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Organic photovoltaics offer a potential low-cost alternative to inorganic solar cells. Crucial to the
performance of these devices is the generation of free charges, which occurs through the dis-
sociation of excitons. Here we study excitons in polythiophenes, their stability and energetics
of dissociation and separation into charge carriers. Excitons are excited electron and hole pairs
bound by Coulomb interactions. To separate into unbound charges, the exciton binding energy
must be overcome. We use a tight binding Hamiltonian to describe the exciton binding energy and
its dissociation potential, for an exciton confined to a single polymer chain. Our model accounts
for polaronic effects, arising from reorganization of nuclei and from polarization of the surrounding
dielectric, which stabilize the separated carriers and thereby affect the exciton dissociation poten-
tial. We examine the effects of an applied electric field on the dissociation potential, and relate the
field strength necessary to unbind the hole-electron pair to the maximum attractive Coulomb force
between them. We apply our model to study the exciton at a donor-acceptor interface on a block-
copolymer. Interfacial polarization alters the exciton binding potential, rendering the hole-electron
pair easier to unbind.

Introduction
Semiconducting polymers are the subject of much interest and
study as active elements in a number of electronic devices, includ-
ing light emitting diodes1, field effect transistors2, and photo-
voltaic cells3. Among these devices, organic photovoltaics (OPV)
are particularly attractive as a low cost alternative photovoltaic
technology due to their light weight, flexibility, thin film charac-
ter, ease of manufacturing by printing techniques even on flexible
substrates, and production from abundant and non-toxic mate-
rials. These unique characteristics are set to enable applications
that are difficult to realize with traditional inorganic materials4–6.

Crucial to the performance of photovoltaic devices is the gen-
eration of free charge carriers, which occurs through the disso-
ciation of excitons. Excitons are excited electron and hole pairs
bound by Coulomb interactions. In photovoltaic devices, singlet
excitons form when light is absorbed in the active layer, made of
a photo-responsive semiconductor. For separation into individual
charge carriers, the electron-hole binding energy must be over-
come. In inorganic solar cells, excitons are weakly bound and
readily dissociate to form free carriers under thermal energy6.
In contrast, excitons in OPVs are tightly bound. Their dissocia-
tion relies on a two-component system made of an electron donor
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and an electron acceptor material, typically in a bulk heterojunc-
tion (BHJ) structure. Exciton dissociation occurs at the donor-
acceptor interface, where the electron is transferred to the accep-
tor, driven by the difference in electron affinity between the two
materials6. Because of the strong Coulomb interaction between
the hole and the electron, they remain bound even though they
now reside on two different materials across the donor-acceptor
interface. Complete dissociation or charge separation is driven
by an external electric field, or induced by quenched structural
disorder within the semiconductors7. If the exciton is not able to
dissociate within its lifetime, it will undergo recombination back
to the ground state, resulting in the loss of the energy gained
from photon absorption6. A clear understanding of exciton for-
mation, dissociation, and recombination in OPVs is necessary for
the design of more efficient devices.

We focus on the stability of excitons in organic semiconducting
polymers, and the energetics of their dissociation and separation
into charge carriers, which can then be transported to the elec-
trodes. The stability of an exciton is measured by its binding
energy, which quantifies the energy needed to separate this ex-
citon into free hole- and electron-polarons. For singlet excitons,
the exciton binding energy is practically evaluated as the energy
difference between the transport gap and the excitation energy
to the lowest lying dipole-allowed singlet excited state8–10. The
exciton binding energy of organic semiconductors is in the range
of 0.5 - 1 eV4,5,7, and is still debated due to difficulties in deter-
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mining it experimentally or computationally.
From an experimental point of view, one must accurately mea-

sure the optical gap (which gives the excitation energy) and the
transport gap. The optical gap is measured by optical absorp-
tion, while the transport gap is estimated from a combination of
ultraviolet photoelectron spectroscopy (UPS) and inverse photoe-
mission spectroscopy (IPES)8,10. Computationally, the binding
energy is determined by evaluating the same two quantities, for
which various ab-initio and semi-empirical methods have been
used.

