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Computational insights into lipid assisted peptide
misfolding and aggregation in neurodegeneration

Abhilash Sahoo,a and Silvina Matysiakab∗

Peptide misfolding and aberrant assembly in membranous micro-environments have been associ-
ated with numerous neurodegenerative diseases. The biomolecular mechanisms and biophysical
implications of these amyloid membrane interactions have been under extensive research and
can assist in understanding disease pathogenesis and potential development of rational thera-
peutics. But, the complex nature and diversity of biomolecular interactions, structural transitions,
and dependence on local environmental conditions have made accurate microscopic character-
ization challenging. In this review, using cases of Alzheimer’s disease (amyloid-beta peptide),
Parkinson’s disease (alpha-synuclein peptide) and Huntington’s disease (huntingtin protein), we
illustrate existing challenges in experimental investigations and summarize recent relevant nu-
merical simulation studies into amyloidogenic peptide-membrane interactions. In addition we
project directions for future in-silico studies and discuss shortcomings of current computational
approaches.

1 Introduction
Accumulation of proteinaceous amyloid-like aggregates is a recur-
rent theme in numerous diseases associated with neuronal dys-
function1. In particular, due to relatively higher and progres-
sively increasing incidence, Alzheimer’s, Parkinson’s and Hunt-
ington’s disease present a significant social and economic chal-
lenge. Despite variations in pathogenic peptide type and amino
acid sequences, oligomeric-aggregates associated with these dis-
eases share many common structural properties2. These amy-
loid fibrillar deposits/inclusions are often characterized by single-
component-dominant, cross beta structures with beta sheets po-
sitioned perpendicular to fibril axis. While misfolded amyloid
peptides can form mature fibrils and protofibrils through pro-
gressive self-association, an emerging body of evidence implicates
smaller polymorphic pre-fibrillar, on-pathway and off-pathway
oligomers as the primary toxic species3–6. A detailed under-
standing of the molecular mechanisms and pathological event
pathways of early-stage amyloid oligomerization can aid towards
development of rational therapeutics. Many common pathways
for amyloid aggregation related cytotoxicity has been outlined
— ionic homeostasis, mitochondrial dysfunction, altered signal-
ing and autophagy. Many of these pathways involve extensive
membrane-peptide interactions7–10. Moreover, membranes con-
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stitute a significant proportion of cytosolic components and the
amphipathic nature of pathogenic amyloid peptides and aggre-
gates can amplify toxic membrane associations and insertion.

Experimental investigations into structural features of amyloid
oligomer-membrane interaction is limited due to extensive struc-
tural heterogeneity, complex competing interactions — mem-
brane affinity & peptide aggregation and transient nature of
oligomeric intermediates. Therefore, it is not possible to study
this process using a single traditional biophysical techniques,
which often provide spatio-temporally averaged information.
Oligomer-membrane affinity and binding have been investigated
through chromatography11, centrifugation12, density gradient
techniques13, infrared spectroscopy14–16, mass spectroscopy16,
and surface plasmon resonance (SPR)17,18. Structural implica-
tions of oligomer/fibril-membrane interactions have been probed
using black lipid membranes (BLM)9,19,20, microscopy tech-
niques (atomic force microscopy (AFM)7,20, transmission elec-
tron microscopy (TEM)21), fluorescence microscopy22,23, nu-
clear magnetic resonance (NMR)24, electron paramagnetic res-
onance (EPR)25,26 and circular dichroism (CD)24. On the other
hand, studies have relied on fluorescence spectroscopy27–30 to
study kinetics and dynamics. Novel variations and combinations
of aforementioned techniques have proved more successful in
characterization of amyloid-membrane assemblies. Multiple pos-
sible structural mechanisms and models of membrane disruption
(Figure 1) by oligomer-membrane interactions — membrane-
pore model, carpeting model and detergent model have been pro-
posed to explain experimental observations31. Although these
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models provide possible descriptions of their respective experi-
mental observations, the accurate characterization and pathways
of membrane disruption is missing. In addition to diverging inter-
pretations, the intrinsically disordered nature of aggregating pep-
tides are highly susceptible to local environmental alterations and
generate experimental artifacts which often remain unaccounted
for, leading to controversial results.

Molecular simulations, aided by statistical thermodynamics
complement and/or serve as surrogates for experiments by pro-
viding both atomic-scale structural and kinetic insights. The
molecular and mechanistic details from in-silico observations
can also assist therapeutic drug design. Classical molecular dy-
namics involves direct numerical integration of Newton’s equa-
tions, aided by mathematical functions and parameters — force-
field, that describe the dependence of system’s potential energy
on individual atomic positions to generate time evolution of
molecules32. It can be particularly ideal for characterizing tran-
sient oligomeric structures which are difficult to study experi-
mentally and has been widely used to evaluate heterogeneous
ensemble of structures generated by amyloid peptides. On the
basis of particle-based resolution, molecular dynamics simula-
tions can be broadly classified into all-atom (AA), united-atom
(UA) and coarse grained (CG)33. The efficiency and accuracy of
bio-molecular simulations is dependent on mathematical force-
fields and packaged molecular dynamics simulation programs
(GROMACS34, CHARMM35, NAMD36 and DLPoly37, etc.). Some
of the popular chemically specific peptide-lipid forcefield fam-
ilies are Assisted Model Building and Energy Refinement38,39

(AMBER) , Chemistry at HARvard Molecular Mechanics40–42

(CHARMM), GROningen MOlecular Simulation43,44 (GROMOS),
Optimized Potential for Liquid Simulations45,46 (OPLS) and
MARTINI47,48 (a coarse-grained potential). Improvements in par-
allel computing architecture and use of graphical processing units
have enabled millisecond level atomistic simulations to study pro-
tein folding and unfolding in an unbiased manner.

While atomistic simulations provide higher resolution and
more detailed insights about the peptide-membrane biomolec-
ular systems, the spatio-temporal scales to study large-scale
oligomerization and oligomer-lipid interactions cannot be reli-
ably achieved by present-day computational machineries. On
the other hand, due to fewer number of particles — result-
ing in lowered resolution and a smoother free-energy landscape,
coarse grained (CG) MD can provide a more holistic picture for
such multi-agent phenomena. Here we present a systematic sur-
vey of molecular dynamics simulations — atomistic and coarse
grained to catalouge amyloid monomer/oligomer-membrane in-
teractions in common neurodegenerative diseases — Alzheimer’s
(AD), Parkinson’s (PD) and Huntington’s disease (HD) to present
a cohesive picture.

