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Statistically Representative Databases for Density Functional 
Theory via Data Science
Pierpaolo Morgante,a Roberto Peverati*a

The number of data and databases for the assessment and parametrization of density functional theory methods has grown 
substantially in the past two decades. In this work, we introduce a novel cluster analysis technique for density functional 
theory calculations of the electronic structure of atoms and molecules with the goal of creating new statistically significant 
databases with broad chemical scope, and a manageable number of data-points. By analyzing without a priori chemical 
assumptions a population of almost 350k data-points, we create a new database called ASCDB containing only 200 data-
points. This new database holds the same chemical information as the larger population of data from which it is obtained, 
but with a computational cost that is reduced by several orders of magnitiude. The labelling of the significant chemical 
properties is performed a posteriori on the resulting 16 subsets, classifying them into four areas of  chemical importance: 
non-covalent interactions, thermochemistry, non-local effects, and unbiased calculations. The analysis of the results and 
their transferability shows that ASCDB is capable of providing the same information as that of the larger collection of data—
such as GMTKN55, MGCDB84, and Minnesota 2015B—for several density functional theory methods and basis sets. In light 
of these results, we suggest the use of this new small database as a first inexpensive tool for the evaluation and 
parametrization of electronic structure theory methods.

1. Introduction
Several large databases have been published and extensively 
used for the evaluation and parametrization of approximated 
electronic structure theory methods in the past years. Some of 
the most recent comprehensive efforts in the development of 
databases with broad chemical scope have originated in the 
context of density functional theory (DFT), and include the 
GMTKN55,1 MGCDB84,2 and Minnesota 20153-5 databases. 
Their importance for the development6,7 and evaluation8-10 of 
new exchange–correlation functionals cannot be overstated, 
and their continuous expansion is at the basis of the 
development and assessment of methods with broad 
applicability in chemistry and physics. Quite recently, we 
collected all the data in those three major databases as the core 
of the ACCDB collection,11 and then we expanded it by adding 
several smaller databases of under-represented chemical 
properties. The ACCDB collection is currently composed of 
8,656 unique data-points (6,953 of which are from the three 
core databases) representing several properties of interest 
throughout chemistry, as well as of an open-source central 
repository that is easy to access, share, and expand.12 However, 
the inclusion of as many properties and as many data as 

possible caused three significant drawbacks: a) the extensive, 
and often unclear, overlap between several data, b) the 
unbalance in the number of data for several subsets, and c) the 
overall large computational cost. 

The first important drawback of the ACCDB collection—
mostly inherited from its core databases—is that the choice of 
how to divide the data into representative subsets of each 
property is necessarily made a priori, and is based on chemical 
definitions whose boundaries are inherently fuzzy.13-15 For 
example, while it is relatively straightforward to distinguish data 
that represent non-covalent interactions from those that 
represent dissociation energies of covalent bonds –they clearly 
belong to two distinct classes–, the subdivision becomes 
questionable when trying to differentiate between more 
complex properties, such as barrier heights and systems that 
are dominated by strong correlation effects (most transition 
states include stretched bonds whose electronic structures are 
likely to be dominated by strong correlation effects). Several 
other not-so-clear cases are undoubtedly present. Korth and 
Grimme were the first to introduce the idea of “mindless” 
benchmarking as a new approach to generate new subsets.16 In 
doing so, they pointed out that the subdivisions of data-points 
into different subsets is often biased because of chemical 
intuition and other factors,17-19 including what they later called 
a “developers’ bias”,1 which in turn brings to a reduction of the 
dimension of the chemical space spanned by each database. 
The second drawback of ACCDB and its core databases is that 
the properties are not well balanced in terms of number of data-
points per property (i.e. the subsets have significant data size 
bias). In fact, 48% of the total data-points in ACCDB are for non-
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covalent interactions, while only 8.3% are for bond energies, 
and less than 1% of points include transition metals. The under-
representation of transition metal-containing systems is 
particularly worrisome, especially because countless 
applications rely on DFT calculations of metals,20 and their 
number is destined to grow even further in the near future. The 
situation is further complicated by the intrinsic difficulties in 
obtaining accurate (high-level) reference data across 
properties: while calculating a large number of high-level 
references for main-group chemical properties is 
straightforward (though computationally expensive), obtaining 
references with similar accuracy for complex cases might be 
more challenging, or even impossible. The final drawback of our 
collection is a direct result of the 10,049 single-point 
calculations currently required to calculate all its data-points: 
ACCDB is computationally expensive. Based on our own 
experience, the calculation of all data-points, using a modern 
quantum chemistry program on a recently acquired machine 
with a hybrid-GGA functional and a large quadruple-ζ basis set, 
requires around 107 single-core-hours. Hence, it would be 
beneficial to reduce the number of single-point calculations by 
a few orders of magnitudes, especially if this can be done 
without losing statistical significance. Several strategies for the 
reduction of the number of data-points of a large chemical 
database have been used in the past, starting with the 
pioneering work of Truhlar and coworkers,21-25 who presented 
several reduced databases obtained from significantly larger 
ones (e.g. AE6 and BH6,21 MLBE4/05,22 BH24,23,24 V4 and R425).  
Recently, Chan26 and Gould27 used modern statistical analysis 
techniques to reduce the number of data-points in MGCDB84 
and GMTKN55, respectively. Despite being statistically solid 
(see Supporting Information for a more detailed discussion), 
their databases still inherit the limitations of their respective 
parent, as they do not contain transition metal systems, and the 
description of chemical properties is still unbalanced. 