Among the first-principles methods, the state-of-the-art is
many-body perturbation theory using the GW approximation
and the Bethe-Salpeter equations (BSE), shown to provide re-
liable quantitative predictions of excited states for organic sys-
tems11–26, including the optical gap and the transport gap. How-
ever this method shows some reliance on the mean-field starting
point used in the perturbative approach, and comes at a large
computational cost25,26, making it impractical to be applied to
large systems.

The other commonly used ab-initio method is time-dependent
density functonal theory (TDDFT). Though widely applied to pre-
dict the excited state properties of molecules, TDDFT shows sig-
nificant dependance on the exchange-correlation (XC) functional,
with the most used functionals (PBE27, a semilocal functional,
and B3LYP28–30, a global hybrid functional) recently shown to
severely fail at predicting the transport gap9 and some excited
state properties such as charge-transfer excitation energies for or-
ganic semiconductors31–33. The failure of these functionals can
be attributed to the self-interaction error33–35, which results in
too much localization or delocalization of molecular orbitals, de-
scribed in details elsewhere36,37. Recent efforts in reducing the
self-interaction error, and its implication in the description of sev-
eral properties, has led to the development of non-empirically
tuned range-separated hybrid functionals38–41. The use of these
functionals has shown remarkable success in describing ground
and excited state properties relevant in organic electronic ma-
terials research31,42–46, including singlet exciton binding ener-
gies9. Although much less expensive than the GW-BSE approach,
TDDFT with range-corrected functionals still presents limitations
in the system sizes to which it can be practically applied. Here we
note that the issue of computational cost of this method has been
recently addressed with the simplified Time-Dependent Density
Functional Theory (sTD-DFT) approach, with some compromise
on accuracy.

Semi-empirical models offer an attractive alternative to ab-
initio techniques. Being much less computationally expensive,
these methods allow access to much larger system sizes, and have
been widely applied to study of the dynamics of excited states in
organic semiconductors. In particular for excitons in conjugated
polymers, the commonly used methods are the Su-Schrieffer-
Heeger (SSH) model47–51, often used in an extended form in-
cluding the Hubbard52 electron-electron interaction effects, and
the Pariser-Parr-Pople (P-P-P) model53–56. Both these models are
quantum-based approaches employing the tight-binding formal-
ism. They have proved useful in providing qualitative under-
standing of excited state static and dynamic properties; quanti-

tative accuracy can also be achieved with careful parametriza-
tion54.

Here we use a similar model Hamiltonian to describe the bind-
ing energy and dissociation potential (i.e., energy versus relative
position of electron and hole), for a singlet exciton confined to
a single polymer chain. The main objective of the model is to
describe qualitatively and quantitatively the dissociation/binding
potential of the exciton, so as to elucidate how factors such as an
electric field or a donor-acceptor interface affect the energetics
of the hole-electron pair. Establishing such potential requires a
reliable description of the continuum between the bound exciton
and the separated/free hole and electron polarons, which will be
difficult to accomplish with available first-principles methods.

As in the P-P-P model, we adopt a quantum description of the
electron, the hole and their Coulomb interaction, following the
tight-binding approximation. Our model takes into account po-
laronic effects arising from the reorganization of nuclei and from
polarization of the surrounding dielectric, handled classically as
described in our previous work57. These effects substantially sta-
bilize the separated carriers and affect the exciton dissociation po-
tential. We apply our model to poly(3-hexylthiophene) (P3HT),
chosen as a model polymer. All parameters besides the exciton
Coulomb interaction are adopted from our previous work57,58,
where they were determined by periodic DFT calculations. The
Coulomb interaction parameter is determined by TDDFT calcula-
tions, using a non-empirically tuned range-corrected functional.

We examine the effect of an applied electric field on the exciton
binding potential. We want to know how the exciton is polarized
by the field, and determine how large a field would be needed
to unbind the electron-hole pair, i.e., overcome their Coulomb
attraction, in the absence of any other factors, such as an interface
or energetic disorder. Then we consider the exciton at a covalent
donor-acceptor interface along a block copolymer. The LUMO
energy offset at the interface polarizes the exciton. We quantify
the induced hole-electron separation and observe how the exciton
dissociation potential is altered by the interface.