2 Alzheimer’s Disease - Aβ peptides
Amyloid plaques and neurofibrillary tangles, contributing to pro-
gressive cognitive decline have been established as hallmarks for
Alzheimer’s disease49–53. The amyloid cascade hypothesis, has
been widely accepted by neuropathologists as the primary model
of AD pathogenesis. According to this hypothesis, oligomeriza-

tion of Aβ peptides initiates a cascade of events, culminating in
neuronal dysfunction and dementia54–58. Pathogenic Aβ pep-
tides are about 39-43 residue (Figure 2a) long intrinsically dis-
ordered peptide in aqueous solution and ordered alpha helix rich
structures in apolar environments (Figure 2b), formed from suc-
cessive incisions by β–secretase and γ–secretase, which can ag-
gregate into β–sheet rich aggregates. The interaction of these
Aβ–oligomers with neuronal membranes can lead to significant
membrane disruptions59–65. The interactions are highly hetero-
geneous with significant dependencies on membrane composi-
tion, oligomer structure, peptide/lipid ratio and cellular environ-
ment. We have curated a brief list of experimentally observed Aβ

peptide-membrane interactions.
Aggregation kinetics was significantly altered in presence of

brain total lipid extract (BTLE), with reduced lag-times and
slower elongation rates as compared to aggregation in solution66.
Importance of bilayer physical properties — surface charge, hy-
drophobicity and roughness in modulating Aβ -membrane in-
teraction, was investigated using atomic force microscopy and
membrane mimicking surfaces such as silica, mica, graphite and
teflon67–70. These experiments reveal the prominent role of sur-
face charge and electrostatic interaction between peptides and
membrane in dictating peptide absorption and aggregation. Par-
ticularly, peptide-membrane binding and subsequent aggrega-
tion is weaker for 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-
choline (POPC), compared to model membranes created from
anionic lipids such as 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-
(1’-rac-glycerol) (POPG)71. Beyond membrane composition in-
duced surface charge, the presence of sterols which modulate
membrane biophysical properties are an important part of mem-
brane assisted Aβ aggregation.

On the other hand, studies have also supported a multi-modal
form of Aβ monomer/oligomer assisted membrane disruption.
Kayed et. el.72 suggested increased membrane conductance as a
consequence of membrane thinning due to asymmetric pressure
from Aβ oligomer - bilayer surface interaction (carpeting model
- Figure 1). Pore formation due to Aβ membrane interactions is
evidenced from doughnut shapes in AFM and release of encapsu-
lated fluorescent dyes from LUVs, leading up to ionic disbalance7.
Moreover micelle-like behavior and subsequent lipid-extraction
by Aβ oligomer has been hypothesized from the observation that
a structurally similar peptide, IAPP disrupts membrane by reduc-
tion of membrane surface tension and consequent removal of
lipids73. Quasi-elastic neutron scattering (QENS) studies have
been extensively employed to study alterations in lipid dynam-
ics in presence of Aβ peptides. Experiments by Barett et. al.
reported a discrepancy in Aβ 22-40 induced lipid-lateral diffu-
sion at different fluidity levels of a DMPC/DMPS membrane74.
In gel state, Aβ peptide induced an increase in lateral diffusion,
whereas there was a significant decrease in in-plane lateral diffu-
sion in a more disordered state. Investigations by Buchsteiner et.
al. also revealed an increase in lateral diffusion of DMPC/DMPS
membrane in its liquid crystalline state on interacting with Aβ

25-3575. These works suggest a decrease in membrane stability
and increased membrane fluidity induced by interaction with em-
beded Aβ peptide fragments. On the other hand, QENS studies
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Fig. 1 Three modes of membrane disruption due to oligomer-membrane interactions. (a) Carpeting model: Accumulation of amyloid aggregates
on membrane surface imparts unequal stress on bilayer, resulting in membrane disruption. (b) Membrane-pore model: Oligomers insert into the
membrane creating membrane-pores that destabilizes ionic homeostasis. (b) Detergent model: Oligomers on interacting with a membrane can start
a micelle-like effect and remove lipid molecules from the bilayer.

Fig. 2 a) Amino acids in Aβ 1-42 peptide. The red shaded region represents the central hydrophobic core and the characters in red are some of the
familial mutants. b) In-solution structure of a single monomer in apolar micro-environment (pdb: 1IYT) c) A representative structure of Aβ oligomer
(pdb: 2BEG) in solution. The aggregate is colored to distinguish peptide chains. Aβ oligomers are highly dynamic and can have different structure
depending on local environmental changes.

by Rai et. al. using DMPG unilamellar vesicles and Aβ 1-40 pep-
tides suggested an increase in lipid lateral diffusion in disordered
phase with no appreciable changes in gel phase76. The effective
thinning of DMPG bilayer on addition of Aβ peptide has been
implicated for this increased lateral diffusion. The authors used
small angle neutron scattering and neutron membrane diffraction
to report that Aβ 1-40 bound strongly to DMPG headgroup and
did not penetrate. This aforementioned works on lipid dynamics
also presents evidence of how differential binding of Aβ peptide
with lipid membranes, imposed by physical properties of lipids,
can in turn affect lipid dynamics.

Considering the associated system size and numerical com-
plexity, all-atom molecular dynamics simulations have predomi-
nantly focused on pre-inserted Aβ oligomer-membrane interac-
tions, simulations with specific shorter peptide segments and en-
forced surface-bound interactions. Simulations with different ex-
plicit and implicit solvent forcefields, along with implementation
of advances sampling techniques have been explored.

2.1 Aβ monomer/oligomers-membrane surface interaction

Atomistic molecular dynamics simulations using model zwitte-
rionic (DPPC) and anionic (DOPS) membranes were recently
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used to study Aβ dimerization on a membrane surface77. The
authors used two different types of Aβ peptide — negatively
charged (-3) for DPPC membrane and neutral for DOPS mem-
brane to incorporate local pH alterations in presence of DOPS
membranes. The simulations and thermodynamic cycle calcula-
tions predicted that irrespective of dimer’s structure (β -hairpin or
extended) there were stronger peptide-peptide interactions com-
pared to peptide-lipid interactions for DOPS, actively promoting
dimerization. These authors hypothesize the neutral Aβ peptide
formed due to reduction in pH closer to PS membrane contributes
to this effect. Stronger peptide-peptide interaction also presents a
possibility of dissociation of peptide-dimer from lipid bilayer sur-
face. Free energy perturbation calculations and Replica Exchange
Molecular Dynamics (REMD), with GROMOS 53a6 force field, of
Aβ 11-40 trimer suggested ease of trimer’s membrane (DPPC) in-
sertion and dominance of van-der Waals interactions over electro-
statics in trimer-bilayer binding78. While the β sheet rich region
remained completely buried into the lipid bilayer, the more dis-
ordered random coil region preferred to interact with lipid head-
group. Collision cross section (CCS), calculated using ion mo-
bility projection approximation calculation tool79 (IMPACT) sug-
gested similar trimer CCS while solvated in solution and embed-
ded in membranes. In contrast, CHARMM27 simulations of Aβ