To overcome the limitations listed above, a modern 
collection of data for development and evaluation of electronic 
structure methods should have the following four 
characteristics: 1) be representative of various chemical 
properties, 2) have the data uniquely and impartially divided 
into subsets that include the largest accessible chemical space, 
3) have a balanced number of data for each subset, so that no 
particular property is either overemphasized or downplayed, 
and 4) contain a number of data that is statistically significant, 
but computationally tractable. MGCDB84, GMTKN55, and 
Minnesota 2015 are certainly successful in addressing point 1. 
Moreover, it is possible to find ad hoc weighting schemes to 
balance the results of large databases to account for point 3. 
Finally, previous work to reduce the number of data in 
significant databases appeared in the literature to address point 
4.26,27 However, to the best of our knowledge, there is currently 
no database that is specifically designed to address all four 
points simultaneously. Here, we present a new database, 
obtained using statistical analysis tools borrowed from data 
science, that will fill this gap. The resulting interpretation of the 
unbiased statistical results in our new database will also 
translate into insights on the validity of fuzzy chemical concepts, 

and in the definition of new problems that must be addressed 
in the future. 

2. Cluster Analysis 
In order to obtain a large representative population of 
chemically relevant data that could be treated with statistical 
tools, we selected all data-points in the three core databases of 
ACCDB, and calculated the mean unsigned error (MUE) of 50 
DFT exchange–correlation functional approximations (xc 
functionals, or just simply functionals), with basis sets that are 
close to the complete basis set limit. The resulting population is 
composed of a total of 347,650 data-points. When putting our 
ACCDB collection together,11 we noted that there is overlap 
between some subsets in the MGCDB84, GMTKN55 and 
Minnesota 2015B databases, for a total of ∼ 900 data-points. 
After a more careful analysis, we saw that 90 data-points 
coming from Minnesota 2015B are present in either MGCDB84 
or GMTKN55, while the overlap is more substantial when 
considering the other two databases. In fact, MGCDB84 takes 
subsets from GMTKN3028 which is an older version of 
GMTKN55, for a total of ∼ 810 data-points. However, some 
subsets have updated reference values in the latter. Overall, the 
data-points that actually overlap are only 563 (8%), and the 
average difference between the old and the new value is about 
0.4 kcal/mol, taken over 337 data-points. We think that it is 
enough to consider the old and the new data-points as 
different, at least from the cluster analysis point of view. After 
we analysed the data (see below) we found out that the 
statistical tool does not favour neither the new nor the old 
references. The selection of the xc functionals was performed 
to cover a heterogeneous mix of approximations, including local 
and non-local functionals, historically significant (B3LYP,29-31 
PBE,32 BP8633,34) and modern functionals (SCAN,35 MN15,5 
ωB97M-V36), functionals that are obtained from constraints-
satisfaction (PBE, SCAN) and functionals that are obtained via 
curve-fittings (ωB9736-40 and Minnesota4,5,41-50 families), as well 
as different flavors of dispersion-corrected functionals (D3(0),51 
D3(BJ),52 and VV1053 corrections). The goal of this selection was 
to reduce the bias by broadly sampling the functional space. For 
this reason, we selected functionals from the first four rungs of 
Perdew’s Jacob’s ladder of functionals approximations,54 as well 
as all the previous three decades of xc functionals development. 
The only notable exclusions are functionals that contain terms 
that depend on the virtual orbitals (doubly hybrid, or double-
hybrid, or fifth-rung functionals). In fact, we were unable to 
collect data for all the structures in the parent databases 
because of the inherent limitations (e.g. unclear basis-set 
convergence,55,56 erroneous dissociation limits,57 divergent 
behaviors of the virtual orbital-dependent terms,58 uncertainty 
in the definition of orbitals59) of the PT2-like correlation for 
some of the datapoints. The transition-metal containing 
systems of the Minnesota database are the most notable 
example in this sense. If we had to use incomplete results, the 
cluster analysis would have automatically excluded the doubly-