Our transparent and flexible tight binding model, with carefully
determined parameters, provides qualitative and quantitative de-
scription of the continuum between the bound exciton and the
free electron and hole polarons after dissociation. In addition, the
model shows the contribution of polarization of the surrounding
environment and nuclei reorganization on the energetics of ex-
citon binding/dissociation. Although not included in this work,
the model is well suited to studying the effects of energetic and
spatial disorder, which are known to play an important role in the
generation of free charge carriers from exciton dissociation59,60.

The rest of the paper is organized as follows. We begin by
presenting the tight-binding model used to describe the electron
and hole on a polymer chain. We detail the components that dic-
tate the exciton energy within our model: the kinetic energy of
the electron and hole, their onsite Coulomb interaction energy
along with the TD-DFT determination of this relevant parame-
ter, and the stabilization energy arising from the polarization of
the surrounding dielectric medium and the reorganization of nu-
clei. Then, we show our calculated optimal singlet exciton for
P3HT for two cases: (1) “vertical" exciton on an isolated chain,
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(2) exciton in a polarizable medium with nuclei reorganization.
Comparison is made to GW-BSE and TD-DFT results to validate
our TB model. We then compute the exciton dissociation poten-
tial (i.e., energy versus hole-electron distance) and discuss how
it changes with the dielectric constant of the medium. Finally we
present the exciton dissociation by an external electric field and
by a donor-acceptor 1D interface with a given HOMO and LUMO
energy offset.

Tight-binding Hamiltonian
We describe a charge carrier (electron or hole) on a polymer chain
using the tight-binding model, as in our previous work57,58. Fol-
lowing this model, the electron or the hole occupies sites with
some onsite energy, and is stabilized by hopping between neigh-
boring sites, with hopping restricted to immediate neighbors. The
polymer chain is modeled as a one-dimensional array of sites,
each site corresponding to a monomer unit or moiety along the
polymer backbone. For P3HT, a thiophene ring constitutes a site.
The Hamiltonian is

H = ∑
k

εkc†
kck−∑

k
tk(c

†
kck+1 + c†

k+1ck) (1)

Here c†
k and ck are creation and annihilation operators for an elec-

tron on site k; εk is the onsite energy of the carrier at site k; and
tk is the hopping matrix element between sites k and k+1.

The electron and hole are two different particles and therefore
have different ε and tk values, determined by ground-state DFT
calculations. The onsite energies are determined from the energy
of the HOMO (for a hole) and LUMO (for an electron) of the
moiety making up a site. The onsite energies govern the HOMO
and LUMO energy levels for the overall polymer chain. These
values will be varied on either side of a covalent donor-acceptor
interface in Section 6, when we study the effects of interfacial
energy level offset on exciton dissociation. The hopping matrix
elements for the hole and electron were obtained from the widths
of valence and conduction bands for the polymer chain58.

Exciton binding energy
We want to define the exciton binding energy in a simple and
tractable manner. As such, we choose the HOMO - LUMO gap,
i.e., the energy difference between the extended states of the
hole and electron in an infinitely long polymer chain, as a ref-
erence. This is illustrated in Figure 1, which shows the gap en-
ergy levels for the polymer for three cases: (i) in the ground state
(gap, ELUMO − EHOMO), (ii) during charge transport (transport
gap, P−−P+, with P− and P+ being negative and positive po-
laron energy levels,) and (iii) after singlet exciton formation (op-
tical gap, S1− S0, in the bound exciton)8. Below, we reference
the exciton binding energy to the band gap; note that we do not
explicitly compute the band gap itself.

The terms entering the exciton energy are: (1) the kinetic en-
ergy of the two carriers, (2) the Coulomb interaction between the
two charge carriers, (3) the stabilization energy from polariza-
tion of the surrounding dielectric medium (polarization energy),
and (4) the stabilization energy from reorganization of coupled
nuclei (reorganization energy). Below we describe each of these

ELUMO

EHOMO

S0

S1

Eg Eg,o

P-

P+

Eg,t

Band 
gap

Transport 
gap

Optical 
gap

EB = Eg,o – Eg,t

EB
0 = Eg,o – Eg

I II III

Fig. 1 HOMO - LUMO gap and gap energy levels for a polymer chain in
the ground state (I), during charge transport (II), and after
photoexcitation (III). (adapted from Deibel et al 8.)

energy terms in detail. The description is in reference to the fully
delocalized exciton in a infinitely long polymer chain. The en-
ergy of this state relative to the ground state is the band gap
(ELUMO−EHOMO).

