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Complementary First and Second Derivative Methods
for Ansatz Optimization in Variational Monte Carlo

Leon Otisa and Eric Neuscammanb,c,∗

We present a comparison between a number of recently introduced low-memory wave function
optimization methods for variational Monte Carlo in which we find that first and second derivative
methods possess strongly complementary relative advantages. While we find that low-memory
variants of the linear method are vastly more efficient at bringing wave functions with disparate
types of nonlinear parameters to the vicinity of the energy minimum, accelerated descent ap-
proaches are then able to locate the precise minimum with less bias and lower statistical uncer-
tainty. By constructing a simple hybrid approach that combines these methodologies, we show
that all of these advantages can be had at once when simultaneously optimizing large determinant
expansions, molecular orbital shapes, traditional Jastrow correlation factors, and more nonlinear
many-electron Jastrow factors.

1 Introduction
The practical utility of widely used methods in electronic struc-
ture theory is in large part determined by the optimization algo-
rithms they rely on. This basic theme has been repeated through-
out the history of quantum chemistry, with methods as funda-
mental as Hartree-Fock theory becoming dramatically more use-
ful with the development of superior solution methods such as
the direct inversion of the iterative subspace.1 Similar transfor-
mations have been seen in configuration interaction (CI) theory
thanks to Davidson’s method,2 in the density matrix renormal-
ization group (DMRG) approach thanks to (among other innova-
tions) the noise algorithm,3 and in many other methods besides.
As in the case of DMRG, it is usually not so simple as a single in-
novation in the numerical methods that transforms a theory from
a promising proof of concept into a robust computational tool.
Instead, such tools often arise as the result of a series of innova-
tions, that, once combined, fit together in a way that makes them
more than the sum of their parts.

In the context of quantum Monte Carlo (QMC), and more
specifically in its variational (VMC) formulation, the introduc-
tions of stochastic reconfiguration4 (SR) and the linear method5

(LM) for trial function optimization marked large steps forward
along the path to practical utility and reliability. However, recent
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research has revealed multiple options for bypassing these meth-
ods’ memory bottlenecks, making clear that there is still a great
deal of distance to cover in the maturation of VMC numerical
methods. Some of these approaches6–8 depend, like the original
SR and LM formulations, on knowing at least some information
about second derivatives, but by avoiding the construction of full
Hessian-sized matrices they achieve dramatically lower memory
footprints. Other even more recent approaches, most of which
can be classified as accelerated descent (AD) methods,9–11 avoid
second derivative information entirely and are thus even more
memory efficient, relying instead on a limited knowledge of the
optimization’s history of energy first derivatives or in one case just
the signs of these derivatives.12 In the present study, we explore
the relative advantages of the (first derivative) AD and (second
derivative) LM approaches and find that, when combined, they
offer a highly complementary optimization strategy that appears
to be both more robust and more efficient than either approach
on its own.

The ability to optimize larger and more complicated wave func-
tion forms is becoming increasingly relevant due to rapid progress
in other areas of VMC methodology. The introduction of the ta-
ble method13,14 has increased the size of CI expansions that can
be handled by more than an order of magnitude, and expansion
lengths beyond 10,000 determinants are no longer unusual. A re-
cent improvement to the table method7,15 now allows the molec-
ular orbital basis to be optimized efficiently in the presence of
these large expansions, while the resurgence of interest in se-
lected CI methods16–21 has provided a convenient route to their
construction. In addition to these CI-based advances, other wave
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function innovations have also led to growing demands on VMC
optimization methods. Increasingly sophisticated correlation fac-
tors, such as those used in Hilbert space approaches6,9–11,22–24 as
well as a steady stream of developments in real space4,25–29 have
also raised the demand for optimization approaches that can deal
with large numbers of highly nonlinear parameters. Although
less thoroughly explored, the treatment of correlation effects via
back flow transformations also continues to receive attention and
create new optimization challenges.12,30 Finally, in addition to
these increases in ansatz sophistication, renewed interest in using
excited state variational principles31,32 to expand QMC’s excited
state capabilities has led to its own collection of optimization dif-
ficulties.33–39

By supporting these various advances in QMC methodology, im-
proved VMC optimization methods have the potential for large
impacts in diverse areas of chemistry and solid state physics.
Work on lattice models, for example, continues to push the
boundaries on how approximate wave functions are defined.40,41

In the area of molecular excited states, QMC methods offer
promising new routes to high-accuracy treatments of both dou-
ble excitations33,42 and charge transfer excitations,35,39 both of
which continue to challenge conventional quantum chemistry
methods. In QMC’s traditional area of simulating real solids, ap-
plications of both VMC and projector Monte Carlo would ben-
efit immediately from the ability to prepare more sophisticated
trial wave functions.43–45 Diffusion Monte Carlo (DMC) in par-
ticular would achieve higher accuracy using the better nodal sur-
faces determined by well-optimized ansatzes from VMC. Solid
state simulations have provided demonstrations of QMC’s abil-
ity to treat up to 1000 electrons46,47 and improved optimization
of more variational parameters will support the continued study
of larger systems. More generally, the ability of QMC to com-
bine treatments of weak and strong electron correlation effects
within a robust variational framework that operates near the ba-
sis set limit makes it a powerful general-purpose approach for dif-
ficult molecular and materials problems where high accuracy is
necessary. By increasing the size and complexity of systems that
fall into its purview, improvements in QMC wave function opti-
mization methods therefore have the potential to move electronic
structure simulation forward on a number of fronts.

The present study seeks to aid in this endeavor by focusing on
the relative advantages of recently developed low-memory first
and second derivative methods in VMC and in particular on how
they can be used to complement each other. Unlike determin-
istic optimizations, in which second derivative methods are typ-
ically preferred so long as they are affordable, the situation is
less straightforward when the objective function and its deriva-
tives are statistically uncertain. One major concern is that, in
practice, it can be more difficult to achieve low-uncertainty esti-
mates of the second derivative terms that appear in the LM and
its descendants. While this issue can be mitigated by the use of al-
ternative approaches to importance sampling, these can increase
uncertainty in the energy due to the loss of the zero-variance prin-
ciple. Thus, as we will demonstrate, statistical precision tends to
be higher when using AD methods, which is an advantage on
top of their ability to converge to the minimum without the bias

that arises from the LM’s highly nonlinear matrix diagonalization.
However, we will also see that in order to enjoy the advantages
of a tighter and less biased final convergence, AD methods must
first reach the vicinity of the minimum. For this task, we find that
the LM and its low-memory variants outperform all of the first
derivative methods that we tested, especially for optimizations in
which the wave function contains different classes of parameters
that vary greatly in their nonlinear character and how they couple
to each other. Happily, we will see that a hybrid approach — in
which AD and low-memory LM optimization steps are interwoven
— excels both at reaching the vicinity of the minimum and pro-
ducing unbiased final energies while simultaneously maintaining
a high degree of statistical efficiency.

2 Theory

2.1 Variational Monte Carlo

VMC combines the variational principle of quantum mechanics
with Monte Carlo evaluation of high dimensional integrals.48 To
study the ground state of a system, we pick a trial wave func-
tion Ψ of some particular form and seek to minimize its energy
expectation value.

E(Ψ) =
〈Ψ |H |Ψ〉
〈Ψ |Ψ〉

(1)

In the language of mathematical optimization, E(Ψ) is an ex-
ample of an objective function or cost function. For a typical
system with N electrons, this expression contains integrals over
3N position space coordinates which for some wave functions can
only be evaluated efficiently through Monte Carlo sampling rather
than quadrature methods. We rewrite the energy as

E =

∫
dRΨ(R)HΨ(R)∫

dRΨ(R)2 =

∫
dRΨ(R)2EL(R)∫

dRΨ(R)2 =
∫

dRρ(R)EL(R)

(2)
where EL(R) =

HΨ(R)
Ψ(R)

is the local energy and ρ(R) =
Ψ(R)2∫

dRΨ(R)2 is

the probability density. The zero-variance principle49 makes ρ(R)

the most common choice of probability distribution for obtaining
samples, but it is not the only option. For effective estimation
of quantities beside the energy, such as the LM matrix elements,
other importance sampling functions are often preferred.37,50,51

In our LM and blocked LM calculations in this study, we employ
the importance sampling function (and the appropriately modi-
fied statistical estimate formulas39)

|Φ|2 ≡ |Ψ|2 + ε

M ∑
I
|DI |2 (3)

in which the DI are the M different Sz-conserving single excita-
tions relative to the closed shell reference determinant. The logic
behind this choice is that it puts some weight on configurations
that are highly relevant for the orbital rotation parameters’ wave
function derivatives, as small orbital rotations can be approxi-
mated via the addition of singles. We find that this importance
sampling function substantially reduces the uncertainty of the LM
matrix elements corresponding to orbital rotations, which in turn
helps reduce the update step uncertainty. For AD, we simply use
traditional |Ψ|2 importance sampling as in equation 2.

By the variational principle, we are guaranteed that E is an up-
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per bound on the true ground state energy. Given some set of
adjustable parameters in the functional form of Ψ, we expect that
values of those parameters that yield a lower value of E to corre-
spond to a wave function that is closer to the ground state. One
could then imagine the abstract space produced by the possible
values of all variational parameters. The set of optimal parameter
values that specify the wave function expression which minimizes
E can be taken as a point in this space labeled by the vector p∗.
In general, the initial choice for parameters will not be at this en-
ergy minimum point, but at some other point p0. The problem
of determining the best wave function in VMC calculations then
relies on an optimization algorithm for finding p∗ after starting
from p0.