hybrids, therefore creating a bias against them. Instead, in order 
to avoid this issue, we decided to use them as a tool for 
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validation and proof of reliability of our database. The complete 
list of all considered functionals can be found in the Supporting 
Information.1-5,19,28-34,36,37,39-53,60-156 The data for the MGCDB84 
database have been taken from the supporting information of 
ref. 2, while some data relative to GMTKN55 have been taken 
from Prof. Grimme’s website associated with the work in ref 1. 
We have calculated the remainder of the data—including those 
for the Minnesota database (for which we used the 2015B 
variant5)—with Q-Chem 5.1.157 We used the same basis sets 
used in the parent articles, which are mostly of quadruple-ζ 
quality, so that results are close to the complete basis set (CBS) 
limit, but for several molecules in the Minnesota database, a 
triple-ζ basis set was used (a detailed description of the basis 
sets used for each data-point is also reported in the Supporting 
Information). Stability analysis of all the converged solutions—
and re-optimization to the most stable one, when necessary—
has been performed. When necessary, symmetry-breaking was 
also allowed. In all cases (but HF), a Lebedev grid of 99 radial 
and 590 angular points was used for the integration of the xc 
functional, while the coarser SG-1 grid158 was used for the 
integration of the non-local VV10 contribution for functionals 
that include it. The entirety of the statistical analysis has been 
performed with the JMP Pro 14 program.159 All energies given 
below are in kcal/mol.
A. Unbiased cluster selection. The goal of the cluster analysis 
tool that we used to treat our population was to divide the data 
into different groups, or clusters, without prior knowledge of 
the nature of the data-points, and without biases on the 
number and nature of the clusters themselves. The starting 
point for the analysis is the extreme situation where each data-
point is in its own cluster (347,650 initial clusters), and then we 
proceeded by locating the two clusters with the smallest 
Euclidean distance in the hyper-space of all functionals, 
replacing them with a new cluster of two data-points, 
characterized by its mean. The procedure is iterated until the 
number of clusters is sufficiently small. The stopping point 

emerges quite clearly from the data analysis at a total of 16 
clusters. If we attempt further reduction to a number of clusters 
smaller than 16, the cost function grows indiscriminately, 
indicating that the procedure is merging clusters that are not 
independent of each other. 
B. Reduction of the data-points. Since each point in every 
cluster has a high similarity with the other points in the same 
cluster, the reduction of the total number of data-points should 
be simple. Following similar routes as those used by Chan and 
Gould, we explored the use of both least absolute shrinkage and 
selection operator (LASSO),160 and stepwise regression161  
methods for the overall reduction of the data within each 
cluster, and we ultimately used the method that allowed us to 
maintain a coefficient of determination R2 ≥ 0.99 for each 
cluster. The relationship between the reduced data-points 
cluster and the original one is linear, and a simple regression 
formula recovers the full cluster performance. Overall, we can 
calculate the estimated MUE (eMUE) of each individual parent 
database using a set of linear regression formulas containing 57 
coefficients. The 200 data-points in the reduced database 
represent less than 3% of the total original data-points, but the 
regression formulas retain a striking statistical significance, with 
values of R2 ≥ 0.92. The 16 resulting clusters are summarized in 
Table 1, and all our regression formulas and coefficients are 
reported in the Supporting Information. 

3. A Smaller Chemistry Database of Broad 
Purpose

In the previous section, we outlined the procedure that we used 
to generate a statistically significant database that is 
substantially smaller than its parent collection, as well as the 
regression formulas that can be used to relate its errors with the 
MUEs of the parent databases. We stress again here that the 
subdivisions and reductions have been generated only by 

Table 1. Summary of the clusters in the ASCDB database with the “a posteriori” assignment of chemical properties. The average relative absolute energies , and the average |ΔE|
MUE for the 50 functionals, are also reported in the last two columns (in kcal/mol).