17-42, β -strand-turn-β -strand pentamer (pdb code: 2BEG (Fig-
ure 2)) binding to charged - POPC/POPG and zwitterionic - POPC
bilayers, suggests critical importance of electrostatics in this pro-
cess80. The impact of bilayer composition induced membrane
biophysical properties on monomeric Aβ peptide binding was in-
vestigated by Ahyayauch et. al.81. Their MD simulation studies
with OPLS-AA and model lipid membranes composed of varying
concentrations of PSM (N-palmitoylsphingomyelin) / DMPA (1,2-
Dimyristoyl-sn-glycero-3-phosphate) / Cholesterol show although
charged bilayer promote binding as compared to uncharged ones,
the peptide-lipid contacts are more numerous in low-charged
than high-charged bilayers. Although, the presence of DMPA (5
%) initiated a conversion to β sheet, the increase in concentration
of DMPA (20 %) resulted in retention of initial α helical structure.
In addition, their experimental studies present that binding of
peptides to membranes in Ld (liquid disordered) state is stronger
and less electrostatics-driven than Lo (liquid ordered) phase. Re-
cently, differences between POPC and POPC-Cholesterol-PSM raft
membranes with respect to Aβ tetramer-membrane interactions
were established by GROMOS-53a6 simulations82. The results
depict higher insertion and successive disruption (predicted) of
POPC bilayer compared to the model raft. This study presents a
validation of carpeting model for membrane disruption. Slower
self-diffusion of peptide-tetramers and increased elongation into
rod-like structures in presence of lipid rafts were hypothesized as
possible contributors towards experimentally observed increased
fibrillation on raft membranes83. Davis et. al84 used constrained
(umbrella sampling) and unconstrained MD to characterize Aβ

1-42 interaction with DPPC and DOPS starting from helical, β -
hairpin and random coil structures at multiple pH values using
GROMOS96 force field. Peptides on DPPC have a more parallel
structure, consequently maximizing peptide-membrane contacts
as compared to DOPS, which promotes a more "superficial" and

parallel orientation with N-terminal hydrophobic groups embed-
ded into the bilayer. While interaction with PS membranes do
not result in a stable secondary structure enriched monomeric
conformation, it does stabilize transient states with high propen-
sity for aggregation. Another study85 by the same group using
extensive REMD showed that the population of D23-K28 interac-
tion that promotes β -hairpins is reduced in phospholipid bilayers,
which promote interaction between K28 and phosphate. Hosh-
inho et. al.86 measured adhesion and binding probabilities of Aβ

1-42 with membranes containing GM1 (ganglioside). The inter-
action of Aβ 1-42 with membrane is driven by interaction of GM1
with peptide aromatic residues and K28’s amine group. They
also reported sequential assembly of Aβ peptides and stronger
peptide-peptide hydrophobic interactions capable of transiently
removing assembled complex from membrane. The binding of
monomeric Aβ to the membrane was established by interaction of
K28 with neuraminic acids, leading to deformation and increased
hydrophobic association of C-terminus with the membrane.

2.2 Aβ monomer/oligomers-membrane insertion and trans-
membrane interactions

Simulations of Aβ 1–42 with POPC, POPG and DPPC have
revealed stability of monomers and oligomers embedded into
membranes87. Zwitterionic membranes, tail unsaturation and
peptide-oligomerization promoted stability of such transmem-
brane structures. The presence of transmembrane structures lead
to enhanced water translocation, in a membrane dependent fash-
ion. Implicit membrane simulation studies with basin-exchange
parallel tempering have been employed to characterize stable
transmembrane oligomer structures88. While, β sheet with a
typical strand-turn-strand unit was found to be the most stable
species for oligomers up to size six, octamers assembled into two
distinct tetrameric units. Kargar et. al.89 used OPLS-AA force
field to observe relative stability of a part membrane-inserted
(DPPC) Aβ 1-40 monomer across multiple temperatures. Inser-
tion of peptides into the lipid bilayer was observed to increase
with increasing temperature. In addition, strong interactions be-
tween inserted peptide and neighboring phospholipids imparted
a tilt and increased fluidity to locally-close lipid molecules, result-
ing in membrane thinning.

All-atom simulations with GROMS96-53a6 force-field to study
dimerization process of closely-placed and membrane-inserted
Aβ 1-40 reveal that the aggregation process is led by the po-
lar N-terminus residues90. Membranes of varying compositions
behaved differently, with "strong" peptide assemblies and signifi-
cant membrane disruption in POPC compared to "weak" peptide
assemblies and stronger peptide-lipid interactions in POPS and
POPE. The strength of peptide assembly (weak/strong) is inferred
from geometry-based parameters — number of heavy atom con-
tacts and separation of center of masses. Membrane disruption
was particularly low in raft membranes (enriched with sphin-
gomylin and cholesterol). Simulations by Jang et. al.91 using
CHARMM27, presented an unbiased and spontaneous insertion-
pathway of truncated Aβ 17-42 into DOPC membrane, using
a particular (U-shaped—β -strand-turn-β -strand (p3) pentameric
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aggregate) conformation. The simulations revealed four distinct
sequential steps characterizing the pathway for membrane inser-
tion — "initial touch, partial deposition, oblique insertion and
embedded oligomers". This study also reported that dimeric ag-
gregates with a U-shaped motif in membranous environments
were relatively less stable than pentameric ones, due to a dis-
ruption of β sheet contacts. CHARMM36 simulations of mixed
lipid bilayer (POPC & DMPS) with pre-inserted Aβ 25-35 showed
development of negative local membrane curvature92. In addi-
tion, the presence of membrane modulating drugs such as Cur-
cumin, Acetylsalicylic acid (ASA) and Melatonin, which parti-
tioned into lipid head-tail interface led to differential modulation
of Aβ 25-35 aggregating behavior. While Melatonin did not affect
Aβ 25-35 aggregation, the presence of ASA, that increases mem-
brane stiffening, increased peptide aggregation. On the other
hand Curcumin, which increased lipid surface area to create a
softer and thinner membrane led to a decrease peptide aggrega-
tion. Poojari et. al. studied the effect of site-specific mutations
(E22G - Arctic mutant, D23G - Arctic-type mutant, E22G/D23G,
K16M/K28M and K16M/E22G/D23G/K28M) on transmembrane
stability by using GROMOS96 simulations of POPC-inserted Aβ

1-42 peptides—monomers and tetramers93. The mutants were
chosen to primarily investigate the effect of charged groups at the
trans-membrane region in oligomer stability. While E22G Aβ42

demonstrated the highest stability, D23G showed relatively lower
stability and significant membrane disruption. In general, all the
site-specific mutants were similar or more stable than wild-type
Aβ 1-42 peptides.