Within this framework, one of the most important considera-
tions is that the optimization is inherently stochastic due to the
introduction of noise through the Monte Carlo evaluation of the
integral in equation 2. This forms a contrast with many other
methods in electronic structure theory including Hartree-Fock,
CI, and coupled cluster where various deterministic optimization
schemes predominate.52 Many of the algorithms commonly en-
countered in a deterministic quantum chemistry context such as
steepest descent and the Newton-Raphson method, have been
adapted for use in VMC.53–57 However, there is now a need to
be robust to the presence of noise. Historically, errors due to fi-
nite sampling led to numerical instabilities that prompted interest
in minimizing variance32,58 instead of energy, but later optimiza-
tion developments have sought to mitigate this issue and in this
paper we only consider energy minimization. As we will now dis-
cuss in their respective sections, both the LM and gradient descent
approaches possess features that enable them to operate stably in
a stochastic setting.

2.2 The Linear Method

The LM5,59 begins with a first order Taylor expansion of the wave
function. For a set of variational parameters given by vector p,
we have

Ψ(p) = Ψ0 +∑
i

∆piΨi (4)

where Ψi =
∂Ψ(p)

∂ pi
and Ψ0 is the wave function at the current pa-

rameter values. Note that Ψ(p) = Ψ(R,p) depends on both the
parameters p and electron positions R, but we have suppressed
the latter for convenience.

Finding the optimal changes to the parameters amounts to solv-
ing the generalized eigenvalue problem

H c = E S c (5)

in the basis of the initial wave function Ψ0 and its first order pa-
rameter derivatives {Ψ1,Ψ2, ...}. H and S are the Hamiltonian
and overlap matrices in this basis with elements

Hi j =
〈
Ψi
∣∣H ∣∣Ψ j

〉
(6)

Si j =
〈
Ψi
∣∣Ψ j

〉
(7)

The matrix diagonalization to solve this eigenproblem for eigen-
vector c = (1,∆p) then yields the updated parameter values p1 =

p0 +∆p. As the matrices H and S both contain a subset of the sec-
ond derivative terms that would be present in a Newton-Raphson
approach,60 the LM is most naturally categorized as a second-
derivative method, and it certainly shares Newton-Raphson’s dif-
ficulties with regards to dealing with matrices whose dimension
grows as the number of variables.

For practical use with finite sampling, the LM must be stabi-
lized to prevent unwisely large steps in parameter space. This
is accomplished by adding shift values5 to the matrix diagonal
that effectively act as a trust radius scheme similar to those used
with Newton-Raphson. In our implementation, the Hamiltonian
is modified with two shift values meant to address distinct poten-
tial problems in the optimization.61

H−→H+ cIA+ cSB (8)

The matrix elements of A are given by Ai j = δi j(1−δi0) so that
the shift cI effectively gives an energy penalty to directions of
change from the current wave function.5 The second shift is in-
tended to address problems that may arise if some wave function
derivatives have norms that differ by orders of magnitude. In this
situation, the single shift value cI is insufficient to preserve a quick
yet stable optimization. For a parameter with a large derivative
norm, a sufficiently high value of cI might prevent an excessively
large change in its value. However, all other parameter directions
with smaller derivative norms will be so heavily penalized by the
large value of cI that those parameters become effectively fixed.
The purpose of the second cSB term is to retain important flex-
ibility in other parameter directions. We can write the matrix B
as

B = (QT)−1TQ−1 (9)

where
Qi j = δi j−δi0(1−δ j0)S0 j (10)

and
Ti j = (1−δi0δ j0)[QTSQ]i j (11)

The matrix Q provides a transformation to a basis where all up-
date directions are orthogonal to the current wave function and
the matrix T is the overlap matrix in this basis. The optimal
choice of shift parameters cI and cS may depend on the partic-
ular optimization problem. In our implementation, an adaptive
scheme adjusts the shifts on each iteration by comparing the en-
ergies calculated through correlated sampling on three different
sets of shift values and choosing whichever shifts produced the
lowest energy.

The LM has been successfully applied to a variety of systems to
prepare good trial wave functions for DMC.5,28,29,60,62–64 It has
also been used in the variational optimization of a recent func-
tional for targeting excited states.33,36,39 However, it possesses
a number of limitations, most notably a memory cost that scales
with the square of the number of optimizable parameters due to
the matrices it builds. Once these matrices are too large for stor-
age in cache, the fact that each sample contributes to every matrix
element dramatically slows the process of matrix construction. At
present, routine use of the LM is limited to roughly 10,000 param-
eters, although exceptional calculations with up to about 16,000
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have been made.13 Another shortcoming is the nonlinear bias of
the LM. We are evaluating the elements of the Hamiltonian and
overlap matrices stochastically and have a nonlinear relationship
between them and our energy through the generally high order
characteristic polynomial of the eigenvalue problem of equation
5. As a result, we in general expect the LM to converge to a point
in parameter space slightly offset from the true minimum. This
nonlinear bias has been studied for the LM in Hilbert space65 and
a similar issue arises in the context of Full Configuration Interac-
tion QMC.66 Both the memory constraint and the nonlinear bias
of the LM become more severe for ansatzes with larger numbers
of variational parameters, which spurs the search for potential al-
ternatives. One approach suggested for memory reduction is to
employ Krylov subspace methods for Eq. 5 to avoid building ma-
trices, but it requires a drastically higher sampling effort due to
the need for many matrix-vector multiplications and so we do not
pursue the approach here.6

2.3 Blocked Linear Method

One recent approach to bypassing the memory bottleneck is
known as the blocked linear method (BLM).8 The first step of the
algorithm is to divide the full set of parameters into Nb blocks.
Next, a LM-style matrix diagonalization is carried out within each
block and some number Nk of the resulting eigenvectors from the
blocks are retained as good directions for constructing an approx-
imation for the overall best update direction in the full parameter
space. For a particular block of variables, the wave function ex-
pansion in the LM is given by

|Ψb〉= |Ψ0〉+
Mb

∑
i=1

ci |Ψi〉 (12)

where |Ψi〉 is the wave function derivative with respect to the
ith variable in the block, Mb is the number of variables in the
block, and |Ψ0〉 the current wave function as in the normal LM.
We can perform the same matrix diagonalization done in the LM,
only with parameters outside the block fixed. This yields a set
of eigenvectors that we can use to construct another approximate
expansion of the original wave function. We can construct a ma-
trix B using the Nk eigenvectors with the lowest eigenvalues from
each block and write a new expansion

|Ψ̃〉= α |Ψ0〉+
Nb

∑
k=1

Nk

∑
j=1

Ak j

Mb

∑
i=1

B(b)
ji |Ψ

i,b〉 (13)

Having now pre-identified important directions within each
block, the idea is that a subsequent LM-style diagonalization
in the basis of these good directions (which yields the coeffi-
cients Ak j) should still provide a good update direction when re-
expressed in the full parameter space.

In order to help retain most of the accuracy of the traditional
LM, the first stage of the BLM computation includes No other good
directions that are used to supply the current block’s diagonaliza-
tion with information about how its variables are likely to couple
to those in other blocks. In practice, important out-of-block di-
rections are obtained by keeping a history of previous iterations’

Fig. 1 Flowchart depicting steps in the BLM algorithm to arrive at a
parameter update.

updates as the optimization progresses. We can rewrite the one
block expansion introduced in equation 12 as

|Ψb〉= |Ψ0〉+
Mb

∑
i=1

ci |Ψi〉+
No

∑
j=1

Nb

∑
k=1,k 6=b

d jk |Θ jk〉 (14)

where we take the

|Θ jk〉=
Mk

∑
l=1

C jkl |Ψl,k〉 (15)

as the linear combinations of wave function derivatives from
other blocks that were identified as important based on previous
iterations’ updates. The additional term in the expansion allows
us to account for couplings between variables in different blocks
and enable the construction of a better space for the second diag-
onalization. We assemble the matrix B and |Ψ̃〉 and then seek to

minimize 〈Ψ̃ |H |Ψ̃〉〈Ψ̃ |Ψ̃〉 with respect to variational parameters α and

Ak j in our BLM wave function expansion in equation 13.
Figure 1 portrays the algorithmic steps described above. Some

number of parameters too large to be handled by the standard LM
is divided among different blocks whose diagonalizations produce
the vectors ~bi for the construction of the space of the final diago-
nalization that produces the parameter update. The BLM can be
thought of as achieving memory savings in the use of smaller ma-
trices at the cost of having to run over the sample twice when the
traditional LM must run over it just once. A more extensive de-
scription of the BLM and its precise memory usage can be found
in its original paper.8

We divide parameters evenly among blocks, but one could im-
plement the use of tailored blocks of varying sizes. It is advisable
to choose the block size to be large enough to keep important
parameters of the same type, such as all of those for a Jastrow
factor, within the same block. This enables the expected strong
coupling between them to be handled more accurately by the LM-
style diagonalization within that block. While the BLM has been
successfully applied up to about 25,000 parameters and found to
closely reproduce the results of the standard LM,8 it remains a
relatively new method, and the present study will provide addi-
tional data on its efficacy.
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2.4 Gradient Descent Methods

In the last few years, increasing attention9–12,67 has been paid to
optimization methods that use only first derivatives to optimize
trial wave functions in VMC. One formulation for discussing these
methods is to consider minimizing a Lagrangian of the form

L (Ψ(p)) = 〈Ψ |H |Ψ〉−µ(〈Ψ |Ψ〉−1) (16)

where µ is a Lagrange multiplier and, in practice, a moving aver-
age of the local energy. There is no need to solve an eigenvalue
problem as in the LM and the memory cost of these approaches
scales linearly with the number of parameters. We also note that
the stochastic evaluation of derivatives of this Lagrangian will
lead to a smaller nonlinear bias compared to what is encountered
in the LM. While there is some nonlinearity present in the prod-
uct µ 〈Ψ |Ψ〉, it is mild compared to the high order polynomials
encountered in the solution of the LM eigenvalue problem and
can be avoided entirely if desired through modest amounts of ex-
tra sampling. Minimization of this Lagrangian targets the ground
state, but excited states can similarly be targeted with these op-
timization algorithms merely by using derivatives of one of the
excited state functionals that have been developed.31–33,68

The simplest method in this category is the steepest descent
algorithm.

pk+1
i = pk

i −ηk
∂L (p)

∂ pi
(17)