Cluster:
Total Data-

Points
Reduced 

Data-Points
Name of subset: |𝚫𝐄| Average 

MUE
1 2582 15 Non-Covalent: A (NCA15) 17.63 0.43
2 2295 21 Non-Covalent: B (NCB21) 94.78 2.10
3 610 21 Non-Covalent: Cluster (NCC21) 42.45 4.37
4 18 3 Non-Covalent: Water (NCW3) 205.33 26.16
5 374 19 Thermochemistry: Atomization and Reaction Energies (TARE19) 116.83 3.97
6 531 20 Thermochemistry: Barrier Heights A (TBHA20) 165.88 5.37
7 139 16 Thermochemistry: Barrier Heights B (TBHB16) 133.84 9.95
8 22 5 Thermochemistry: Hydrocarbons Reactions (THR5) 2204.76 21.43
9 242 15 Non-Local effects: Mixed A (NLMA15) 1701.33 7.24
10 34 7 Non-Local effects: Mixed B (NLMB7) 348.46 10.49
11 15 11 Non-Local effects: Multi-Reference (NLMR11) 147.24 24.57
12 33 9 Non-Local effects: Self-Interaction-Error (NLSIE9) 123.97 18.92
13 22 8 Unbiased calculations: Mindless Benchmarks A (UMBA8) 445.17 30.92
14 8 5 Unbiased calculations: Mindless Benchmarks B (UMBB5) 352.91 36.38
15 10 7 Unbiased calculations: Mindless Benchmarks C (UMBC7) 726.35 53.06
16 18 18 Unbiased calculations: Atomic Energies per electron (UAE18) 8201.08 1.77
TOTAL: 6953 200 15028.01
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statistical analysis, without any bias or chemical assumption. 
We now analyze the data in each cluster more closely, to check 
if we can find some a posteriori chemical significance that 
justifies the subdivision performed by the statistical tool. In fact, 
to our surprise, this can be done in a fairly straightforward 
manner, illustrated here using cluster 1. The first cluster is 
composed of 2,582 data-points coming from the following 
subsets of the parent core databases: A21x12, BzDC215, RG10 
and S66x8 from MGCDB84, Amino20x4, BUT14DIOL, HAL59, 
MCONF, and SCONF from GMTKN55, and NCCE30, NGDWI21, 
and a small number from SR-MGN-BE107 from Minnesota 
2015B (note: for detailed information on these subsets and full 
explanation of their names we refer the reader to the original 
publications,28,42,95,152,162-175 to ref. 1-5, or alternatively to our 
ACCDB paper11). In fact, the vast majority of data in this subset 
is easily attributable to the class of non-covalent interactions, 
with only a small number of exceptions. The presence of such 
apparent outliers can be explained by the fact that some data 
that are not intrinsically attributable to non-covalent 
interactions do indeed behave like a non-covalent interaction 
on a xc functional standpoint. In other words, functionals that 
provide a good description of systems dominated by non-
covalent interactions, do also provide good descriptions for 
such cases. This should not come as a surprise: in fact, during 
the optimization of a xc functional it is common to notice that a 
new set of parameters might improve the performance not only 
for property A, but also for molecules dominated by property B. 
At the same time, it might also systematically worsen some 
other property Z, even when no data-points for property B, or 

Z, are included in the optimization function. Properties that 
seem chemically disconnected might be correlated on a density 
standpoint.  

A similar a posteriori analysis can be repeated for the other 
15 clusters, with the following results: three more clusters 
(cluster 2, 3, and 4) contain mostly non-covalent interactions 
data; four clusters (clusters 5–8) contain mostly 
thermochemistry data; four other clusters (clusters 9–12) 
contain mostly systems that are dominated by strong-
correlation effects (which we decided to call non-local effects, 
vide infra); three clusters (cluster 13–15) prevalently contain 
data from the “mindless benchmark” subset; and the last 
cluster (cluster 16) contains all the atomic energies (which we 
decided to report on a per-electron base, to avoid biasing the 
error towards the heavier elements). We used labels such as 
“A”, “B”, and “C” when it is difficult to differentiate between 
clusters within the same group, while we used more descriptive 
labels for clearer cases. In the non-covalent group, for example, 
we have the “non-covalent A” and “non-covalent B” subsets 
with mixed cases (dimers and trimers), as well as the 
“non-covalent clusters” subset including cluster of molecules 
(where the term cluster is now used in the chemical acceptation 
of the term, borrowing the definition from Mardirossian and 
Head-Gordon’s work2), and the “non-covalent water” subset 
that contains only data for clusters of water molecules. The 
subsets in the “thermochemistry” group include data for 
“atomization and reaction energies” (cluster 5), “barrier heights 
A” and “barrier heights B” (cluster 6 and 7), and “alkanes 
reactions” (cluster 8).  The next group mainly deals with systems 