Kinetic energy of hole and electron

The kinetic energy of the hole and electron are given by the
square gradient term of the electronic Hamiltonian. For the con-
duction electron we have:

〈ψe|He|ψe〉= εe ∑
i
|ae

i |2− te ∑
i

(
ae∗

i ae
i+1 +ae∗

i−1ae
k
)

= (εe−2te)+ te ∑
i
|ae

i+1−ae
i |2 (2)

Here He is the one-electron tight binding Hamiltonian, |ψe〉 =
∑i aic

†
i |0〉 is the electron wavefunction, with ai the amplitude of

the wavefunction on site i, and c†
i the creation operator for an

electron, acting on the empty conduction band |0〉. Similarly, for
the valence hole we have:

〈ψh|Hh|ψh〉= εh− (εh ∑
i
|ah

i |2 + |th|∑
i
(ah∗

i ah
i+1 +ah∗

i−1ah
k))

=−2|th|+ |th|∑
i
|ah

i+1−ah
i |2 (3)

where |ψh〉= ∑i ah
i ci|V 〉 is the hole wavefunction, with ci the ani-

hilation operator for an electron, acting on the full valence band
|V 〉 = ∏i c†

i |0〉. Note the sign change of the hopping term in the
first line of Equation 3 in comparison to Equations 2 and 1. This is
because of the asymmetry of the local thiophene HOMO orbital,
in which the hole wavefunction is expanded, resulting in a nega-
tive hopping matrix element th 58. The total kinetic energy of the
exciton relative to the extended exciton or the band gap will be
the sum of the square gradient terms for the two carriers, as given
by:

∆〈T 〉= te ∑
i
|ae

i+1−ae
i |2 + |th|∑

i
|ah

i+1−ah
i |2 (4)
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where we have used the fact that the extended exciton has van-
ishing square gradient terms in the long polymer limit. The sub-
scripts e and h denote an electron and a hole respectively, and t
has the same meaning as in Equation 1. ∆〈T 〉 decreases with the
wavefunction square gradient of both carriers, and thus favors a
more extended exciton.

Electron-hole Coulomb interaction

In the absence of any reorganization of the medium surrounding
the electron-hole pair, the singlet exciton energy with respect to
the band gap is given by

∆〈V 〉ex =−(VHLLH −2δss′VHLHL) (5)

where s and s′ are the spins of the excited electron and the elec-
tron in the singly-occupied HOMO, respectively. The two terms in
the above equation are the direct and exchange Coulomb interac-
tion between the hole and the electron. The direct term has the
form

VHLLH =
∫

drdr′V (r− r′)ψh∗(r)ψe∗(r′)ψe(r′)ψh(r) (6)

and the exchange term has the form

VHLHL =
∫

drdr′V (r− r′)ψh∗(r)ψe∗(r′)ψh(r′)ψe(r) (7)

where V (r) = 1/(4πε0r); and ψh(r) = ∑i ah
i φHi(r) and ψe(r) =

∑i ae
i φLi(r) are the hole and electron wavefunctions, written as

a superposition of local HOMO orbital φHi(r) and LUMO orbital
φLi(r). We introduce these expansions into Equations 6 and 7.
We initially have four sums over site indices in each of the two
terms, but these are reduced to double sums by the fact that the
orbitals φHi(r) and φLi(r) integrated over r have to be on the same
site, because they are local to each site, likewise for the orbitals
integrated over r′.

VHLLH = ∑
i, j
|ah

i |2|ae
j|2
∫

drdr′V (r− r′)φ∗Hi(r)φ
∗
L j(r

′)φL j(r′)φHi(r)

VHLHL = ∑
i, j
(ah∗

i ae
i )(a

e∗
j ah

j)
∫

drdr′V (r− r′)φ∗Hi(r)φ
∗
L j(r

′)φH j(r′)φLi(r)

(8)

The exchange integral can be shown to amount to dipole-dipole
interactions between transition dipole moments located on sites i
and j:

VHLHL = ∑
i, j
(ah∗

i ae
i )(a

e∗
j ah

j)