In this case, the value of each parameter on the k + 1’th step is
found simply by subtracting the statistically uncertain parameter
derivative times a step size ηk. The step size can be taken as
constant over all steps in the simplest case, but rigorous proofs
on the convergence of stochastic gradient descent (SGD) rely on
decaying step sizes satisfying ∑k ηk = ∞ and ∑k η2

k < ∞.69

It may be worth briefly commenting that the typical formula-
tion of stochastic gradient descent as seen in the machine learn-
ing and mathematical optimization literature is slightly different
from what we use here within VMC. In a common machine learn-
ing scenario,69 one has a training set of input data {x1,x2, ...,xn}
and corresponding outputs {y1,y2, ...,yn} and wishes to minimize
a loss function Q(x,y;w) that measures the error produced by a
model fw(x), which predicts ỹi given xi and is parameterized by
variables w. For this setting, the SGD algorithm refers to evalu-
ating the gradient of Q with a randomly chosen pair (x j,y j) from
the given data set and then computing the parameter update ac-
cording to wk+1 = wk−ηk∇wQ(x j,y j). For our VMC optimization,
we are dealing with a noisy gradient similar to what occurs in this
machine learning problem, but the source of our noise is some-
what different and lies in our means of evaluating the underly-
ing 3N dimensional integrals within our Lagrangian derivatives.
Another important distinction is that in machine learning appli-
cations, complete convergence to the minimum is in fact unde-
sirable because it will overfit the model to the training data and
degrade its performance on new sets of test inputs. Much as SGD
provides a computational speed up for machine learning prob-
lems, we are also able to operate gradient descent methods at a
cheap per-iteration cost because we need only a modest number
of samples to evaluate sufficiently precise Lagrangian derivatives

Fig. 2 Illustration of the difficulty faced by steepest descent in red on the
lower left with its slow approach to the minimum. Accelerated descent in
green on the upper right is able to progress more rapidly to the minimum
with its memory of previous gradients.

compared to the Hamiltonian and overlap matrices in the LM.
However, unlike the machine learning case, we do want to come
as close as possible to the true minimum, and we will see that
even reaching the vicinity of the minimum can be difficult for de-
scent methods when typical VMC initial guesses are employed.

While steepest descent can be guaranteed to eventually reach
the minimum of the Lagrangian even in a stochastic setting, its
asymptotic convergence is very slow. For some intuition, one
could imagine the landscape of the Lagrangian’s values forming
a very narrow valley near the true minimum. In this situation,
steepest descent would produce parameter updates mostly back
and forth along the sides of the valley with little improvement of
parameter values in the direction directly toward the minimum.
Due to the limitations of steepest descent, a number of other fla-
vors of accelerated gradient descent (AD) have been developed
that include a momentum term with information on previous val-
ues of the gradient. As illustrated in Figure 2, the general intu-
ition is that this additional term provides some memory of the
progression along narrow valleys that steepest descent lacks and
thereby achieves swifter convergence. In addition, there are mul-
tiple schemes for adaptively varying the step sizes used in a man-
ner that draws on the particular derivative values for each indi-
vidual parameter as the optimization progresses. These methods
have recently been applied successfully to Hilbert space QMC. In
this study, we work in real space and investigate a combination of
Nesterov momentum with RMSprop as presented by the Booth
group9,67, a method using random step sizes from the Clark
group12, AMSGrad, recently used by the Sharma group10,11, as
well as the ADAM optimizer70.

We now lay out the precise expressions for each of these meth-
ods in turn. The RMSprop algorithm used by Booth and co-
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workers is given by the following recurrence relations.9

pk+1
i = (1− γk)q

k+1
i − γkqk

i (18)

qk+1
i = pk

i − τk
∂L (p)

∂ pi
(19)

λ0 = 0 λk =
1
2
+

1
2

√
1+4λ 2

k−1 γk =
1−λk

λk+1
(20)

τk =
η√

E[( ∂L
∂ pi

)2](k)+ ε

(21)

E[(∂L )2](k) = ρE

[(
∂L

∂ pi

)2
](k−1)

+(1−ρ)

(
∂L

∂ pi

)2
(22)

Above, pk
i denotes the value of the ith parameter on the kth step

of the optimization, τk is a step size that is adaptively adjusted
according to the RMSprop algorithm in equations 21 and 22. The
running average of the square of parameter derivatives in the de-
nominator of τk allows for the step size to decrease when the
derivative is large, which should hedge against the possibility of
taking excessively large steps. Conversely, a smaller denominator
when the derivative is small allows for larger steps to be taken.
The weighting in the running average is controlled by a factor ρ

that can be thought of as the amount of memory retained of past
gradients for adjusting τk, and η again denotes the chosen initial
step size. In order to avoid possible singularities when the gradi-
ent is very close to zero, a small positive number ε is included in
the denominator of τk. Equation 18 shows the momentum effect
in which the update for the parameter on the k+1 step depends
on the update from the previous step as well as the current gradi-
ent. We also follow the Booth group in applying a damping factor
to the momentum by replacing γk with γke−(

1
d )(k−1). The quantity

d effectively controls how quickly the momentum is turned off,
which eventually turns the algorithm into SGD. The values of d,η ,
ρ, and ε may all be chosen by the user of the algorithm and are
known as hyperparameters in the machine learning literature. In
the results we present using this method, we have used d = 100,
ρ = .9 and ε = 10−8. We have found adjusting these hyperparam-
eters has relatively little influence on optimization performance
compared to choices for step size η , but their influence could be
explored more systematically.

The Clark group’s algorithm takes a far simpler form

pk+1
i = pk

i −αη

∣∣∣ ∂L
∂ pk

i

∣∣∣
∂L
∂ pk

i

(23)

and has been recently used with neural network wave functions in
the context of the Hubbard model.12 Here α is a random number
in the interval (0,1) and η sets the overall scale of the random
step size. The motivation for allowing the step size to be random
is that it may help the optimization escape local minima that it
encounters. Within VMC, this algorithm can be run with fewer
samples per iteration even compared to other gradient descent
based algorithms as only the sign of the derivative needs to be
known, but it typically requires many more iterations to converge.

ADAM and AMSGrad are popular methods within the machine

learning community70–72 and have similar forms. ADAM is given
by:

pk+1
i = pk

i −η
mk

i√
nk

i

(24)

mk
i = (1−β1)mk−1

i +β1
∂L

∂ pk
i

(25)

nk
i = β2 nk−1

i +(1−β2)

(
∂L

∂ pk
i

)2
(26)

AMSGrad is a recent adaptive step size scheme developed in re-
sponse to the limitations of ADAM72 and has almost the same
form except for a slightly different denominator.

nk
i = max

(
nk−1

i , (1−β2) nk−1
i +β2

(
∂L

∂ pk
i

)2
)

(27)

In our calculations, we have used β1 = 0.1 and β2 = 0.01 for
both AMSGrad and ADAM in line with the choice made by the
Sharma group.10,11 It may be worth noting that a different con-
vention appears in machine learning literature using 1− β1 and
1−β2 for what we and the Sharma group call β1 and β2.71,72

Compared to the LM, these first derivative descent methods
have some significant advantages. Their low memory usage and
reduced nonlinear bias make them a natural fit for the large pa-
rameter sets that the LM struggles to handle. They are remarkably
robust in the presence of noise and do not need special safeguards
against statistical instabilities such as the LM’s shifts. At a basic
practical level, the descent methods are also far simpler to imple-
ment than the LM and especially its blocked variant. However, as
we will see in our results, they often struggle to reach the vicinity
of the minimum using a comparable sampling effort.

2.5 A Hybrid Optimization Method

In an attempt to retain the benefits of both the LM and the AD
techniques, we have developed a hybrid optimization scheme that
can be applied to large numbers of parameters. Our approach al-
ternates between periods of optimization using AD and sections
using the BLM. Among other advantages, this allows us to use
gradient descent to identify the No previous important directions
in parameter space that are used in the BLM via equation 14. The
precise mixture of both methods can be flexibly altered, but a con-
crete example would be to first optimize for 100 iterations using
RMSprop. By storing a vector of parameter value differences ev-
ery 20 iterations, we would produce 5 vectors that can be used for
equation 14 in some number (say three) steps of the BLM. After
the execution of these BLM steps, the algorithm would return to
another 100 iterations of descent and the process repeats until the
minimum is reached. Figure 3 shows a generic depiction of how
the ground state energy optimization may behave over the course
of the hybrid method. There are extended sections of compu-
tationally cheap optimization using gradient descent interwoven
with substantial energy improvement over a few BLM steps.

The use of AD and the BLM should naturally allow parameter
sets beyond the traditional LM limit of about 10,000 variables to
be addressed, a limit we will surpass in the present study in the
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Iteration

Energy

Fig. 3 Schematic depiction of a typical energy optimization using the
hybrid method. The dashed box around a section of descent in green
and BLM in red defines a macro-iteration of the method.

Fig. 4 Schematic representation of gradient descent corrections in green
to red BLM steps, which we have observed to reduce the uncertainty
about the location of the final minimum.

diflurodiazene system. For now, Table 1 lays out how the mem-
ory cost of the methods we are considering scales with number of
parameters N. Both the hybrid method and the BLM steps it con-
tains have a memory scaling that is intermediate between that of
the standard LM and the descent methods. The cost is given only
approximately because while it is normally dominated by the cost
of the Nb blocks in the BLM, there are additional contributions
related to how many directions are retained from the first BLM
diagonalization and how many old directions are used.8

Table 1 Rough memory cost scaling for the optimization methods we
examine, with N the number of optimized parameters and Nb the number
of blocks.