Fig. 1. Correlation plots between the MUE calculated on ASCDB and the total MUE calculated using all the data-points from the three major databases (top-left panel, black 
diamonds), the MUE calculated with GMTKN55 (top-right panel, red squares), MGCDB84 (bottom-left panel, blue circles), Minnesota 2015B (bottom-right, green triangles). 

Units on the axis are kcal/mol.
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that suffer from errors in the description of non-local effects in 
the exchange, e.g. cases with significant “self-interaction error” 
(SIE), or in the correlation, e.g. cases with significant “multi-
reference” (MR) character, or both. For clusters 9 and 10, it is 
not clear (at least to us) what is the dominating correlation 
effect, and therefore we labeled them “mixed A” and “mixed 
B”. We assigned the label MR to cluster 11 because it includes 
species that are not properly described by a single-determinant 
treatment, as exemplified by a small HOMO-LUMO gap. In 
general, xc functionals that contains a high percentage of non-
local exact (“HF-like”) exchange fail badly for such systems. We 
assigned the label SIE to cluster 12 to denote systems that 
require a non-local exchange functional for their accurate 
description. For these systems xc functionals with a high 
percentage of exact exchange solve most issues providing 
reasonably satisfactory results. Lastly, the “unbiased 
calculations” group is composed of data from the last four 
clusters (13 to 16). Since clusters 13, 14, and 15 mainly collect 
data from the MB16-43 subset of Grimme, Goerigk and co-
workers,1 which includes 43 reactions of randomly-generated 
molecules of 16 atoms each, we decided to keep the original 
name in these cases. Because of their random nature, it is 
indeed difficult to classify these molecules using a chemical 
rationale,16 and it is very interesting to notice that our cluster 
analysis put most of these systems within three separate and 
independent clusters. This also suggests that these molecules 
might include interactions that sample regions of the exact xc 
functionals that are usually not covered by parameterization 
based on conventional chemical systems, and only highly 
transferrable xc functional approximations will provide accurate 
descriptions for them. In fact, it is highly unlikely that error 
cancellations can play a role on these systems, as also 
exemplified by the highest average MUE of the sampled 50 
functionals among all of our clusters. Hence, we chose the 
“unbiased calculation” label for this group, borrowing the 
definition, once again, from Goerigk et al.1 The atomic energies 
cluster was also included in the “unbiased calculations” group 
because cancellation of errors is impossible by definition for 
these systems as well. 

By analyzing these final assignments, we noticed that the 
200 data-points, divided into 4 subsets and 16 clusters (4 per 

subset), are a reasonably small collection of a diverse database 
on their own. We name our new reduced database “ASCDB: A 
Smaller Chemistry DataBase” (as compared to the much larger 
ACCDB collection). ASCDB fulfils all the requirements for a 
useful small database for chemistry. In fact, it covers a vast 
chemical space, and its data-points are well divided among the 
four main properties that we introduced above, with each 
property being well represented (the “non-covalent” group has 
60 data-points, the “thermochemistry” has 60 as well, while the 
“non-local effects” and the “unbiased calculations” have 42 and 
38 data-points each, respectively). Additionally, the cluster 
analysis selected a heterogeneous spectrum of molecular sizes 
including atoms, small molecules, and large systems of up to 80 
atoms. The majority (about 94%) of systems have a number of 
atoms that varies from 1 to 30, extensively covering the average 
molecular size studied in routine calculations, but molecules 
with more than 30 atoms are also well represented, being about 
6% of the database. As a comparison, the percentage of 
molecules with more than 30 atoms is 11% in GMTKN55, about 
7% for MGCDB84, and less than 1% for the Minnesota 2015B 
database. Before recommending ASCDB for general use in 
chemistry, we show some of its most important results in the 
next section. In addition, we also test its robustness by using 

Fig. 2. Correlation plots between the estimated MUE (eMUE) calculated through regression from the data-points in ASCDB and the MUE calculated with GMTKN55 (left 
panel, red squares), MGCDB84 (middle panel, blue circles), and Minnesota 2015B (right panel, green triangles). Units on the axis are kcal/mol.