Qiu et. al. compared structural properties and transitions of
partially inserted monomeric Aβ peptide in cholesterol depleted
and enriched POPC membranes using GROMOS8794. Their sim-
ulations suggest a protective role of cholesterol by preventing
structural transition — from α helix to β sheet and decreasing
membrane disruption. While the smaller Aβ 1-40 preferred a
partly inserted conformation, the longer and more hydrophobic
Aβ 1-42 remained completely inserted in cholesterol enriched
PC membrane. The presence of cholesterol resulted in approxi-
mately doubling the insertion efficiency of Aβ peptide. The au-
thors also reported an increased membrane disruption due to in-
serted form of Aβ 1-40, compared to Aβ 1-42, possibly due to
hydrophobic length mis-match of the larger peptide. Xiang et.
al. investigated Aβ 11-42 peptide and oligomer interaction in
POPC membranes with varying concentrations of cholesterol us-
ing CHARMM36 forcefield95. Both for monomeric and trimeric
Aβ (S-shaped triple-β -strand) system, increase in cholesterol con-
centration, pushed the peptide/peptide-aggregate out from its
pre-inserted initial state. The free energy profile of monomer in-
sertion as a function of membrane’s cholesterol content suggests
ease of initial membrane adhesion and larger barrier to mem-
brane insertion with increasing cholesterol concentration. The
authors also reported easier peptide insertion in trimeric form as
compared to monomers and possible water pore formation in N-
terminal inserted Aβ 11-42 trimer. The protective role of choles-
terol and displacement of sterols to facilitate oligomer membrane
insertion has been established by many previous experimental ob-
servations96,97. This discrepancy in the two reported studies re-

garding Aβ membrane insertion may be associated with molecu-
lar dynamics forcefields and/or different lengths of peptide used.
It is worth noting that recent studies have also reported enhanced
Aβ peptide aggregation with increasing cholesterol content98. An
accurate description of the influences of sterol content on Aβ -
membrane interaction is still not available

Beyond traditional MD and advanced sampling methods,
Monte Carlo (MC) and coarse-grained molecular dynamics (CG-
MD) simulations are being used to address the long time and
length scale issues of Aβ aggregation on membrane. Trans-
membrane stability of Aβ 1-42 and related familial mutants were
tested by implicit-membrane Monte Carlo simulations101. Al-
though the ease of membrane insertion was not different for
wild type and familial/synthetic mutants, significant variations
were reported in the pathway of insertion. The mutants, ex-
cept for E22G favored a partially inserted conformation more
than wild-type. Partial insertion of peptides was hypothesized
as a potential reason for increased toxicity of familial and artifi-
cial mutants. Liguori et. al. investigated the impact of choles-
terol asymmetry in modulating the extracellular release of Aβ

1-42 from a cell-like planar lipid bilayer using MARTINI simula-
tions102. Multiple lipid bilayer systems were created with POPC,
POPS, cholesterol and DOPE molecules with different concentra-
tions at exofacial and cytofacial leaflets to generate this asym-
metry while maintaining anionic nature of cytofacial leaflet. In-
crease in concentration of cholesterol in the exofacial leaflet pro-
motes the extrusion of highly reactive N-terminal residues. In
addition peptide-membrane simulations with two Aβ 1-42 con-
formations — 1IYT (α helix content of 70%) and 1Z0Q (α helix
content of about 30%) showed that the increase in C-terminal he-
lical content contributes to increased membrane retention. Mul-
tiscale simulations were employed to study pre-embedded (α he-
lical) peptide aggregation in POPC lipid bilayer and its impact
on bilayer structure103. First, coarse grained simulations with
MARTINI forcefield was used to facilitate faster diffusion and ag-
gregation of Aβ 1-40 peptide in POPC membranes. Then, the
coarse grained structures were reverse-mapped to all-atom struc-
tures and simulated with GROMOS96 force field to study stability
of secondary structures. While, high (1:36) peptide-lipid ratio
favour large aggregations, smaller dimeric and trimeric aggre-
gates are more favored in simulations with lower peptide con-
centrations. In addition, the 300 ns of all-atom study starting
from reverse-mapped trans-membrane aggregate structure at the
end of coarse grained simulation, confirms that the initial α he-
lix structure is maintained through the simulation time. This
work also proposed a geometry-based analytic framework to ex-
plain super-structures generated in simulations and the impact on
membrane due to peptide aggregation. More recently our group
used in-house developed membrane (WEPMEM)100,104 and pep-
tide (WEPPROM)100,105 forcefields, that uses explicitly intro-
duced structural polarization to reproduce accurate electrostatics
(Figure 3), to study aggregation of the central hydrophobic core
— Aβ 16-22 starting from a solvated state in presence of zwitte-
rionic (POPC) and anionic (POPS) model membranes99. While,
peptide self-association, facilitated primarily by diffusion was rel-
atively faster in POPC, the emergence of ordered beta sheet rich
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Fig. 3 a) Peptide - Water-Explicit Polarizable PROtein Model (WEPPROM) reproduced from Sahoo et. al. 99 b) Membrane - Water-Explicit Polarizable
MEMbrane (WEPMEM) model reproduced from Ganesan et.al. 100 with permission from the PCCP Owner Societies. The partial charges on peptide
backbone (violet) and polarizable beads (yellow) of lipids generate explicit structural polarization and provide directionality to dipolar interactions that
can result in structural transitions.

Fig. 4 Aβ 16-22 aggregation in presence of zwitterionic and anionic membranes. Right - The variation of beta sheet content over time. Reproduced
from Sahoo et. al. 99 with permission from the PCCP Owner Societies.

aggregations was higher in POPS (Figure 4). The relatively higher
compressibility coefficient of POPS membrane forces a more elon-
gated conformation on peptides compared to U/O like structures
in POPC membranes, thus exposing peptide backbone to more
peptide-peptide contacts, resulting in higher beta sheet content.