Method Type Memory Cost

Standard Linear Method O(N2)

Blocked Linear Method ∼ O
(

N2

Nb

)
Hybrid Method ∼ O

(
N2

Nb

)
Descent Methods O(N)

One key motivation for including sections of AD, especially
when the method is near convergence, is to counteract the noise
we observe in LM updates. While the LM tends to converge in a
relatively small number of steps, we find the individual energies
still fluctuate from iteration to iteration by multiple mEh, par-
ticularly when we are working with wave functions that possess
many highly nonlinear parameters. Figure 4 shows a cartoon of
this behavior near the minimum that prevents tight convergence.
Unless the shifts are large enough to constrain it to very small
steps, the LM will tend to bounce around near the true minimum
due to substantial (and biased) statistical uncertainties in its step
direction. The resulting energy fluctuations lead to ambiguity in
what to report as the definitive LM energy. One could take the
absolute lowest energy reached on any iteration, but this is fairly
unsatisfactory as it feels too dependent on a "lucky" step landing
right on the minimum. Our practice has been to take an average
over multiple steps at the end of the optimization when parameter
values should be converged. However, this will generally include
iterations with upward energy deviations due to the step uncer-
tainties. The use of AD offers a way out of this dilemma because
it can correct the errors in the LM steps by moving towards the
minimum more smoothly and with less bias. As we shall demon-
strate in our results, these considerations seem to give the hybrid
method a statistical advantage over the LM by achieving lower
error bars for the same computational cost. They are also the ba-
sis of our recommendation for finishing optimizations with a long
section of pure AD, which we shall show tends to improve the
energy and greatly diminish the final statistical uncertainty.

2.6 Wave Functions
An assessment of optimization methods’ effectiveness requires
consideration of the form of the wave function that they are ap-
plied to. Multi-Slater determinant wave functions have been a
common choice of ansatz in QMC and are typically combined
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with Jastrow factors that help recover some electron correlation
and describe particle cusps.43 We specify our Multi-Slater Jastrow
(MSJ) wave function with the following set of equations.

Ψ = ψMSψJψC (28)

ψMS =
ND

∑
i=0

ciDi (29)

ψJ = exp

{
∑

i
∑

j
χk(|ri−R j|)+∑

k
∑
l>k

ukl(|rk− rl |)

}
(30)

ψC = exp

(
∑
IJ

FIJNINJ +∑
K

GKNK

)
(31)

In equation 29 above, ψMS consists of ND Slater determinants
Di with coefficients ci. It can be generated by some other quan-
tum chemistry calculation such as complete active space self-
consistent field (CASSCF) or a selective CI method prior to the
VMC optimization. In the one- and two-body Jastrow factor ψJ ,
we have functions χk and ukl , which are constructed from optimiz-
able splines whose form is constrained so as to enforce any rele-
vant electron-electron and electron-nuclear cusp conditions.61

While MSJ wave functions with these types of traditional Jas-
trow factors (TJFs) have been successfully used in many con-
texts,5,7,13,39,43 more involved correlation factors can be consid-
ered. Typically, this involves the construction of many-body Jas-
trows factors,32,73,74 which may involve various polynomials of
interparticle distances26,27,73 or an expansion in an atomic or-
bital basis25,74–79 or a set of local counting functions.28,29 The
latter case of many-body Jastrows, known as real space number-
counting Jastrow factors (NCJF), is employed here as an example
many-body Jastrow factor. In real space, Jastrow factors have
historically been effective at encoding small changes to the wave
function associated with weak correlation effects,43 but work in
Hilbert space and lattice model VMC reminds us that they can
also be used to aid in the recovery of strong correlations.42,80,81

One way to view NCJFs is as an attempt to develop a real space
many-body Jastrow factor that can aid in recovering both strong
and weak electron correlations.29

The form of our NCJFs in equation 31 has the same structure
as previously proposed four-body Jastrow factors,77 where NI de-
notes the population of a region and the FIJ and GK are linear
coefficients. The region populations are computed by summing
the values of counting functions at each electron coordinate.

NI = ∑
i

CI(ri) (32)

In this work, we use a recently introduced29 form for the counting
functions consisting of normalized Gaussians.

CI =
gI(r)

∑ j g j(r)
(33)

where
g j(r) = exp

(
(r−µ)T A(r−µ)+K

)
(34)

describes a Gaussian about a center µ. By placing these normal-

ized Gaussians at various centers, we can divide up space with
a Voronoi tessellation. Schemes have been developed to gener-
ate partitions that either consist of regions centered on atoms or
of finer grained divisions of space that can capture correlation
within an atomic shell. We make use of both types of partition-
ing methods for different wave functions in our study. For sim-
plicity, we only consider optimization of the parameters FIJ in
the F-matrix of our NCJFs (the coefficients GK can be eliminated
with a basis transformation of the region populations NI),29 but
in principle the parameters defining the Gaussians g j could also
be optimized. We provide details of the Gaussians used in our
ansatzes in Appendix D.

We also consider the problem of optimizing the molecular or-
bital shapes alongside the other variational parameters. The abil-
ity to relax orbitals is important for successful study of many sys-
tems, particularly those involving excited state phenomena.39 We
make use of considerable theoretical and computational machin-
ery based on the table method enhancements developed by Fil-
ippi and coworkers7,15 that enables efficient evaluation of orbital
rotation derivatives in large MSJ wave functions. A rotation of
molecular orbitals can be described with a unitary transforma-
tion with matrix U parameterized as the exponential of an anti-
symmetric matrix X =−XT

U = exp(X) (35)

Impressively, one can obtain all wave function derivatives with
respect to the elements of X for a large multi-Slater determinant
ansatz for a cost that is only slightly higher than that of the local
energy evaluation. For the details of how this is accomplished, we
refer the reader to the original publications.7,15 From the stand-
point of parameter optimization, the main significance of the or-
bitals (and the NCJFs) lies in both their nonlinearity and their
strong coupling to other optimizable parameters. In practice, we
find that turning on the optimization of orbitals and NCJFs greatly
enhances the difficulty of the optimization problem compared to
MSJ optimizations in which only the CI coefficients and one- and
two-body Jastrow parameters are varied.

3 Results

3.1 Multi-Slater Jastrow N2

For a small initial test system, we consider the nitrogen dimer N2

at the near-equilibrium and stretched bond lengths of 1.1 and 1.8
Å. The nitrogen dimer is a known example of a strongly corre-
lated system and a common testing ground for quantum chem-
istry methods.42,81–86 The initial wave function ansatz consists of
a modest number of Slater determinants (67 for the equilibrium
geometry and 169 for the stretched, the result of a 0.01 cutoff
limit on determinant coefficients) with traditional one-body and
two-body Jastrow factors. The Jastrow splines provide 30 addi-
tional optimizable parameters via 10 point cubic b-splines with
cutoff distances of 10 bohr for the electron-nuclear and same-
spin and opposite-spin electron-electron components. The Slater
determinant expansion is the result of a (10e,12o) CASSCF cal-
culation in GAMESS87 using BFD pseudopotentials and the cor-
responding VTZ basis set.88 Due to the simplicity of the variable
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space in this case, we have employed the |Ψ|2 guiding function
for all optimization methods, including the LM and BLM. See Ap-
pendix B for further computational details.

The first and simplest study we can make is to optimize our
ansatzes with our multiple optimization techniques until conver-
gence and compare final energies. In our results for N2 and other
systems, we focus on the absolute energies achieved by different
optimization algorithms. Studies intending to provide chemical
insight would of course require differences of computed energies
and additional techniques may be needed to obtain balanced en-
ergies for accurate differences.37,39,89 Better optimization algo-
rithms are able to support such work by reducing other errors
due to incomplete improvement of the wave function. Note that
all of our VMC optimizations with different methods in this study
were performed using our implementations within a development
version of the QMCPACK software package.61 As N2 is a small
enough system that the traditional LM can be easily employed,
we take the approach of first obtaining a traditional LM optimiza-
tion result and then using it as a reference against which to com-
pare the performance of other methods. For the gradient descent
methods, multiple optimizations were attempted with the initial
step sizes tweaked from run to run based on a rough examination
of how parameter values compared to the LM’s results. We find
that the chosen values for the step sizes and other hyperparam-
eters in the gradient descent algorithms often leads to apparent
convergence at different energies. It is therefore essential to make
effective choices for these parameters, which in part seems to rely
on one’s experience with a given system.

Figures 5 and 6 show energy differences relative to the LM
result when optimizing the equilibrium and stretched nitrogen
dimer wave functions respectively. Tables providing the precise
energies and statistical uncertainties as well as the step sizes used
are shown in the appendices. First, we see the choice of step sizes
can have a substantial influence on the quality of gradient descent
results. In some cases, the same method can appear to converge
to energies more than 20 mEh apart when run with different ini-
tial step sizes. While many of the gradient descent optimizations
clearly did not reach the minimum, the energy differences from
the LM are only about 5 mEh or less when looking at the runs
that used what turned out to be the best choices for the hyper-
parameters. With further tweaking of the hyperparameters, we
would guess that at least some of these descent methods could
match the performance of the LM in this simple test case. Finally,
we observe that the hybrid method performs about as well as the
best descent optimizations, typically reaching energies that agree
with the LM within error bars.

3.2 All parameter N2

We now add a NCJF and enable orbital optimization in order to
extend the comparison in a setting with a larger number and vari-
ety of nonlinear parameters. We will consider the relative merits
of the optimization methods in much greater detail in this setting
as it offers a clearer view of their differences. For the number-
counting Jastrow factor, we generated a set of 16 counting re-
gions with 8 octants per atom after dividing space in half with a
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Fig. 5 Different methods’ optimized energies relative to that of the LM for
equilibrium N2 when optimizing CI coefficients and the TJF.
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Fig. 6 Different methods’ optimized energies relative to that of the LM for
stretched N2 when optimizing CI coefficients and the TJF.
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Fig. 7 Different methods’ optimized energies relative to that of the tradi-
tional LM for equilibrium N2 when all parameters are optimized simulta-
neously. See also Table 2.

plane bisecting the bond axis. The details are given in Appendix
D, but we will note here that this adds 135 F-matrix parameters
to the optimization. Allowing for orbital optimization adds an-
other 663 and 618 parameters for the equilibrium and stretched
cases, respectively. Note that our implementation of orbital op-
timization in QMCPACK removes rotation parameters for orbitals
that are not occupied in any determinant and also between or-
bitals occupied in all determinants, and so the precise number of
rotation parameters is a function of the determinant expansion.
With orbital optimization enabled, the choice of importance sam-
pling function becomes an issue, and we now employ |Φ|2 for all
LM and BLM steps with the ε weight set to 0.001.