Fig. 3. Correlation plots between the estimated MUE (eMUE) calculated through 
regression from the data-points in ASCDB and the MUE calculated with 
GMTKN55 for doubly hybrid functionals. Units on the axis are kcal/mol.
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methodologies that are outside those that we used to create it, 
such as different basis sets, different xc functionals, and also 
different statistical indicators.

4. Results and Validation
A. Results. The first step to assess the effectiveness of ASCDB as 
a benchmarking tool is to quantify the amount of information 
that was lost in going from the large parent databases to the 
reduced one. This is achieved by correlating the mean unsigned 
errors (MUEs) calculated for the 200 data-points in ASCDB with 
the total MUE of all 6,953 data-points, as well as with those of 
the individual parent databases. Figure 1 shows the remarkable 
correlation obtained from such data. In Figure 2, we also report 
the correlation plots between the MUE of each parent database 
and the estimated-MUE (eMUEs) obtained with the regression 
formulas. The latter plots provide a straightforward 
visualization of the strength of the data-science technique, 
because points align well on the diagonal. In all cases, the 
correlation is excellent, with an R2 always greater than 0.900, 
and the worst correlation coefficient (for the GMTKN55 
database) being 0.990. The obvious advantage of ASCDB is that 
it provides information on all three parent databases 

simultaneously, at a fraction of their computational cost. For 
example, only Minnesota 2015B contains transition metals, but 
by running ASCDB, we can obtain the same information on 
transition metals that is in the Minnesota database, as well as 
all the chemical information contained in MGCDB84 and 
GMTKN55. 
B. Validation. In order to validate our results and to prove the 
robustness of ASCDB as a standalone tool for the evaluation and 
development of new electronic structure methods, we explore 
the results of several methods that were not used to create the 
database. Our first validation is with respect to the choice of 
basis set. To generate our data, we used the largest basis set 
that we could afford (mostly quadruple-ζ, see the Supporting 
Information for details), to be as close as possible to the basis 
set limit. It is important to notice though that some unwanted 
error might still have been present in the resulting data. 
Possible sources of such errors are, for example, the triple-ζ 
basis set that we used for some large or problematic case, the 
residual incompleteness error that could have been present 
even at the quadruple-ζ level,176  or the inability of some 
functionals to reach the basis set limit itself.177 To validate the 
stability of the data analysis with respect to basis set size, we 
selected three basis set that are different than those used to 
generate the original data and compared the MUEs on ASCDB 
and the parent databases using three sample functionals. The 
three basis sets are 6-31G*,178,179 def2-SVPD,60 and 
def2-TZVPPD,60 while the three functionals are PBE-D3(BJ),32 
B3LYP-D3(BJ),29-31,52 and ωB97M-V.36 Results on four chemical 
categories of the parent databases—non-covalent interactions 
(NC), isomerization energies (ISO), thermochemistry (TC), and 
barrier heights (BH)—are reported in Table 2, with detailed 
correlation plots and data for the other parent databases 
reported in the supporting information. The trends in MUEs of 
the parent databases are all very well reflected from the ASCDB 
results, with the exception of a very limited numbers of outliers 
(only one outlier is clear in table 2 for the 
ωB97M-V/def2-TZVPPD results). In general, we can observe a 
trend in the stability of the ASCDB results with respect to changes in 
the basis set that is similar to the one observed in the parent 
databases. 

A second validation of the robustness of ASCDB comes from 
expanding the functional space to include doubly hybrid 
functionals. We originally excluded fifth-rung functionals from 

Table 2. Estimated RMSEs from ASCDB compared to the calculated RMSEs (in 
parenthesis) for the main subsets of MGCDB84a for three xc functionals and three basis 
sets that are different than the one used for the data analysis. All data are in kcal/mol.