Several common phenomena emerge from these simulations
that are well supported by previous experimental studies. To

summarize, charge on lipid headgroups play a crucial role in Aβ

peptide-membrane binding, local environmental alterations, pep-
tide aggregation and insertion. While peptide self-association is
promoted by the presence of anionic lipid headgroups, membrane
insertion and potential membrane disruption is higher for zwitte-
rionic membranes106. Recent circular dichorism and Thioflavin-T
studies have reported faster growth of ordered Aβ 16-28 aggre-
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gations in presence of anionic vesicles107. Neutron diffraction
studies by Dante et. al. have also suggested an increased intercal-
cation of Aβ 25-35 in anionic membranes96. Aggregate sizes also
control the stability of membrane-inserted amyloid species, with
smaller oligomers, which have been hypothesized as the more
toxic entities, deemed more stable than larger fibrils. Choles-
terol, sphingomyelin and gangliosides modulates peptide-lipid
association by either changing lipid bilayer’s physical properties
(e.g. lipid rafts) or by introducing changes to lipid surface chem-
istry. Although the protective role of cholesterol is highlighted in
previously mentioned simulation studies, the complex interplay
between membrane’s cholesterol and ganglioside concentrations
and their mutually cooperative relationship in amyloid formation
has not been investigated through simulations. Recent experi-
mental investigations are also focusing on impact of Aβ on mem-
brane dynamics. This is an exciting direction that can benefit
from computational modelling.

In-silico studies have been used to evidence experimental ob-
servations in a much controlled environment and describe nano-
scale interactions, essential for macroscopic features. An increas-
ing number of studies are exploiting this synergy with computa-
tion to explain and direct experimental studies81,92,108. Compu-
tational and experimental studies of Aβ peptides in solution have
reported a wide diversity of aggregate structures with atomistic
resolution. In future, studies should be directed at understanding
extensive bio-mechanical modes of these oligomer-enabled mem-
brane disruption. Although divalent metal ions are instrumental
in membrane interaction and peptide aggregation26,109, due to
absence of appropriate accurate non-polarizable forcefields, com-
putational studies into divalent ion induced aggregation path-
ways is missing. In addition, computational studies should also
be directed towards molecular level interactions that result in
calcium dysregulation as a consequence to amyloid membrane
pores. Recent computational advances in this direction such as
fixed non-bonded interactions (Nbfix)110 and scaled charges111

to reproduce polarization in a mean-field ansatz can be helpful.

3 Parkinson’s Disease - α-synuclein
Commonly located along synaptic terminals, α-synuclein (α-syn),
a 140 amino acid residue long intrinsically disordered peptide
(IDP) has been neuro-pathologically linked to Parkinson’s dis-
ease112–114. Unlike Aβ peptide aggregates which selectively im-
pact astrocytic plasma membrane, α-syn oligomers have been
shown as non-selective to membranes and cells. But, both Aβ and
α-syn follow common modes of pathogenesis — membrane dis-
ruption leading to calcium dysregulation and production of reac-
tive oxygen species resulting in mitochondrial depolarization115.
While α-syn is disordered in cytosolic state, it adopts a more or-
dered α-helical form in a lipidic environment114,116. This lipid-
association also promotes misfolding and subsequent aggregation
into multiple structurally dis-similar transient β -sheet rich fibril-
lar structures. These structures are primary constituents of Lewy-
bodies that are hallmarks of PD. α-syn can be broadly categorized
into three segments, N-terminal residues (1-60) - lipid-binding
motifs, the central hydrophobic non amyloid component (61-95)
responsible for α-syn aggregation and unstructured negatively

charged C terminus (96-140) that are primary metal and pep-
tide binding sites. In addition, there are seven imperfect eleven
residue long repeat sequences with mostly conserved KTKEGV
hexamer motifs (Figure 5), spread over N-terminal and NAC do-
mains, that contribute to α-helical structures and lipid-binding.
The lipid-induced conformational transition into α-helical struc-
ture, exposes NAC domain, increasing the overall hydrophobic
surface area and promoting aggregation114. Increase in local
peptide concentration by lipid bilayer association, has also been
implicated for peptide aggregation. As with Aβ peptides, mem-
brane composition, particularly membrane charge plays a crit-
ical role in modulating α-syn-membrane interactions, with in-
teractions between negatively charged lipid group and positively
charged lysines tethering the peptide onto the membrane. Initial
studies on peptide interaction specificity have noted a preference
for membranes containing anionic lipids, with more favorable in-
teractions between PA (Phosphatidic acid)/PI (Phosphatidylinos-
itol)117,118. Investigations by confocal microscopy and atomic
force microscopy have revealed that α-syn interacts with gan-
gliosides through hydrogen bonds with sugar-alcohols119. In
addition, lipid tail order also modulates α-syn membrane inter-
action, with a preference for more disordered poly-unsaturated
tails, which can generate more packing defects due to loose pack-
ing120,121. Beyond preference for individual lipids, peptides also
show a significantly increased (about 15-fold) binding affinity for
membranes with higher curvature (small unilamellar vesicles)
than large/giant unilamellar vesicles117,122,123. Membrane dis-
ruption due to α-syn oligomers, have revealed increased tubula-
tions on membranes, compared to larger fibrils124,125.

The primary mode of α-syn induced PD pathology is associ-
ated with flattening of membrane curvature114. Vesicle fusion
is driven by release of curvature induced stress. The membrane
distortion and flattening in presence of α-syn aggregates releases
this stress, preventing fusion126. Initial attempts at generating
membrane bound conformations of monomeric α-syn has been
attempted with solution NMR and EPR studies of α-syn in asso-
ciation with membrane-like surfactants (SLAS - sodium lauroyl
sarcosinate and SDS - sodium dodecyl sulfate)127,128. Jao et. al.
presented a POPG vesicle-bound structure of α-syn, which were
significantly different from structures obtained from studies us-
ing micelles, through site directed spin labelling, EPR based ap-
proaches and simulated annealing molecular dynamics129. More
recently a combination of solid-state NMR and solution NMR
were used along with small unilamellar vesicles to decipher the
structure of α-syn monomer associated with the membrane. The
results confirmed the three domain structure of membrane asso-
ciated α helix with unstructured C-terminus130. Due to experi-
mental limitations, most experiments, aimed towards predicting
α-syn aggregate structures have focused on aqueous solvated α-
syn.

A full atomic resolution picture and structural details of α-syn
oligomers, particularly in membrane-associated forms is yet to be
reliably determined from experiments. In addition, the mechanis-
tic details of α-syn induced membrane disruption and associated
PD pathology remains elusive. Many in-silico experiments have
been attempted to bridge this gap.
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Fig. 5 a) Amino acids in α-synuclein. The shaded region presents mostly conserved KTKGEV hexamers in 11 residue imperfect repeats. b) A
characteristic structure of α-syn monomer. c) A representative structure of α-syn oligomer (pdb: 2NOA) in solution. The aggregate is colored to
distinguish multiple chains.