Figures 7 and 8 show converged ground state energies rela-
tive to that of the LM. For this more difficult version of the ni-
trogen dimer, we find that the gradient descent methods are less
effective. They now often yield energies that can be 10 mEh or
more above the LM’s answer though we again find that choice of
step size plays a significant role. The worst results for AMSGrad
and ADAM were the result of choosing inappropriately large step
sizes and simple reductions in the initial step size produced im-
provements in energy of tens of mEh though the final result still
remained well above the LM’s. When we examined the optimiza-
tions over the course of their iterations, the gradient methods
typically displayed some ability to quickly improve the wave func-
tion and energy initially, but they would then plateau and only
very slowly improve the energy thereafter. Extrapolating from
our results indicates that even if these gradient descent methods
eventually converge to the minimum, they will only do so after
thousands more iterations and at a computational cost well be-
yond that of the LM.

A more careful comparison of the different methods can be
made by referring to Tables 2 and 3, which list the precise con-
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Fig. 8 Different methods’ optimized energies relative to that of the tradi-
tional LM for stretched N2 when all parameters are optimized simultane-
ously. See also Table 3.

Table 2 Energies,uncertainties, and sample numbers for optimization of
all parameters in equilibrium N2.

Method Energy (a.u.) Uncertainty (a.u.) Samples

Hybrid 1 -19.9263 0.0004 5,400,000
Hybrid 2 -19.9266 0.0004 10,000,000
Hybrid 3 -19.9272 0.0004 42,000,000

RMSprop 1 -19.8974 0.0005 20,000,000
RMSprop 2 -19.9242 0.0004 20,000,000

AMSGrad 1 -19.9115 0.0006 20,000,000
AMSGrad 2 -19.9221 0.0004 20,000,000

ADAM 1 -19.8973 0.0009 20,000,000
ADAM 2 -19.9165 0.0005 20,000,000

Random 1 -19.9019 0.0006 20,000,000
Random 2 -19.9157 0.0005 20,000,000

Linear Method -19.9280 0.0008 40,000,000

Blocked Linear Method -19.9297 0.0008 80,000,000

DF-BLM -19.9293 0.0001 90,000,000
DF-Hybrid 1 -19.9290 0.0001 15,400,000
DF-Hybrid 2 -19.9290 0.0001 20,000,000
DF-Hybrid 3 -19.9293 0.0001 52,000,000
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Table 3 Energies,uncertainties, and sample numbers for optimization of
all parameters in stretched N2.

Method Energy (a.u.) Uncertainty (a.u.) Samples

Hybrid 1 -19.6316 0.0004 5,400,000
Hybrid 2 -19.6321 0.0004 8,400,000
Hybrid 3 -19.6340 0.0004 49,200,000

RMSprop 1 -19.6277 0.0005 20,000,000
RMSprop 2 -19.6313 0.0005 20,000,000

AMSGrad 1 -19.5571 0.0010 20,000,000
AMSGrad 2 -19.6064 0.0008 20,000,000
AMSGrad 3 -19.6268 0.0008 20,000,000

ADAM 1 -19.5889 0.0009 20,000,000
ADAM 2 -19.6179 0.0006 20,000,000
ADAM 3 -19.6192 0.0005 20,000,000

Random 1 -19.6112 0.0006 20,000,000
Random 2 -19.6196 0.0006 20,000,000

Linear Method -19.6356 0.0009 40,000,000

Blocked Linear Method -19.6354 0.0008 80,000,000

DF-BLM -19.6356 0.0001 90,000,000
DF-Hybrid 1 -19.6352 0.0001 15,400,000
DF-Hybrid 2 -19.6354 0.0001 18,400,000
DF-Hybrid 3 -19.6346 0.0001 59,200,000

verged energies and their error bars. We also report the total
number of samples used in each optimization as a proxy for com-
putational effort, noting that for the BLM and the BLM portion
of the hybrid method we double counted samples out of fairness
as the BLM steps require running over their samples twice. In
assessing cost, one must also consider the statistical uncertainty
achieved, where we see that the LM and BLM are at a disadvan-
tage. To help illustrate the update uncertainty contribution to this
error, which we first discussed in the theoretical section above, we
show the energy versus LM iteration for equilibrium N2 in Figure
9. The fluctuations in energy from step to step, sometimes by as
much as 2 mEh, demonstrate the difficulty the LM faces from the
uncertainty in its steps near the minimum. In this case, we see
that the LM’s final energy uncertainty is driven by the update step
uncertainty rather than the uncertainty in evaluating the energy
for a given set of parameter values at a particular iteration. We
have observed similar behavior in the BLM and include the result
of a BLM calculation in the tables. Note that the tabulated en-
ergies come from an average over the last ten optimization steps
in the case of the standard LM and BLM and from an average
over the last 50 descent steps in the case of the hybrid and pure
descent methods.

From the tabulated data, we see that the hybrid optimization
can achieve lower energies than the gradient descent methods us-
ing fewer samples, and that its results are typically within a few
mEh of the traditional LM. While the accelerated descent sections
of the hybrid method provide some swift energy reductions early
on when the wave function is still far from the minimum in pa-
rameter space, the BLM steps in the algorithm greatly accelerate
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Fig. 9 The standard LM optimization for all parameter equilibrium N2.
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Fig. 10 Values for the first off-diagonal F-matrix element (F01), the first
electron-nuclear TJF spline parameter (u0), and the second orbital rota-
tion variable (X02) at each micro iteration of the “Hybrid 1” optimization for
all parameter equilibrium N2.
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Fig. 11 Standard Errors for the hybrid method and LM on all parameter
equilibrium N2 vs different optimizations’ total sampling costs.

the process of bringing the parameters near to the minimum, as
can be seen in Figure 10. Looking at the electron-nuclear spline
parameter and the orbital rotation parameter, we see typical cases
in which rapid initial parameter movement during the early part
of the first RMSprop stage transitions to much slower movement
later in that stage, followed by very little movement at all in later
RMSprop stages. Note that the latter can be explained largely by
the need to keep initial step sizes small in later stages to avoid sig-
nificant upward deviations in the energy as the RMSprop method
rebuilds its momentum history. In between these AD stages, the
BLM updates move the parameter values in much larger steps,
greatly accelerating convergence. This behavior makes the hy-
brid approach somewhat more black box as compared to the pure
descent approaches, as the ability to get near the minimum with
a modest sampling effort is much less dependent on the choice
of the initial step sizes than for the AD methods. This conclusion
is supported by the fact that the hybrid optimizations in Tables 2
and 3 used various initial step size settings (as discussed in Ap-
pendix B) and nonetheless produced lower energies than the pure
descent methods in every case.

As discussed in our introduction of the hybrid method, another
advantage is its ability to obtain a lower error bar at convergence
than the LM for the same overall computational cost. This is a
natural consequence of spending part of its sampling effort on
gradient descent steps that correct for the BLM steps’ uncertainty
and bias (as illustrated earlier in Figure 4) and that hew closer
to the zero-variance principle by importance sampling with |Ψ|2.
To demonstrate this advantage explicitly, we ran additional sets
of LM and hybrid optimizations adjusted to have essentially the
same total number of samples. We then compare the standard
error for the last ten LM steps and the last ten hybrid macro it-
erations in Figures 11 and 12, where we find that the hybrid has
a substantially lower statistical uncertainty in every case. Assum-
ing the usual N−1/2 decay of uncertainty with sample size, the
LM would require a factor of roughly four times more samples to
reach the hybrid’s uncertainty,

These statistical advantages in the final energy can be improved
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Fig. 12 Standard Errors for the hybrid method and LM on all parameter
stretched N2 plotted against different optimizations’ total sampling costs.

even further if we finish an optimization with a long section of
pure descent. To demonstrate this, we have taken the final wave
functions produced by the hybrid and BLM optimizations in Ta-
bles 2 and 3 and applied a further period of optimization using
RMSprop with initial step sizes of 0.001 for all parameters. This
“descent finishing” (DF) adds only a modest additional cost com-
pared to the preceding optimization and yields a large improve-
ment in statistical uncertainty and, in many cases, an improve-
ment in the final energy value as well. These advantages can
be seen clearly in Figures 13 and 14, as well as in Tables 2 and 3,
where we observe final error bars that are a factor of eight smaller
than those of the LM. In terms of cost, this implies that the tra-
ditional LM would have required 64 times the original number
of samples to achieve the DF-BLM or DF-hybrid precision. Put
another way, we find that the DF-hybrid approach gives an equiv-
alent or lower energy, with a much smaller error bar, at a sub-
stantially lower cost. Note that, in contrast, we find that this DF
approach is not very effective when used in conjunction with the
pure descent methods, where it essentially amounts to restarting
the methods at the parameter values found after the first run of
their optimization. While we do find that this restarting of the
accumulation of momentum can improve the energy, the wave
function parameters still do not reach their optimal values and
the energy lowering vs total sampling cost is not competitive with
the DF-hybrid.