Functional: Basis set: NC ISO TC BH

PBE-D3(BJ) 6-31G* 7.38 (8.35) 1.43 (2.77) 14.33 (14.92) 8.26 (15.88)

def2-SVPD 1.63 (2.9) 1.16 (1.97) 13.72 (15.23) 10.35 (11.28)

 def2-TZVPPD 1.23 (1.27) 1.57 (1.48) 11.61 (11.42) 10.14 (10.09)

B3LYP-D3(BJ) 6-31G* 6.77 (7.47) 1.58 (11.96) 6.37 (9.45) 5.02 (10.96)

def2-SVPD 2.41 (2.46) 1.3 (1.83) 6.72 (8.49) 7.78 (6.29)

 def2-TZVPPD 0.77 (0.75) 1.46 (1.84) 4.32 (4.32) 6.75 (5.71)

ωB97M-V 6-31G* 10.55 (6.82) 2.74 (2.07) 12.83 (9.63) 2.8 (8.84)

def2-SVPD 2.15 (2.14) 1.09 (0.87) 9.31 (9.65) 4.09 (3.21)

 def2-TZVPPD 0.31 (0.3) 0.57 (0.61) 2.79 (3.04) 3.56 (1.78)

aNC: non-covalent interactions (most data from MGCDB84); ISO: isomerization 
energies (most data from GMTKN55); TC: thermochemistry (equally divided); BH: 
barrier heights (most data from Minnesota 2015B).

Fig. 4. Correlation between the MUEs of subsets of ASCDB and the corresponding 
ones of GMTKN55 with two doubly hybrid functionals: B2-PLYP-D3(BJ) (red, 

diamonds) and DSD-PBEP86-D3(BJ) (blue, circles). Details on the corresponding 
pairs of subsets are reported in the supporting information. Units on the axis are 

kcal/mol.

Table 3. Comparison of errors between significant chemical properties of ASCDB and 
GMTKN55 using doubly hybrid functionals. All data are MUE in kcal/mol.

Chemical Property: B2-PLYP-D3(BJ) DSD-PBEP86-D3(BJ)
Non-Covalent (ASCDB) 1.52 1.28
Total non-covalent (GMTKN55) 0.34 0.36
Thermochemistry (ASCDB) 3.44 3.01
Basic Properties (GMTKN55) 2.17 2.00
Nonlocality Error Dominated (ASCDB) 5.22 5.77
W4-11MR (GMTKN55) 3.04 6.55
Unbiased Calculations (ASCDB) 9.79 5.05
Mindless benchmark (GMTKN55) 16.62 6.46
TOTAL MUE (ASCDB) 4.60 3.51
TOTAL MUE (GMTKN55) 1.79 1.29
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our analysis because it was not possible to obtain reliable PT2 
correlation energies for several small-gap (multi-reference) 
systems in the Minnesota database (see the Supporting 
Information for details on the problematic systems). However, 
we can use doubly hybrid functionals as a good validation tool 
by comparing our results to GMTKN55 only, since it does not 
include any transition metal. To do so, we first extracted the 
doubly hybrid data of ref. 1 (21 functionals, including different 
flavors of dispersion corrections; all data are reported in Table 
S7 of the Supporting Information) and we calculated the 
correlation plot between the MUE from GMTKN55 and the 
eMUE from ASCDB. Results are in Figure 3. The plots show very 
good correlation (R2 = 0.94), and a slight systematic 
overestimation of about 0.2 kcal/mol. To expand the doubly 
hybrid results even further, we calculated the MUEs of all 
molecules in ASCDB using two of the most popular functionals: 
B2-PLYP-D3(BJ)135,138 and DSD-PBEP86-D3(BJ)142. The MUEs 
obtained from these additional calculations are calculated 
without using the regression formulas, and are collected in 
Table 3, and in Figure 4. A direct correlation can be observed in 
Table 2 between each of the four chemical areas of ASCDB (non-
covalent interactions, thermochemistry, non-local effects, 
unbiased calculations), and a corresponding area of GMTKN55 
(total non-covalent, basic properties, multi-reference cases 
from W4-11, and mindless benchmarks). Moreover, good 
correlation between the individual subsets of ASCDB and 
GMTKN55 can be observed in the plot of Figure 4 (the 
corresponding numerical data with details on each 
corresponding pairs of subsets are reported in the Supporting 
Information).  The calculations using doubly hybrid functionals 
reported above validate the usefulness of the information that 
can be obtained from ASCDB for methods that are outside the 
scope of the initial data analysis. 