3.1 In-silico modelling

Submersion of α-syn 1-15 into model bilayer made from
POPC/POPA (1:1) was investigated with C36 (lipids),
CHARMM22 (peptides) and TIP3P (water) forcefields using
umbrella sampling131. Simulations reveal hydrophobic residues
— M1, W4, and L8 embedded deep into bilayer and polar
residues — D2, K6, S9, K10, and E13 present at bilayer surface,
with L8 and S9 acting as pivot. Membrane thinning due to α-syn
1-15 has also been reported. Garten et. al. used lipid bilayer
simulations with CHARMM36 forcefield to present a molecular

understanding of higher affinity of α-syn for DPhPC — 1,2-
diphytanoyl-sn-glycero-3-phosphocholine compared to DOPC132.
They observed an increase in packing defects which exposes
the peptide hydrophobic patch to the bilayer surface in DPhPC
compared to DOPC, which can promote peptide-membrane
interactions. Vermaas et. al. simulated α-synuclein membrane
association and peptide conformational transition using highly
mobile membrane-mimetic model (HMMM) of PC/PS with
CHARMM36 lipid and CHARMM27 protein forcefields133. The
simulations could capture a transition from an initial broken-
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helix state to a semi-extended helix state, aided by presence of PS
lipids at the inner-edge of peptides. The study reported a highly
variable peptide insertion into the bilayer. Tsigenly et. al. used
membrane contact surface prediction and molecular simulations
to categorize membrane associated oligomers as "propagating"
— support addition of peptide-monomers to oligomers and
"non-propagating" — do not support spontaneous oligomer
growth134. This propagated-docking generated pentamers and
hexamers, with ring like structures similar to membrane pores.
The authors also found that β -syn, a non-pathogenic member of
synuclein family could inhibit propagating oligomers by binding
to it. Perlmutter et. al. suggested screening of negative-charged,
acidic lipid headgroups by α-syn leading to flattening of curved
membrane using simulations of α-syn bound to SDS micelles
and DOPS membranes135. In addition, their analyses of α-syn
familial mutants suggest an array of destabilizing peptide-lipid
interactions in A30P mutants, threonine-based and lysine-based
stabilizing interactions in A53T and E46K mutants.

In addition to atomistic simulations, coarse grained MD with
MARTINI forcefield47 has been used to study peptide associated
membrane deformations. These coarse grained simulations are
particularly advantageous in capturing the large-scale membrane
modulating behavior of α-syn, while preserving molecular speci-
ficity of peptides and lipids. Braun et. al. studied generation
of membrane curvature due to presence of α-syn peptides in an
extended α-helix-turn-α-helix state136. The presence of α-syn
induced negative gaussian curvature — associated with fusion
and fission states and positive mean curvature on lipid bilayer
composed of POPC and POPS. The authors proposed that inter-
actions between peptides on membranes can be cast as inter-
actions between intrinsic local curvature fields. A comparative
analysis of POPG membrane binding and remodeling capacity of
α-syn 1-78 and α-syn 1-100 was probed using MARTINI force-
field137. The decrease in amino acids primarily from NAC region,
reduces membrane association membrane deformation. MARTINI
simulations with DPPC SUVs with α-syn at a ratio of 200:1 pre-
sented lowered surface tension and increased membrane undu-
lations due to α-syn membrane associations138. Multiple sim-
ulations with varying lipid content and fluorescence correlation
spectroscopy were implemented to study tubulations and peptide
induced curvature. Membrane disruption/tubulations, promoted
by increased binding affinity of highly anionic POPG membranes
was higher than POPC/POPG membranes139. The analyses also
suggest anti-alligned interdigitation between opposing monolay-
ers during tubulations. Tsigelny et. al. used implicit solvent MD
to enumerate distinct amino acid zones for α-syn wild type and
familial mutant membrane contacts and amino acids (L38, V48,
V49, Q62, and T64) that promote inter-peptide interaction140.
They also reported an enhanced propensity for annular oligomers
in E57K, A53T, and H50Q mutants compared to E46K, E35K,
wild-type and A30P.

These results provide an overview of recent computational ad-
vances in our understanding of α-syn membrane interactions. In
agreement with experimental results, and similar to Aβ , α-syn
also interacts strongly anionic membranes. But, in contrast to
Aβ peptides, where membrane disruption is more pronounced

in disordered-zwitterionic membranes, membrane tubulations in
presence of α-syn is higher in model anionic membranes. A con-
curring theme in both experimental and computational literature
is the modulation of local membrane curvature in presence of
α-syn. While computational simulations have primarily focused
on single peptide stability and membrane disruption, conforma-
tional changes (both structural and kinetic effects) in α-syn due
to membrane association is yet to be investigated. Similar to Aβ

peptides, experiments have uncovered the role of cholesterol and
gangliosides in driving α-syn insertion and pore formation. Fur-
ther in-silico investigations into this can uncover atomic micro-
interactions and associated kinetics of this process. Recent com-
putational and experimental studies (Cryo-EM and Solid-state
NMR) have uncovered multiple atomic resolution structures of α-
syn fibrils, suggesting extensive structural polymorphism141–144.
Computational investigations on the effect of such peptide aggre-
gations on membrane stability can be quite instructive.

4 Huntington’s disease - Huntingtin protein
(htt)

Another neurodegenerative disease that involves progressive
amyloid deposition and associated membrane disruption is Hunt-
ington’s disease145–147. The pathogenesis of dominantly inher-
ited Huntigton’s disease is linked to fibrillar nano-scale deposits
of huntingtin protein (htt). The mutant genes encode variants
of htt protein with anomalous expanded homopolymeric PolyQ
sequences that aid the aggregation process. While the flanking
amino acid residues, particularly, the first 17 N-terminal amino
acid residues (Nt17) modulate aggregation behavior and lipid
binding by formation of amphipathic alpha helix, the length of
PolyQ tract directly participates in aggregation and generation
of a variety of aggregate species — oligomers and larger fibril-
lar structures. Several reports indicate htt protein interacts with
membrane, either through intracellular vesicular transport, or
by association with Endoplasmic reticulum and Golgi apparatus.
In addition, the pathogenesis of Huntington’s disease is hypoth-
esized to proceed through mitochondrial dysfunction. But the
membrane interactions of htt and polyQ deposits have not been
fully characterized.