Our study of the nitrogen dimer provides some clarity on the
relative strengths of the LM and gradient descent, while also
pointing the way to a more effective synthesis of the two. Gra-
dient descent methods struggle in the presence of a variety of
different highly nonlinear parameters, although they did perform
better when we were only optimizing TJFs and CI coefficients.
Among the descent methods, we found that the RMSprop ap-
proach came the closest to achieving the LM minimum energy. It
is of course difficult to rule out the possibility that this and other
AD methods could reach the LM energy with additional sampling
and more experimentation with the hyperparameters. However,
it is far from obvious that this would be be cost-competitive, and
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Fig. 14 Converged energies in stretched N2 before and after a final de-
scent optimization.

the need to make careful and possibly system-specific choices for
hyperparameters is somewhat antithetical to the general aspira-
tion that an optimizer be as black-box as possible. For its part,
the LM is more effective at moving parameters into the vicinity
of the minimum, but tight convergence is then stymied by an un-
satisfactory level of biased statistical uncertainty. As a side note,
this behavior — in which the first derivative methods give better
convergence once near the minimum but are at a relative disad-
vantage far from the minimum — is somewhat the reverse of what
one would expect in deterministic optimization, where second
derivative methods are at their strongest relative to first deriva-
tive methods during the final tight convergence in the vicinity of
the minimum. Although things are reversed in the stochastic VMC
case, we stress that the two classes of methodology are strongly
complementary, as they compensate for each other’s weaknesses.
By using a low-memory version (BLM or hybrid) of the LM to get
near to the minimum and then handing off to an accelerated de-
scent method to achieve tight convergence, we find better overall
performance than when working with either class of method on
its own. These insights in hand, we will now apply this combined
approach in a pair of larger and more challenging VMC optimiza-
tion examples.

3.3 Styrene

We first turn to styrene at its equilibrium geometry (Figure 15)
which offers an optimization with both more electrons and more
variables, but in which the traditional LM is still quite achievable
for comparison. As in N2, we construct a multi-Slater wave func-
tion modified by both TJFs and a NCJF. To generate our Slater
determinants, we have employed the heatbath selective CI (HCI)
method as implemented in the Dice code by Sharma and cowork-
ers.17,19 The orbital basis for the HCI calculation was produced
via a (14e,14o) CASSCF calculation in Molpro90 using a recently
developed set of pseudopotentials and their corresponding dou-
ble zeta basis.91 In this CASSCF basis, HCI then correlated 32
electrons (out of a total of 40 electrons left over after applying
pseudopotentials) in 64 orbitals. For our NCJF, we defined one
counting region per atom, giving our F-matrix 135 optimizable
parameters (see Appendix D for further NCJF details).

We optimized our wave function in a staged fashion using the
standard LM, the BLM, and the hybrid method. First, we con-
ducted a partial optimization of the TJFs and the 100 most im-
portant CI coefficients. We then turned on the optimization of
the orbitals and the NCJF’s F-matrix, reaching a total of 4,570
parameters, most of them highly nonlinear. In the hybrid and
BLM optimizations, the parameters were divided into 5 blocks
and we used Nk = 50 and No = 5 for our numbers of kept direc-
tions and previous important directions, respectively. We used a
value of 0.001 for ε in the |Φ|2 distribution for the LM and BLM
sampling. These optimizations were then followed by 1,000 steps
of RMSprop. As shown in Figure 16, we find that our hybrid
method reaches a converged energy as low or better than that
of the standard and blocked LM, and finishing our optimizations
with descent provides a substantial improvement in the statistical
uncertainty even in this more challenging case.
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Fig. 15 Equilibrium geometry of styrene. See Appendix C for structure
coordinates.
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Fig. 16 Converged energies in equilibrium styrene before and after a
final descent optimization.

Table 4 A summary of the VMC optimization stages in FNNF showing
the number of determinants Nd included from HCI, which parameters are
optimized, and the total number Np of optimized parameters. Note that
CI coefficients are optimized at every stage. Stages 2, 3, and 4 start
from the parameter values from the previous stage, with newly added
determinants’ coefficients initialized to zero. We also report the number
of iterations performed in each stage, which for stage 4 is simply the
number of RMSprop steps. A hybrid iteration, on the other hand, consists
of 100 RMSprop steps followed by three BLM steps. All RMSprop steps
use 20,000 samples drawn from |Ψ|2, while the BLM steps each use 1
million samples drawn from the |Φ|2 guiding function with ε set to 0.01.

Stage Method Nd TJF F-matrix Orbitals Np Iterations

1 Hybrid 102 X 139 9
2 Hybrid 103 X X 1048 4
3 Hybrid 104 X X X 15,573 6
4 AD 104 X X X 15,573 1,000

Table 5 Energies of the transition state of FNNF.

Method Energy (a.u.) Uncertainty (a.u.)

Hartree-Fock -67.112730

CASSCF -67.359100

VMC Stage 1 -68.1017 0.0011

VMC Stage 2 -68.1213 0.0009

VMC Stage 3 -68.1698 0.0006

VMC Stage 4 -68.1750 0.0002

3.4 FNNF
We now turn our attention to a strongly correlated transition state
of the the diflurodiazene (FNNF) cis-trans isomerization, where
we test the hybrid optimization approach on a much larger deter-
minant expansion. The FNNF isomerization can be thought of as
a toy model molecule for larger systems such as photoswitches,
which have potential uses in molecular machines92,93 and high-
density memory storage.94 In addition, FNNF itself is of interest
as part of the synthesis of high energy polynitrogen compounds
and has been the subject of multiple electronic structure stud-
ies.95–97 Here we focus on its strongly correlated transition state,
which is the direct analogue of the out-of-plane TS1 transition
state in diazene.98

Our treatment of this transition state began by locating its ge-
ometry via an (8e,8o) CASSCF optimization in the cc-pVTZ ba-
sis using Molpro.90 At this geometry (given in Appendix C) we
then switch over to using BFD pseudopotentials and their corre-
sponding triple zeta basis,88 in which we use the Dice code17,19

to iterate an HCI calculation with 24 electrons distributed in the
lowest 50 (8e,8o) CASSCF orbitals until its variational wave func-
tion has reached almost 2 million determinants. We then import
the first 10,000 of these determinants into our VMC optimization
and combine them with TJFs, atom-centered NCJFs, and orbital
optimization, which produces an ansatz with over 15,000 varia-
tional parameters.

Our VMC optimization proceeds in stages as summarized in
Table 4. This begins with TJFs and a 100-determinant ansatz
from HCI, with later optimization stages adding more determi-
nants and turning on the optimization of the NCJF and orbital
rotation variables. As in styrene, the strategy is to bring the pa-
rameters near to their optimal values with the help of the LM and
then to perform a final unbiased relaxation via a long run of RM-
Sprop AD. Due to the large number of variational parameters, we
incorporate the LM via the hybrid scheme, with the BLM steps
employing 2, 2, and 10 blocks during stages 1, 2, and 3, respec-
tively. In stages 1 and 2, we used an initial RMSprop step size
of 0.01 for TJFs and CI coefficients before setting it to 0.005 at
the beginning of stage 3. For the F-matrix parameters, we began
by setting the initial step size to 0.001, but after observing a sig-
nificant rise and fall of the energy during the RMSprop section
of the first hybrid macro iteration in stage 3, we reduced this to
0.0001 and also lowered the TJF and CI step size to 0.0005 for
the last 4 macro iterations in that stage. For all steps in stage 4,
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Fig. 17 Left panel: energies during stages 3 and 4 of the FNNF optimization. The descent energies are reported as the average over the last 50
RMSprop steps within each block of 100 RMSprop steps, whereas the BLM energies are the energy estimates on the random samples used for the
BLM update steps. Right panel: change in the value of the F-matrix parameter that couples the two nitrogen atoms’ counting regions over the first three
macro iterations of stage 3, with each micro iteration corresponding to one RMSprop or BLM step. The nine BLM points on the right panel correspond
to the first nine BLM points on the left panel.

we maintained the 0.0001 step size for the F-matrix parameters
and lowered the initial step size for TJFs and CI coefficients to
0.0002. An initial step size of 0.0001 was used for orbital param-
eters throughout both stages 3 and 4. The BLM steps used the
|Φ|2 guiding function with a value of 0.01 for ε.

The energies resulting from this staged optimization are shown
in Table 5 and Figure 17. Unsurprisingly, stage 3 proved to be the
most challenging and expensive stage, as it is where we hope to
move all parameters near to their final values in a setting where
the traditional LM would face severe memory bottlenecks. As
seen in Figure 17, both the AD and BLM steps clearly work to
lower the energy during the first two macro iterations of stage 3.
In the last four macro iterations of stage 3, however, the energy
decreases more slowly and it is less clear, at least when looking at
the energetics, whether the BLM steps are still necessary. Instead,
their importance is revealed by inspecting the movement of the
F-matrix values within the NCJF, an example of which is shown
in the right-hand panel of Figure 17. As in N2, these parame-
ters prove to be the most resistant to optimization via AD, and
we clearly see that although AD does gradually move their values
in the same direction as the BLM, the BLM steps dramatically ac-
celerate their optimization. This effect is seen throughout all six
macro iterations of stage 3, and so although the BLM energies are
not obviously improving at the end of this stage, the inclusion of
these steps is clearly still beneficial. Note that relaxing the NCJF
after moving from a 1,000-determinant to a 10,000-determinant
expansion is important, because the larger determinant expan-
sion is better able to capture some of the correlation effects that
the NCJF is encoding, and so we expect (and indeed see) that
this diminishing of its role leads to smaller F-matrix values being

optimal.

Although we have again found that it would be difficult for AD
alone to provide a successful optimization of our ansatz, the sta-
tistical advantages of its incorporation are still quite clear. A close
inspection of the sample sizes used in the optimization reveals
that each of the AD and BLM points in the left panel of Figure 17
corresponds to averaging over 1 million random samples. Despite
this equal sampling effort, the uncertainties for the AD energy es-
timates are about one third the size of those for the BLM, implying
that a pure BLM approach would require an order of magnitude
more sampling effort to produce similar results. To understand
this statistical advantage, we need to remember two important
differences between the AD and BLM steps. First, the nonlinear-
ity of the LM and BLM eigenvalue problem leads to biases in the
update steps that can both increase the step-to-step energy un-
certainty and cause the method to optimize off-center from the
true minimum. Second, the use of an alternative guiding func-
tion for the BLM samples in order to mitigate this step uncertainty
moves us away from the zero-variance regime enjoyed by tradi-
tional |Ψ|2 sampling. If we were to instead employ traditional
sampling, our energy estimates for a specific wave function would
improve, but the BLM step uncertainty would increase sharply. As
the AD methods do not suffer from these issues, they help us to
further mitigate the BLM step uncertainty and to perform a final,
high-precision relaxation during stage 4. In total, incorporating
the AD steps in this case roughly doubles the number of samples
required, but is well worthwhile given that it improves statistical
efficiency by almost an order of magnitude.