(
µi ·µ j

R3
i j
−3

(µi ·Ri)
(
µ j ·R j

)
R5

i j

)
(9)

where µ = 〈φH |r|φL〉, Ri j =
∣∣Ri−R j

∣∣, and Ri and R j are the posi-
tion vectors of sites i and j. This result is found by observing that
the dominant term of the exchange integral in Equation 8 comes
from expanding V (r−r′) on each site about the center. The offsite

contributions to VHLHL are small, because this integral scales like
1/R3

i j. We computed a contribution of less than 1 percent to the
exciton binding energy. The exchange term can thus be approxi-
mated to have only an onsite contribution to the Coulomb energy.
The exchange term contributes a positive amount to the exciton
energy when the excited electron in the LUMO and the electron
in the now-singly-occupied HOMO have the same spin (see Equa-
tion 5). As such the singlet exciton is of higher energy and more
extended compared to the triplet-exciton, for which the electron
and hole have opposite spins.

The direct integral can likewise be approximated as a sum of
onsite and offsite contributions. These contributions have been
handled in P-P-P models54,56,61 following the Coulomb repulsion
potential suggested by Ohno62. Here we approximate the HOMO
and LUMO located on sites i and j as smeared charge distributions
represented by three-dimensional Gaussians, and evaluate the in-
tegral in VHLLH explicitly for offsite contributions (i.e., i 6= j) as
EC(i, j), described in detail in Supplementary Information. The
distributed charges in the HOMO and LUMO orbitals on the same
site cuts off the divergence issues of the Coulomb integral when
|r− r′| approaches zero. We lump the onsite direct and exchange
contributions into one constant VC, and resort to TD-DFT calcula-
tions for its estimation. The hole-electron Coulomb interaction is
then:

∆〈V 〉ex =− ∑
i, j 6=i
|ah

i |2|ae
j|2EC(i, j)−VC ∑

i
|ah

i |2|ae
i |2 (10)

Below we describe our estimation of the onsite Coulomb inter-
action VC, before presenting the polarization energy.

TD-DFT calculation of VC

To determine the onsite Coulomb interaction, we compare the
prediction of Equation 10 to TD-DFT calculations for the binding
energy of a singlet exciton for our system of interest. For P3HT,
VC can be estimated by TD-DFT calculations for an isolated thio-
phene ring, corresponding to a single site, such that ∆〈V 〉ex =VC.
We specifically compute the HOMO-LUMO gap Eg and the verti-
cal excitation energy to the lowest lying singlet excited state, i.e.,
the optical gap Eg,o without reorganization of nuclei, so that VC is
given by:

−VC = ∆〈V 〉ex = Eg,o−Eg (11)

We perform our TD-DFT calculations in the Gaussian g09 pack-
age, using the optimally tuned long-range corrected hybrid func-
tional LC-ωPBE∗ and 6-311g basis set. LC-ωPBE∗ uses PBE
exchange-correlation in the short-range and Hartree-Fock (exact)
exchange in the long-range. The ω parameter dictates the ranges
of applicability of the two regimes, and is highly system-specific.
We determine ω for thiophene by minimizing the difference be-
tween the negative of the HOMO energy and the vertical ioniza-
tion potential45,63. The ring geometry was fixed to that obtained
from ground state periodic DFT calculations of an infinitely long
polythiophene chain, as performed in the Vienna Ab-initio Simu-
lation Package (VASP) using the PW9164 functional.

To illustrate the importance of the functional choice for our
TD-DFT calculations, we have computed the HOMO-LUMO gap
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Eg, the optical gap Eg,o and E0
B for thiophene oligomers of one,

two, four and seven monomers. We extrapolated these values
to the infinitely-long polymer limit using a tight-binding fit, and
compare the predicted limiting values to the GW-BSE data of van
der Host et al12. The result for Eg and E0

B are shown in Figure 2.
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Fig. 2 HOMO - LUMO gap (a) and Singlet exciton binding energy (b) as
a function of inverse chain length.