Similar to Aβ and α-synuclein, both membranes and oligomers
are affected by htt-membrane association. Solution AFM stud-
ies have reported oligomeric and fibrillar deposits over mica sur-
face148,149. Studies have demonstrated an alteration in htt alpha
helical content in presence of POPC and POPC/POPS SUVs150.
AFM studies with TBLE suggests local alterations of bilayer com-
pressibility on interaction with htt oligomers151. Amorphous
structures and oligomers of htt exon 1 was reported as the dom-
inant aggregate species in lipid-liquid interface with significant
dependence on the length of polyQ sequence. Investigations by
Chaibva et.al. suggested an enhanced peptide (Nt17Q35P10KK)
binding and aggregation propensities with increase in membrane
curvature152. They pointed at lipid packing defects associated
with membrane curvature as possible mechanism for peptide
binding, which then increases local peptide density to promote
subsequent aggregation.
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Fig. 6 Thickness of membrane of control system and different peptide variants. Reprinted with permission from A. Nagarajan, S. Jawahery and S.
Matysiak, The Journal of Physical Chemistry B, 2014, 118, 6368 - 6379.

Our group probed the importance of flanking amino
acid sequences (KKQ35KK, KKQ35P11KK, Nt17Q35KK,
Nt17Q35P11KK) to polyQ chain that modulates membrane
(single component DOPC membrane) association and potential
implications of such membrane association, using atomistic
simulations153. The simulations revealed that a majority of
peptide sequences, except for KKQ35P11KK, adopted a higher β

sheet content suggesting a start of fibril formation. In addition, a
significant membrane thinning was reported for Nt17Q35P11KK
(Figure 6), where the poly-proline sequence that generally
impedes membrane association reversed its effect in presence of
Nt17. Atomistic studies investigated the stability and orientation
of Nt17Q20 peptide in presence of POPE model membranes154.
Nt17 peptide arranges into stable α helix parallel to membrane
surface with Leu and Phe at the hydrophobic core and Ser,
Thr, Lys and Glu at polar headgroup. The polyQ sequence is
positioned in solution to increase accessibility for oligomeriza-
tion. Additionally, increase in polyQ sequence was not able to
significantly change the behaviour of Nt17. The acetylation of
Nt17 lysines (K6, K9 and K15) results in significantly reduced

fibrillation rates in solution, forming globular aggregations and
a decreased membrane disruption than wild type155. Atomistic
approaches were used to investigate molecular interaction
promoting this phenomena. Although there was a decrease in
stabilizing interactions of phosphate groups with acetylated K
and E, an increase in interaction between phosphate and polar
amino acid residues was also reported.

While scarce in number, these simulations keep reiterating the
importance of particular regions of htt protein in driving mem-
brane interactions. Similar to previously established experimen-
tal observations, peptide aggregation on lipid bilayer is driven by
Nt17 residues with secondary structure modifications on interac-
tion with membranes. Atomistic interactions that drive and sta-
bilize this membrane associated structure and the importance of
N-terminal Lysines at promoting aggregation was reported. Due
to significantly larger size of peptide sequence for htt, studies of
peptide aggregation has not been attempted yet. Although, some
coarse grained simulations have been used to characterize pep-
tide htt aggregation landscape, CG studies of htt-membrane in-
teraction has not been attempted yet. Therefore, in future more
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studies should attempt to verify membrane disruption and mem-
brane induced oligomerization pathways presented from experi-
mental observations and predictions from monomer-based simu-
lations.

5 Non-specific simulations to study
membrane-assisted aggregation

Many non-specific (no specificity in molecular modeling of amino
acids and lipid types) coarse grained simulations of membrane
assisted peptide aggregation have been attempted to understand
the general physics of peptide aggregation in presence of mem-
branes. These simulations use a reduced resolution description of
a system, leading to lower degrees of freedom and sampling of
longer length and time scales.

Friedman et. al. used a ultra-coarse grained 10 bead pep-
tide model — four partially charged generating dipoles, four hy-
drophilic and two hydrophobic beads, with a 3 bead lipid model
— one hydrophilic and two hydrophobic, to study the impact of
peptide amyloidogenicity on membrane/vesicle permeability156.
First, the peptide monomeric conformational landscape was di-
vided into amyloid competent state (β) with parallel aligned
dipoles pependicular to fibril axis and amyloid protected state (π)
with all conformations not in β state. Amyloidogenic property is
defined by difference in energy between β and π states, which
can be modulated by varying peptide dihedral angles. The simu-
lations presented differential behaviorof this amyloidogenic and
non-amyloidogenic peptides in presence of lipid vesicles. While
highly amyloidogenic peptides aggregate into fibrillar structures
on vesicles, lipid vesicles can effectively hinder the growth of non-
amyloidogenic sequences. Moreover their research also showed
that growth of amyloid fibrils rather than mature fibrillar ag-
gregates cause membrane disruption. More recently, Morriss-
Andrews et. al. parametrized a simpler three bead per residue
peptide model and a five-bead per residue lipid model to study
membrane induced beta sheet formation and characterize pep-
tide aggregate absorption pathways. Their research also catego-
rized several similarities in peptide aggregate morphology and
dynamics between membranes and solid surface157. While pep-
tides adopt a β sheet rich parallel orientation on top of both
types of surfaces, the aggregates on membranes are highly dy-
namic and can reverse kinetics in response to membrane’s oscil-
lation. In addition, the authors also observed a lipid reorganiza-
tion into hexagonal lattice structures around peptide aggregates,
an increased bending modulus and dampening of fluctuations in
membrane thickness with their model. Our lab studied aggrega-
tion of model peptide — Elastin-like octapeptides (GV )4 in pres-
ence of hydrophobic (hexadecane)-hydrophilic (water) interface
with WEPPRO158. The aggregation behavior was dominated by
hydrophobic interactions in solution whereas dipole interaction
played a more significant role in β sheet rich aggregate structure
formation at the polar-hydrophobic interface. The presence of an
interface resulted in a faster aggregation into a final ordered con-
formation and a decrease in lag phase before ordered aggregation
compared to simulations in aqueous systems.

6 Concluding Remarks
Long length and time scales pose significant challenge for stan-
dard molecular dynamics studies involving peptide aggregation
in presence of membranes. A better sampling of molecular path-
ways for the process can be achieved through emerging non-
traditional advanced techniques such as Replica exchange molec-
ular dynamics159, parallel tempering in the well-tempered en-
semble160, metadynamics (traditional161,162, bias-exchange163

and solute tempering164). Most simulation based studies using
advanced sampling techniques have focused on self-association in
solution due to inherent computational simplicity. Although some
advanced sampling studies have been attempted to study systems
involving membranes and aggregating peptides, more effort is
needed along that direction. It should be noted that although
advanced sampling techniques generate sufficient convergence of
multiple conformations, many details of the system dynamics are
lost.