While it is possible that the NCJF parameters are not quite con-
verged in this particular optimization and that increasing itera-
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tion counts in stages 1 through 3 could further improve the en-
ergy, the lessons learned from investigating a large MSJ optimiza-
tion for the FNNF transition state are already clear. While both
the BLM and the AD methods can be used in this 10,000+ param-
eter regime, they bring highly complementary advantages to the
optimization and so would appear to work better together than
apart. In particular, the BLM helps optimize the parameters that
change only very slowly during AD, whereas the statistical advan-
tages of AD greatly increase precision at a given sample size and
work to eliminate the statistical biases suffered by the BLM.

4 Conclusions and Outlook
We have found that a combination of first and second derivative
optimization methods appears to work better than using either
class of method on its own when minimizing the energies of wave
functions in variational Monte Carlo. This is particularly true for
wave functions with a wide variety of different types of nonlinear
parameters, as for example when dealing simultaneously with tra-
ditional one- and two-body Jastrow factors, many-body Jastrow
factors, and orbital relaxations. While the linear method and its
low-memory variants show a superior ability to move these non-
linear parameters into the vicinity of their optimal values, accel-
erated descent methods prove much more capable of converging
them tightly around the minimum. This situation stands as an in-
teresting reverse of what is typically encountered in deterministic
optimization, where second derivative methods are usually supe-
rior for tight final convergence and first derivative methods per-
form relatively better in the early stages of an optimization. The
realities of working with statistically uncertain energies and en-
ergy derivatives turns this expectation on its head, both because
of the need to stabilize the statistics of the linear method’s second
derivative elements through zero-variance-violating importance
sampling schemes and due to the nonlinear biases that are in-
duced when solving the linear method’s eigenvalue problem. The
linear method’s ability to quickly move the parameters near the
minimum, however, makes it appear that employing it as part
of a hybrid approach is well worthwhile. Indeed, in our testing,
hybridizing low-memory linear method variants with accelerated
descent methods provides better energies with smaller statistical
uncertainties at a lower computational cost when compared to
the stand-alone use of either the linear method or accelerated de-
scent methods.

Looking forward, there are many questions still to be answered
about the interplay between first and second derivative methods.
For example, although the blocked linear method greatly reduces
memory cost vs the traditional linear method, it is not clear that it
can be applied effectively beyond 100,000 parameters in its cur-
rent form. One thus wonders whether it is necessary to optimize
all of the parameters during the linear method steps of the hybrid
approach, or whether it may be possible to identify (perhaps dur-
ing an ongoing optimization?) which parameters would benefit
from linear method treatment and which would not. Were such
a sorting possible, accelerated descent methods with their even
lower memory footprint could be left to deal with most of the pa-
rameters, with only a relatively small subset treated by the linear
method steps. Another important issue is making the hybrid ap-

proach as black box and user friendly as possible. Although we
have tested it here with many different descent step size settings
for the different parameter types, this has not been a systematic
survey. More extensive testing may allow clear defaults to be set-
tled upon so that users can reasonably expect a successful opti-
mization without resorting to careful step size control. We look
forward to investigating these exciting possibilities in future.
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7 Appendix A: Additional Energies

Table 6 Precise Values for optimizing CI coefficients and traditional Jas-
trow factors in equilibrium N2.

Method Energy (a.u.) Uncertainty (a.u.) Samples

Hybrid 1 -19.9083 0.0005 3,900,000
Hybrid 2 -19.9095 0.0006 5,400,000
Hybrid 3 -19.9101 0.0005 29,000,000

RMSprop 1 -19.8936 0.0006 20,000,000
RMSprop 2 -19.9091 0.0005 20,000,000

AMSGrad 1 -19.8998 0.0007 20,000,000
AMSGrad 2 -19.8926 0.0008 20,000,000
AMSGrad 3 -19.9048 0.0006 20,000,000
AMSGrad 4 -19.9071 0.0005 20,000,000

ADAM 1 -19.9009 0.0005 20,000,000
ADAM 2 -19.9056 0.0006 20,000,000
ADAM 3 -19.9078 0.0005 20,000,000

Random 1 -19.8926 0.0006 20,000,000
Random 2 -19.9041 0.0005 20,000,000

Linear Method -19.9105 0.0010 40,000,000
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Table 7 Precise Values for optimizing CI coefficients and traditional Jas-
trow factors in stretched N2.

Method Energy (a.u.) Uncertainty (a.u.) Samples

Hybrid 1 -19.6141 0.0005 27,000,000

RMSprop 1 -19.6010 0.0007 20,000,000
RMSprop 2 -19.6137 0.0005 20,000,000

AMSGrad 1 -19.6044 0.0006 20,000,000
AMSGrad 2 -19.5858 0.0007 20,000,000
AMSGrad 3 -19.6096 0.0006 20,000,000

ADAM 1 -19.6028 0.0006 20,000,000
ADAM 2 -19.6105 0.0005 20,000,000

Random 1 -19.5937 0.0006 20,000,000
Random 2 -19.6147 0.0006 20,000,000

Linear Method -19.6155 0.0010 40,000,000

8 Appendix B: Details for N2 Optimizations
The details for the optimizations behind the final energies in the
main paper are presented below. In every case of N2, all flavors of
pure gradient descent based optimization were run for 2000 iter-
ations at 10,000 samples per iteration except for the random step
size method, which was run for 10,000 iterations at 2000 sam-
ples per iteration. The total sampling cost was then 20 million
samples, half of the standard linear method’s cost of 40 million
over 40 steps. Given the descent methods’ tendency to plateau
after a few hundred iterations and then lower the energy by only
a few mEh afterward, we expect that running them longer to fully
match or exceed the linear method’s sampling effort would not
yield a much better result in most cases. We found that it was of-
ten advantageous to allow for different types of parameters to be
given different initial step sizes. Tables 8 through 11 list the step
sizes for different descent optimizations in all cases of N2. The
values can be cross-referenced with the energy results in earlier
tables to see which choices were most effective. Some amount
of experimentation was necessary to build up intuition for what
choices are effective, but we generally expect more nonlinear pa-
rameters such as those in the F-matrix and the orbitals to require
smaller step sizes. We also found that RMSprop benefited from
using larger step sizes compared to other descent algorithms. The
energy may be significantly raised on early iterations, but tends to
be quickly lowered and eventually brought to an improved result
once enough gradient history has built up over more steps.

The details of the different hybrid method optimizations are
slightly more involved and are discussed separately here. In all
cases, the blocked linear method steps of the hybrid optimiza-
tion used 5 blocks with 5 directions from sections of RMSprop to
provide coupling to variables outside a block and retained 30 di-
rections from each block to construct the final space for determin-
ing the parameter update. These were also the settings given to
the blocked linear method optimizations of N2 that appear in the
main text. All hybrid optimizations used the RMSprop method for
their AD sections with the hyperparameters d = 100, ρ = .9 and
ε = 10−8. The step sizes used in the AD sections varied over the

course of the hybrid optimizations. We typically chose larger step
sizes for the AD portion of the first macro-iteration in order to ob-
tain more energy and parameter improvement at a low sampling
cost before any use of the BLM and these are tabulated separately
as "Hybrid-Initial". The smaller step sizes reported for the rest
of hybrid optimization were used in the later macro-iterations to
avoid rises in the energy that might occur before a sufficient gra-
dient history was accumulated. We also list the step sizes in the
long RMSprop optimization used to achieve the descent finalized
energies. These were sometimes larger than those for the AD
sections of the initial hybrid optimizations because the descent
finalization was long enough for any early transient rises in the
energy to recover.

We now specify how the hybrid method sampling costs reported
in Tables 2 and 3 of the main paper were divided between AD and
the BLM. In all parameter equilibrium N2, Hybrid 1 consisted of
500 AD steps costing 3 million samples interwoven with 12 BLM
steps that cost 2.4 million samples. Hybrid 2 consisted of the
same sequence of steps, but had an increased sampling effort of 6
million samples on descent and 2.4 million on BLM. Hybrid 3 had
a greatly increased sampling cost and consisted of 1400 AD steps
for 11.2 million samples interwoven with 19 BLM steps costing 38
million. For all parameter stretched N2, Hybrid 1 used the same
sequence of steps and sampling cost breakdown as Hybrid 1 for
the equilibrium case. Hybrid 2 consisted of 600 AD steps that cost
7 million samples and 15 BLM steps that cost 3 million. Hybrid 3
also had 600 AD steps, now using 12 million samples, and 15 BLM
steps, now using 30 million samples. For all descent finalizations
in N2, we used 1000 steps of RMSprop at an additional cost of
10 million samples and took an average over the last 500 steps to
obtain our reported energies and error bars.

Finally, we give the breakdown of the hybrid sampling costs in
Tables 6 and 7 of Appendix A. For the equilibrium case, Hybrid 1
had 500 AD steps costing 1.5 million samples and 12 BLM steps
costing 2.4 million samples. Hybrid 2 had the same combination
of steps and BLM cost as Hybrid 1 while the AD steps used 3
million samples. Hybrid 3 used the same sequence of steps, but
increased the AD and BLM sampling costs to 5 million and 24
million, respectively. In the stretched case, the hybrid optimiza-
tion used 500 AD steps with 3 million samples and 12 BLM steps
costing 24 million samples.
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Table 8 Step sizes for TJFCI equilibrium N2 optimizations.