The different functionals largely disagree in their prediction of
Eg (See Figure 2a,) with functionals that include more exact ex-
change being more accurate compared to GW-BSE. We observed
a spread of only about 0.2 eV in the predicted excitation energy
to the lowest singlet excited state Eg,o between these functionals
(not shown). However, the failure to predict the HOMO-LUMO
gap is clearly reflected in the predicted E0

B values, for which LC-
ωPBE∗ is most accurate with respect to GW-BSE, as can be seen
in Figure 2b. The E0

B disagreement among the functionals is both
qualitative and quantitative. The spread of predicted values is
wider for a single monomer compared to the long-polymer limit.
Note that the accuracy with which E0

B is predicted also affects
the exciton configuration65. Smaller exciton sizes are associated
with more tightly bound excitons and vice-versa. This highlights
the importance of our choice of LC-ωPBE∗ for computing VC. The
result is a value of VC = 1.93 eV, obtained from Eg = 7.78 eV and
Eg,o = 5.85 eV.

Polarization energy and electron-hole Coulomb interaction

We have discussed above the Coulomb interaction between the
excited electron and the hole. Here we describe this interaction
together with the interaction of the two charge carriers with the
surrounding polarizable medium of dielectric constant εr. When
the hole and electron are far apart, we should recover their re-

spective polaron states, in which the two carriers are stabilized
by the surrounding polarizable medium. When the carriers are
brought closer, the polarization effects decrease, since the carriers
of opposite signs are competing to polarize the same surrounding
(and cancel each other’s charge, as they co-occupy sites along the
chain.)

We treat the surrounding dielectric as a classical continuum,
interacting with the net charge distributions of the two localized
carrier wavefunctions. The two carrier wavefunctions are a super-
position of molecular orbitals, the monomer HOMO for the hole
and LUMO for the electron. The two carrier probability distribu-
tions are seen as one net charge distribution by the dielectric. As
already mentioned for the offsite hole-electron Coulomb interac-
tion above, we model the molecular orbitals crudely and conve-
niently as spherical Gaussians, with a radius of 2 Å, about half the
size of a single thiophene ring. The net charge qi = qh

i +qe
i on the

ith ring induces a polarization distribution Pi(r) in the surround-
ing material. (The hole and electron onsite charges are given
by qh

i = q0|ah
i |2 and qe

i = −q0|ae
i |2, with q0 being the elementary

charge.) By superposition, the total polarization distribution is
the sum of the individual Pi(r) terms.

The classical electrostatic energy of this system can be ex-
pressed as the sum over sites i and j of interactions: between net
charges qi and q j, between qi and polarization Pj, and between Pi

and Pj. As for our earlier treatment of polarons, we must avoid
the unphysical self-interaction of the two carrier charge distribu-
tions each with itself. We do this by including only the Coulomb
interaction between qh

i and qe
j. The desired electrostatic energy is

therefore given by

Ehc
C +EP +ECP = ∆〈V 〉ex−

(
1− 1

εr

)
EC (12)

where Ehc
C , EP and ECP are sums of: interactions between

qc
i and qh

i , polarization-polarization interactions, and charge-
polarization interactions. We have replaced Ehc

C with ∆〈V 〉ex, and
used EP +ECP = −(1−1/εr)EC, where EC is the sum of interac-
tions between qi and q j. We replace the left-hand side of Equation
12 with Uel and sum over the whole chain to finally obtain

Uel =−∑
i, j
|ah

i |2|ae
j|2Ehc

C (i, j)−VC ∑
i
|ah

i |2|ae
i |2

−
(

1− 1
εr

)
1
2 ∑

i, j

(
|ah

i |2−|ae
i |2
)(
|ah

j |2−|ae
j|2
)

EC(i, j) (13)

The first two terms represent the hole-electron Coulomb interac-
tion ∆〈V 〉ex, and the last term is the polarization energy, which
we denote ∆〈Hpol〉. The factor 1/2 in this term is used to avoid
double-counting. EC(i, j) is the Coulomb integral of two smeared
charge distributions located at i and j, described in detail in Ref57

and summarized in Supplementary Information.