Coarse grained simulations, which capture both structure and
dynamics simultaneously can be an viable alternative, with a def-
inite trade-off of accuracy to increase computational efficiency.
Similar to most advanced sampling methods, most novel coarse
graining techniques with peptide sequence specificity in present
literature — OPEP165, AWSEM-MD166 and PRIME20167 can only
be applied to study peptide oligomerization in solution, due to
absence of any compatible lipid model. While other simula-
tion forcefields such as MARTINI which has been used to study
peptide aggregation and membrane-peptide systems, they can-
not study peptide structural transitions which are ubiquitous
in membrane assisted peptide oligomerization. Although re-
cently developed coarse graining schemes which employ par-
tial charges to reproduce structural polarization — WEPMEM-
WEPPRO99,100,104,105,158, do capture unbiased transition to pep-
tide secondary structures, extensive research needs to be done on
their reliability and transfer-ability to longer peptide sequences.
Along this direction, molecular dynamics simulations with vary-
ing resolution, which involves mapping from atomistic to coarse
grained scales and reverse over multiple iterations can provide
desired accuracy (not accessible from purely coarse grained sim-
ulations), while maintaining extensive sampling.

Many controversies and variations in results from traditional
atomistic computational studies can be directly attributed to
forcefield accuracy. A recently published report compared
oligomerization of Aβ 16-22 and its three mutants F19V, F20V
anf F19L across five different forcefields — Gromos54a7, OPLS-
AA, AMBER03WS, CHARMM22, and AMBER99SB-ILDN168. This
study presented quite disparate results with aggregation struc-
tures and kinetics. The authors suggested using a "consen-
sus forcefield" approach169,170 in which simulations of a par-
ticular system are performed across multiple forcefields to gen-
erate consensus results. A similar work from this group ap-
plied multiple forcefields (OPLS, AMBER99SB, AMBER99SB-
ILDN, AMBER99SBILDN-NMR and CHARMM22) to study full
length Aβ 1-42 monomeric conformations and matched that to
observations from NMR171. They have reported that CHARMM22
provides the best match with local NMR observables. Another re-
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search compared dimerization of Aβ 16-22 across multiple force-
fields and clustered the forcefields on the basis of their predicted
structural and kinetic properties172. These authors suggested
to use AMBER99-ILDN, AMBER14SB, CHARMM22, CHARMM36,
and CHARMM36m. Similar comparisions across lipid forcefields
has suggested that no single forcefield could reliably capture all
possible membrane properties. These results present significant
pressure to develop more accurate forcefields that can capture
highly dynamic nature of IDP peptides and structural properties
of membranes. Recent advancements in development and valida-
tion of lipid forcefields have been outlined by Leonard et. al.173.

Individually, both peptide and lipid forcefields have been
parametrized to reproduce ab-initio data, structural informa-
tion from experiments and thermodynamic properties. But
the dearth of experimental data for peptide-lipid systems has
made refinement and validation of peptide-lipid forcefields dif-
ficult. A recent assessment of atomistic protein-lipid forcefields
— GROMOS54a7, CHARMM36, Amber14sb/Slipids and Am-
ber14sb/Lipid14 using different experimentally verifiable observ-
ables showed that CHARMM36 forcefield has the highest correla-
tion with experiments174. As no current classical molecular force-
field can be hailed the best, computational scientists should focus
on how predictive a particular forcefield is regarding available
experimental observations about that particular chemical system.
In addition, considering the highly non-equilibrium nature of
protein-membrane partitioning, membrane assisted aggregation
and protein induced membrane disruption, forcefields need to be
parametrized using dynamical experiments, beyond current at-
tempts to model structural properties. Further, the inaccurate
representation of ionic forcefield has continuously plagued the
molecular simulation community. Research efforts towards de-
veloping efficient polarizable or/and multi-body ion potentials is
instrumental in simulating accurate cellular environments. Be-
yond electrostatics, it is crucial to capture long-range Lennard
Jones (LJ) potential to capture transitions from solution to mem-
brane. Similar to electrostatic potential, recent research efforts
are focusing on representing long range LJ by a particle-mesh-
Ewald (PME) method, which necessitates further parametriza-
tion. More recently, machine learning techniques have been ap-
plied for appropriate parametrization of forcefields, which opens
unique possibilities. On a separate note, polarizable forcefields
(AMBER ff02, CHARMM Drude, AMOEBA, etc.), which are gen-
erally more accurate suffer from high computational complexity
and are significantly slower than non-polarizable ones. There-
fore, polarizable forcefields have not been used to study complex
peptide membrane associations.

Moreover, there is a need to simulate peptide aggregation in
a more cell-like representative crowded environments. Local en-
vironments and many long length and time scale processes are
intricately tangled to result in peptide aggregation, particularly
in presence of highly diverse lipidic environments which may be
composed of around 1000 types of lipid molecules and multiple
embedded proteins. This astounding complexity poses a problem
of how large and diverse should a simulation system be to ap-
propriately capture interesting dynamics in a heterogeneous and
crowded environment. Simulations of this scale involves molec-

ular communication over long length/time scales. owing to the
hierarchical nature of biological systems, development of tech-
niques to accurately communicate across multiple scales, while
preventing errors from propagating, is essential. Although, with
current computational machinaries, it is impossible to capture
such time and length scales by conventional molecular dynamics,
over the next decade, it might be possible to study peptide aggre-
gation processes over minimal representative cells, particularly
with coarse grained representation. Recent efforts towards cre-
ation of a representative plasma membrane using MARTINI force-
field is a significant step towards this175. Simulations along this
direction can provide significant insights about accurate patho-
genesis of several neurodegenerative diseases and present path-
ways for therapeutic interventions.

With the progressive increase in computational investigations
into biomolecular systems, we are presented with an urgent need
to follow a more open-source approach towards data and pro-
tocols to generate reproducible and avoid erroneous results. Al-
though, we are still far from a comprehensive picture of peptide-
induced amyloid formation, molecular simulation certainly can
be an effective tool to assist experimental investigations. With
advancements in statistical theories, leading up to novel simula-
tion techniques and molecular forcefields, and continued growth
in high performance computing infrastructure, molecular simula-
tions will continue to unravel mysteries presented by these com-
plex processes.
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Computational insights into lipid assisted peptide misfolding and
aggregation in neurodegeneration

Figure 1

An overview of recent advances in computational investigation of peptide-lipid interactions in neu-
rodegeneration — Alzheimer’s, Parkinson’s and Huntington’s disease.
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