Method 2 Body Jastrow 1 Body Jastrow CI

RMSprop/Booth 1 0.01 0.01 0.005
RMSprop/Booth 2 0.05 0.05 0.01

AMSGrad 1 0.05 0.05 0.01
AMSGrad 2 0.05 0.05 0.05
AMSGrad 3 0.01 0.01 0.01
AMSGrad 4 0.001 0.001 0.001

ADAM 1 0.01 0.01 0.01
ADAM 2 0.005 0.005 0.005
ADAM 3 0.001 0.001 0.001

Random 1 0.01 0.01 0.01
Random 2 0.0005 0.0005 0.0005

Hybrid-Initial 1 0.1 0.1 0.01
Hybrid-Initial 2 0.1 0.1 0.01
Hybrid-Initial 3 0.1 0.1 0.01

Hybrid 1 0.001 0.001 0.001
Hybrid 2 0.005 0.005 0.005
Hybrid 3 0.005 0.005 0.005

Table 9 Step sizes for TJFCI stretched N2 optimizations.

Method 2 Body Jastrow 1 Body Jastrow CI

RMSprop/Booth 1 0.01 0.01 0.005
RMSprop/Booth 2 0.05 0.05 0.01

AMSGrad 1 0.05 0.05 0.01
AMSGrad 2 0.05 0.05 0.05
AMSGrad 3 0.01 0.01 0.01

ADAM 1 0.01 0.01 0.01
ADAM 2 0.005 0.005 0.005

Random 1 0.01 0.01 0.01
Random 2 0.001 0.001 0.001

Hybrid-Initial 1 0.1 0.1 0.1
Hybrid 1 0.005 0.005 0.005

Table 10 Step sizes for all parameter equilibrium N2 optimizations.

Method 2 Body Jastrow 1 Body Jastrow F-Matrix CI Orbitals
RMSprop/Booth 1 0.005 0.005 0.001 0.001 0.001
RMSprop/Booth 2 0.05 0.05 0.01 0.01 0.01

AMSGrad 1 0.05 0.05 0.005 0.01 0.001
AMSGrad 2 0.005 0.005 0.001 0.001 0.001

ADAM 1 0.05 0.05 0.005 0.01 0.001
ADAM 2 0.005 0.005 0.001 0.001 0.001

Random 1 0.001 0.001 0.001 0.001 0.001
Random 2 0.001 0.001 0.0005 0.001 0.0005

Hybrid-Initial 1 0.1 0.1 0.0001 0.01 0.01
Hybrid-Initial 2 0.1 0.1 0.0005 0.01 0.01
Hybrid-Initial 3 0.01 0.01 0.001 0.01 0.001

Hybrid 1 0.0001 0.0001 0.0001 0.0001 0.0001
Hybrid 2 0.001 0.001 0.0005 0.0005 0.0005
Hybrid 3 0.001 0.001 0.001 0.001 0.001

DF-Hybrid 1 0.001 0.001 0.001 0.001 0.001
DF-Hybrid 2 0.001 0.001 0.001 0.001 0.001
DF-Hybrid 3 0.001 0.001 0.001 0.001 0.001

Table 11 Step sizes for all parameter stretched N2 optimizations.

Method 2 Body Jastrow 1 Body Jastrow F-Matrix CI Orbitals
RMSprop/Booth 1 0.05 0.05 0.05 0.01 0.01
RMSprop/Booth 2 0.1 0.1 0.01 0.01 0.005

AMSGrad 1 0.05 0.05 0.05 0.01 0.01
AMSGrad 2 0.05 0.05 0.01 0.02 0.001
AMSGrad 3 0.005 0.005 0.001 0.002 0.001

ADAM 1 0.05 0.05 0.05 0.01 0.01
ADAM 2 0.05 0.05 0.01 0.02 0.001
ADAM 3 0.005 0.005 0.001 0.002 0.001

Random 1 0.001 0.001 0.001 0.001 0.001
Random 2 0.001 0.001 0.0005 0.001 0.0005

Hybrid-Initial 1 0.1 0.1 0.01 0.01 0.001
Hybrid-Initial 2 0.1 0.1 0.01 0.01 0.001
Hybrid-Initial 3 0.1 0.1 0.01 0.01 0.001

Hybrid 1 0.0001 0.0001 0.0001 0.0001 0.0001
Hybrid 2 0.001 0.001 0.0005 0.0005 0.0005
Hybrid 3 0.001 0.001 0.0005 0.0005 0.0005

DF-Hybrid 1 0.001 0.001 0.001 0.001 0.001
DF-Hybrid 2 0.001 0.001 0.001 0.001 0.001
DF-Hybrid 3 0.001 0.001 0.001 0.001 0.001

9 Appendix C: Molecular Geometries

Table 12 Structure of equilibrium styrene. Coordinates in Å.

C 1.39295 0.00000 0.00000
C 2.16042 −1.19258 0.01801
C 2.09421 1.23178 −0.01914
C 3.56585 −1.15969 0.05286
C 3.50142 1.27211 0.01795
C 4.23686 0.07503 0.06081
C 0.00000 0.00000 0.00000
C −0.79515 −0.93087 0.54406
H 1.71222 −2.11161 −0.00239
H 1.59237 2.12471 −0.04753
H 4.09818 −2.03273 0.07153
H 3.99086 2.16987 0.01692
H 5.25794 0.10043 0.09503
H −0.46324 0.77112 −0.42775
H −0.43431 −1.72147 1.02278
H −1.78240 −0.84577 0.49296

Table 13 Structure of FNNF transition state. Coordinates in Å.

N 0.49939 −0.44656 −0.59377
N 0.57066 0.41224 0.5639
F −0.39084 0.14563 −1.36959
F −0.39807 −0.12032 1.39157

10 Appendix D: NCJF Gaussian Basis
The form for the three dimensional Gaussian basis functions of
NCJFs in the main text can equivalently be written as g j(r) =
exp
(
rT Ar−2BT r+C

)
where A is a symmetric matrix defined by

6 parameters, B is a three-component vector, and C is a single
dimensionless number. We used 16 basis functions for the all
parameter cases of N2, 16 in styrene, and 4 in FNNF. Their com-
plete specifications are presented in Tables 14-18. The compo-
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nents Axx,Axy,Axz,Ayy,Ayz,Azz with units of inverse square bohr
are the same for each basis function within a particular system
and are therefore listed separately in Table 14. Tables 15-18 con-
tain components Bx,By,Bz, with units of inverse bohr and C for
each system’s basis functions.

Table 14 Components of the matrix A for our systems.

System Axx Axy Axz Ayy Ayz Azz

Equilibrium N2 -6.9282 0.0 0.0 -6.9282 0.0 -6.9282
Stretched N2 -6.9282 0.0 0.0 -6.9282 0.0 -6.9282
Styrene -0.1 0.0 0.0 -0.1 0.0 -0.1
FNNF -0.1 0.0 0.0 -0.1 0.0 -0.1

Table 15 Gaussian components for all parameter equilibrium N2.

Basis Function Bx By Bz C

g0 -0.8 -0.8 -0.8 -0.2771
g1 0.8 -0.8 -0.8 -0.2771
g2 -0.8 0.8 -0.8 -0.2771
g3 0.8 0.8 -0.8 -0.2771
g4 -0.8 -0.8 0.8 -0.2771
g5 0.8 -0.8 0.8 -0.2771
g6 -0.8 0.8 0.8 -0.2771
g7 0.8 0.8 0.8 -0.2771
g8 -4.4787 -0.8 -0.8 -11.2500
g9 -2.8787 -0.8 -0.8 -4.5981
g10 -4.4787 0.8 -0.8 -11.2500
g11 -2.8787 0.8 -0.8 -4.5981
g12 -4.4787 -0.8 0.8 -11.2500
g13 -2.8787 -0.8 0.8 -4.5981
g14 -4.4787 0.8 0.8 -11.2500
g15 -2.8787 0.8 0.8 -4.5981

Table 16 Gaussian basis functions for all parameter stretched N2.

Basis Function Bx By Bz C

g0 -0.8 -0.8 -0.8 -0.2771
g1 0.8 -0.8 -0.8 -0.2771
g2 0.8 0.8 -0.8 -0.2771
g3 0.8 0.8 -0.8 -0.2771
g4 -0.8 -0.8 0.8 -0.2771
g5 0.8 -0.8 0.8 -0.2771
g6 -0.8 0.8 0.8 -0.2771
g7 0.8 0.8 0.8 -0.2771
g8 -5.8015 -0.8 -0.8 -22.7322
g9 -4.2015 -0.8 -0.8 -11.8474
g10 -5.8015 0.8 -0.8 -22.7322
g11 -4.2015 0.8 -0.8 -11.8474
g12 -5.8015 -0.8 0.8 -22.7322
g13 -4.2015 -0.8 0.8 -11.8474
g14 -5.8015 0.8 0.8 -22.7322
g15 -4.2015 0.8 0.8 -11.8474

Table 17 Gaussian basis functions for equilibrium styrene.

Basis Function Bx By Bz C

g0 -0.2632 0.0 0.0 -0.6929
g1 -0.4083 0.2254 -0.003403 -2.1748
g2 -0.3957 -0.2328 0.003617 -2.1081
g3 -0.6738 0.2191 -0.009989 -5.0220
g4 -0.6617 -0.2404 -0.003392 -4.9561
g5 -0.8007 -0.01418 -0.01149 -6.4137
g6 0.0 0.0 0.0 0.0
g7 0.1503 0.1759 -0.1028 -0.6409
g8 -0.3236 0.3990 0.0004516 -2.6392
g9 -0.3009 -0.4015 0.008982 -2.5184
g10 -0.7744 0.3841 -0.01352 -7.4750
g11 -0.7542 -0.41005 -0.003197 -7.3691
g12 -0.9936 -0.01898 -0.01796 -9.8794
g13 0.08754 -0.1457 0.08083 -0.3543
g14 0.08207 0.3253 -0.19328 -1.4992
g15 0.3368 0.1598 -0.09316 -1.4767

Table 18 Gaussian basis functions for FNNF.

Basis Function Bx By Bz C

g0 -0.09437 0.08439 0.1122 -0.2862
g1 -0.1078 -0.07790 -0.1066 -0.2905
g2 0.07386 -0.02752 0.2588 -0.7320
g3 0.07522 0.02274 -0.2630 -0.7533
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