Fig. 5. Correlation plots between the root mean squared error (RMSE) calculated 
on ASCDB and the RMSE calculated with GMTKN55 (top panel, red squares), 
MGCDB84 (middle panel, blue circles), and Minnesota 2015B (bottom panel, 
green triangles). Some points have been excluded from the calculation of the 

correlation coefficients and are reported with a red cross. Units on the axis are 
kcal/mol.
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As an additional validation, we expanded the statistical 
analysis beyond the mean unsigned error. We report in figure 5 
the correlation of the root mean square error (RMSE) of ASCDB 
with those of the parent databases. These plots show—once 
again—reasonably good correlation, with the only exception of 
a couple of outliers that can be easily identified and excluded 
from the trend. Another useful statistical indicator for the 
evaluation of the results is the mean signed error (MSE). 
Specifically, the MSE is convenient to evaluate the systematic 
under or overestimation trends of methods for predicting some 
specific property: a method that systematically underestimates 
the reference data will present MSE and MUE with very similar 
magnitudes for one specific subset, but opposite signs. On the 
contrary, methods that systematically overestimate the 
reference data will have MUE and MSE that are comparable in 
both magnitude and sign. Finally, for cases with no systematic 
errors, the MSE will be close to zero, regardless of the 
magnitude of the MUE. The striking majority of cases where a 
systematic error happens involves three properties: non-
covalent interactions (NC), non-local effects (NL), and unbiased 
calculations (UC). In Figure 6 we report a comparison between 
the results obtained with ASCDB and those obtained from the 
parent functionals for NC and NL, using 10 methods that present 
systematic errors for either case. The corresponding plot for UC 
does not provide useful information, since all data comes from 
the mindless benchmark subset of GMTKN55, and the MSEs are 
trivially overlapping. We clearly notice that all functionals that 
underestimate a property using the parent database will also 
present a negative sign of the corresponding subsets of ASCDB, 
with magnitudes of the errors that are also very comparable. 
Similarly, all functionals that are systematically overestimating 
a property will have a consistently positive MSE for the 
corresponding ASCDB subset, with magnitudes that are also 
equally well correlated. 

Overall, our validation data show a very encouraging 
correspondence between the results obtained with ASCDB and 
those obtained from the parent databases, supporting the 
transferability of the results obtained with the new database to 
basis sets, methods, and statistical indicators that were not 
included in the cluster analysis that generated it. 

4. Conclusions
As a first attempt to introduce modern data science tools into 
chemistry, we used standard cluster analysis techniques to 
create a new database that is: a) representative (i.e. with broad 
chemical purpose); b) unbiased (i.e. with subdivisions into 
subsets of properties that are performed a posteriori, using 
impartial methodologies); c) well-balanced (i.e. with a 
comparable number of data for each property); and d) 
computationally affordable (i.e. with a small number of data). 

The database is called ASCDB (A Smaller Chemistry 
DataBase) and is an unbiased, statistically representative subset 
of three large core chemistry databases in our ACCDB collection. 
ASCDB contains 200 data-points (from 350 unique single-point 
energy calculations) that are impartially divided into 16 subsets 

representative of four different chemical properties. It does not 
suffer from size-bias, since every subset contains a similar 
amount of data. It can be also used to estimate the mean 
unsigned errors for the larger core databases—with a 
remarkable R2 accuracy—via a set of provided linear regression 
formulas and coefficients. 

The advantage of our new database is that by performing a 
reasonable number of single-point energy calculations, one can 
obtain two complementary types of information for the 
evaluation or parametrization of approximated electronic 
structure theory methods: 1) a statistical estimate of the 
performance of the method on much larger databases, via 
regression formulas—representative for GMTKN55, MGCDB84, 
and Minnesota 2015B—as well as, 2) a new unbiased and well-
balanced tool, via its subsets. The reliability of this information 
has been validated on several methods that are outside the 
scope of the data analysis that was used to generate the 
database itself. In light of these results, we recommend the use 
of ASCDB as the first tool for evaluation and parametrization of 
electronic structure theory methods. Larger collection, such as 
GMTKN55, MGCDB84, and Minnesota 2015, can then be used 
for further validation and transferability studies, when more 
granular data are needed. 
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Fig. 6. Comparison of the mean signed error (MSE) for 10 methods that present a 
systematic error for non-covalent interactions (NC, top panel) and non-local effects 

(NL, bottom panel), using ASCDB and selected subsets of the parent functionals. 
Units on the axis are kcal/mol.
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