Reorganization energy of nuclei

The last term of the exciton energy is the stabilization of the hole-
electron pair by the reorganization of nuclei. A detailed deriva-
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tion of the reorganization energy for a charge carrier distributed
over multiple sites can be found in our previous work57. More
briefly here, the energy terms of the Hamiltonian involving the
amplitude of distortion of the nuclei in response to a single car-
rier are

〈Hnuc〉=U0 ∑
i
|ai|2 Xi +

1
2

U0 ∑
i

X2
i (14)

Here Xi is the amplitude of distortion along a composite mode,
i.e., the actual distortion of the nuclear coordinates in response to
the presence of the carrier. Xi is normalized such that Xi =−|ai|2

at equilibrium. At this condition, 〈Hnuc〉 reduces to − 1
2U0 ∑i |ai|4,

where the constant U0 characterizes the strength of interaction
between a charge and the nuclei distortion it induces. We have
shown in our previous work57 that this constant is the same for
both extra electrons and holes in P3HT, with a value of 0.66 eV.

For an extra electron and a hole simultaneously present on the
same chain, the reorganization energy will be the sum of the two
contributions to the distortion of the nuclei:

∆〈Hnuc〉=−
1
2

U0 ∑
i

(
|ae

i |4 + |ah
i |4
)

(15)

We verified the validity of this approach by comparing the predic-
tion of Equation 15 to the relaxation energy of the singlet excited
state for a single thiophene ring, for which the largest nuclear re-
laxation is expected. A difference of less than 0.1 eV is observed.

Exciton energy assembled

We assemble the kinetic energy of the hole and electron ∆〈T 〉,
the hole-electron Coulomb interaction ∆〈V 〉e, the polarization en-
ergy of the surrounding dielectric ∆〈Hpol〉, and the reorganiza-
tion energy of the nuclei ∆〈Hnuc〉, to finally obtain the exciton
energy with respect to the the hole and electron extended states
E0

B = ∆〈T 〉+∆〈V 〉ex +∆〈Hpol〉+∆〈Hnuc〉, as follows:

∆E0
B = te ∑

i
|ae

i+1−ae
i |2 + |th|∑

i
|ah

i+1−ah
i |2

−∑
i, j
|ah

i |2|ae
j|2EC(i, j)+VC ∑

i
|ah

i |2|ae
i |2

−
(

1− 1
εr

)
1
2 ∑

i, j

(
|ah

i |2−|ae
i |2
)(
|ah

j |2−|ae
j|2
)

EC(i, j)

− 1
2

U0 ∑
i

(
|ae

i |4 + |ah
i |4
)

(16)

where i and j are site counters along the polymer chain.

Below, we use this expression to determine the optimal exci-
ton configuration, including the width of the electron and hole
probability densities and the binding energy, for an exciton on
an isolated chain and on a chain in a polarizable medium. Un-
less otherwise noted the parameters used in computing E0

B are:
te = 0.76 and th =−0.98 eV58, E0 = 0.66 eV57, VC = 1.9 eV, σ = 2
Å (see Eq S1), and εr=2.

Optimal exciton configuration

To obtain the optimal configuration of the exciton, we minimize
Eq (16) with respect to the electron and hole wavefunctions. We
do this by imposing two variational wavefunctions, one for the
hole and the other for the electron, and minimize the exciton
energy with respect to their parameters. For convenience, we
initially assume both electron and hole wavefunctions are repre-
sented by a Gaussian distribution across the chain. The ampli-
tudes {ai} are given by

ai =
e−(i−i0)2/2σ 2(

∑i e−(i−i0)2/σ 2)1/2
(17)

where σ and i0 are the width and center of the Gaussian respec-
tively. The optimal exciton configuration and associated energy
is attained by minimizing E0

B with respect to the four parameters:
i0 and σ for the hole and electron wavefunctions. We will later
relax the Gaussian constraint on the carrier envelope, when dis-
cussing exciton polarization and dissociation. This will be done
by minimizing E0

B with respect to the whole set of site amplitudes
{ai}.

