in Fig. 1b. Results confirm
that the data has an r−6 asymptotic decay.

There is also high agreement between the data of the
cumulant 2-RDM’s squared Frobenius norm and the r−6

decay for the anisotropic interaction of the carbon dioxide
dimer, as seen in Fig. 2a. This dimer was in a parallel
geometry, pulled apart from the carbon centers. Inspec-
tion of Fig. 2b indicates the preference of the r−6 fit,
relative to similar fits for r−5 and r−7, in capturing the
system behavior for a larger variety of distances. This in-
dicates the potential scope of this method, as it captures
the electronic interactions of molecular dimers of differ-
ing geometries and sizes. The success of the method for
molecules with a variety of orientations suggests its po-
tential utility for larger, biological systems.

TABLE I: The R2 value for fitting the square of the
cumulant 2-RDM’s Frobenius norm of each of the
following molecules to the decay functions r−5, r−6, and
r−7 are shown, indicating that the computed data is
consistent with the predicted r−6 decay.

R2

Molecule r−5 r−6 r−7

F2-F2 .989 .999 .987

Ar-SO2 .986 .999 .997

BH3-BH3 .987 .999 .996

Ar-CO2 .988 .999 .987

Ar-Ar .995 .999 .990

CH4-CH4 .983 .997 .994

NH3-NH3 .991 .996 .988

Be-Be .991 .999 .963

CO2-CO2 .997 .998 .997

SO2-SO2 .983 .997 .994
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FIG. 1: In the argon dimer (a) the squared Frobenius of
the cumulant 2-RDM as a function of Ar-Ar distance
shows the decay of the van der Waals interaction with
distance. The black circles indicate the squared
Frobenius norm of the cumulant 2-RDM while the solid
gray line indicates an r−6 function fitted to the squared
Frobenius norm. The errors of r−5 (teal dashed line),
r−6 (solid gray line), and r−7 (coral dotted line)
functions fitted to the squared Frobenius norm of the
cumulant 2-RDM reveal in (b) that the data is best
approximated by the r−6 decay. The +5.972e2 denotes
a shift of vertical axis’s scale.

In order to make this relationship explicit, the R2 val-
ues for these fits are tabulated in Table I. As is evident
from this table, the dimer systems universally achieved
highest accuracy fitting results with decays of C6r

−6,
where C6 is a density-based van der Waals coefficient.
This indicates the validity of the squared Frobenius norm
of the cumulant 2-RDM as a measure of the van der
Waals signature, which decays at a rate of r−6. This
relationship holds for small molecules with a variety of
geometries, suggesting the versatility of the approach.

Moreover, it is possible to compare loosely the density-
based C6 values from the fitting with the energy-based
literature values. This comparison is tabulated in Ta-
ble II. We do see discrepancies in the resulting data when
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FIG. 2: In the carbon dioxide dimer (a) the squared
Frobenius of the cumulant 2-RDM as a function of the
intermolecular distance shows the decay of the van der
Waals interaction with distance. The black circles
indicate the squared Frobenius norm of the cumulant
2-RDM while the solid gray line indicates an r−6

function fitted to the squared Frobenius norm. The
errors of r−5 (teal dashed line), r−6 (solid gray line),
and r−7 (coral dotted line) functions fitted to the
squared Frobenius norm of the cumulant 2-RDM reveal
in (b) that the data is best approximated by the r−6

decay. The +8.822e2 denotes a shift of vertical axis’s
scale.

comparing the energy- and density-based results due to
significant differences in the two quantities. The van der
Waals forces can in principle affect the cumulant 2-RDM
norm more or less than the energy. The energy is weight-
ing the change in the cumulant 2-RDM through its trace
with the two-electron reduced Hamiltonian matrix.

Visually, we can see the coherence between the trends
in the two methods in the linear regression shown in
Fig. 3. This model has an R2 value of 0.84, indicat-
ing consistency between the trends in the literature and
the trends in our data. This agreement suggests valid-
ity in the data, as it is impossible to compare the values
explicitly due to the difference between the decay of the

TABLE II: Comparison of the calculated density-based
C6 values with the energy-based C6 literature values

Molecule Computed |C6| Literature |C6|a

F2-F2 9.39 -

Ar-SO2 23.2 -

BH3-BH3 43.6 -

Ar-CO2 17.7 114.5

Ar-Ar 47.0 64.4

CH4-CH4 63.3 130

NH3-NH3 84.9 89.0

Be-Be 188 214

CO2-CO2 193 159

SO2-SO2 557 294

a References for Ar-CO2
47, Ar48, CH4

49, NH3
50, Be51,

CO2
52, SO2

53, as tabulated by Vydrov and Van Voorhis54
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FIG. 3: Linear regression of the calculated density C6
coefficients versus the literature energetic C6 coefficients
is shown.

intermolecular energies and the decay of the intermolec-
ular part of the cumulant density matrix.

IV. DISCUSSION AND CONCLUSIONS

In this paper we propose and implement a universal
signature of the van der Waals interactions based on the
cumulant part of the two-electron reduced density ma-
trix (2-RDM). The cumulant is the connected part of the
2-RDM7,8 which is not only size extensive and but also in-
variant to unitary transformations of the orbitals.39 This
invariance extends recent work by Via-Nadal, Rodŕıguez-
Mayorga, and Matito6 who examined the use of the pair
density to detect van der Waals interactions. Previ-
ously, Juhász and Mazziotti12,13 showed that the squared
Frobenius norm of the cumulant provides a size extensive
measure of electron correlation and entanglement. Here
we apply this cumulant norm to quantify the electron en-
tanglement between molecules that gives rise to the van
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de Waals attraction. Like the energy, we show that the
cumulant norm has an r−6 decay with respect to molec-
ular separation. The cumulant-based signature of van
der Waals forces provides a direct measure of the entan-
glement of electrons on the separated molecules that is
responsible for the van der Waals potential.

Computations with a selection of small molecules con-
firm the r−6 decay of the squared Frobenius norm of the
cumulant with respect to molecular separation. These
results also imply that the cumulant 2-RDM has a r−3

decay which is consistent with the theoretical result pre-
sented earlier in the paper. The density-based signa-
ture for van der Waals forces provides a systematic ap-
proach to quantifying these forces as well as connecting
them to the underlying electron entanglement between
the molecules. Many electronic structure methods such
as conventional density functional theory have difficulty
capturing the r−6 decay of van der Waals forces with
molecular separation.5,55 These difficulties arise from an
incorrect description of the electron correlation. The de-
scription of van der Waals forces in terms of the cumu-
lant 2-RDM provides greater understanding of the inner
workings of these forces but also a mechanism for as-
sessing their description by various electronic structure
methods.
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