Exciton on isolated chain with no nuclei reorganization

We first consider the simple case of a singlet exciton formed by
vertical excitation on an isolated P3HT chain. With no dielectric
to polarize and no nuclear rearrangement, the terms ∆〈Hpol〉 and
∆〈Hnuc〉 of E0

B vanish. In this situation, the most stable singlet
exciton has an electron and hole with coinciding charge centers,
as shown in Figure 3a. Figure 3b displays the exciton binding en-
ergy versus exciton width. The exciton configuration is optimal at
1.6 rings or 6.4 Å, in good agreement with the results of Mewes
et al.65, who predicted a value of 7 Å for a number conjugated
polymers by first-principle calculations at the Configuration Inter-
action Singles (CIS) level. The optimal exciton is -3.53 eV more
stable than the exciton confined to a single site, and -1.95 eV
more stable than the fully delocalized exciton, i.e., the hole and
electron extended states in an infinitely long chain. The bind-
ing energy and exciton size for this configuration of the exciton
are summarized in Table 1. The exciton size is here defined as
(〈|re− rh|2〉)1/2 or ∑i j |ae

i |2|ah
j |2R2

i j, where re and rh are the elec-

tron and hole coordinates, respectively65,66. E0
B and EB are iden-

Table 1 Binding energy and size of exciton on P3HT chain.

Medium E0
B (eV) EB (eV) Size (site)

Vaccum, no relaxation 1.95 1.95 1.6
Polarizable, with relaxation 2.13 0.95 1.5

tical in this case because of the absence of any polaronic effects
(see Figure 1). The obtained binding energy is in good agreement
with the GW-BSE prediction of van der Host et al12 (1.85 eV), and
our own TD-DFT calculations with LC-ωPBE∗ (1.91 eV), shown in
Figure 2.
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Fig. 3 (a) Optimal exciton configuration on an isolated P3HT chain, with
no nuclei rearrangement. The exciton is 1.6 ring wide (see definition in
text.) (b) Exciton binding energy with respect to hole and electron
extented states (E0

B) as a function of exciton size. The dashed line
represents the asymptotic large-size limit.

Exciton on chain in a dielectric medium

Now we consider an exciton on a chain in a polarizable medium,
and allow the nuclei to reorganize in response to the exciton.
The terms of the exciton binding energy that control these effects,
∆〈Hpol〉 and ∆〈Hnuc〉, are now turned on. We adopt an effective
dielectric constant εr = 2 for the polarizable medium surrounding
the exciton. This dielectric constant reflects only the electronic
contribution to the polarizability of P3HT, as discussed in detail
in our previous work57. When i = j, we reduce this constant to
1.75, so that the local self-interaction in ∆〈Hpol〉 is less screened.
This was done in order to match the polaronic stabilization to ex-
periment for P3HT chains in the amorphous phase67,68. The total
polaron stabilization energy of the two carriers sets the difference
between E0

B and EB, i.e., the exciton binding energy with respect
the separated hole and electron polarons (See Figure 1.) EB is the
relevant binding energy for photocurrent generation and electro-
luminescence, and is therefore more practically meaningful.

Similar to the isolated chain, the optimized exciton is unpo-
larized, with its hole and electron center of charges co-located
along the chain. The binding energies and exciton size are listed
in Table 1. The binding energy with respect to the two carriers
extended states E0

B differs from that of the isolated chain by -0.18
eV, solely due to the nuclei reorganization energy. This effect
also accounts for the small decrease in exciton size. Polarization
has no stabilizing effect on the exciton, because the optimal co-
location of the two carriers ensures a perfectly neutral quasipar-
ticle. The exciton binding energy EB with respect to the polaron

state of two separated carriers is about 1 eV lower than for the
isolated chain, because of polaronic effects arising mainly from
polarization. Such reduction in binding energy, when going from
an isolated chain to a chain in a dielectric, was also reported by
Sun et al.9 (1.93 to 0.97 eV) who used non-empirically tuned
range-corrected TD-DFT, and by van der Horst et al12 (1.85 to
0.76 eV) using the GW-BSE approach. The agreement between
this work and these more rigorous approaches is both qualitative
and quantitative. Our prediction of the exciton binding energy
with respect to the free hole and electron polaron, EB = 0.9 eV,
is also close to the experimental value of 0.7 eV determined by
careful measurements of the transport and optical gaps8,69 (see
Figure 1).

Now that we have the value of EB, we can map out the poten-
tial energy surface between the bound exciton and the separated
polarons. The potential will also be useful to understand how the
exciton is unbound by external forces, such as an applied electric
field and a donor-acceptor interface.

Exciton dissociation potential
We next map out the exciton binding potential, i.e., the binding
energy E0

B as a function of distance between the hole and the elec-
tron. The same variational approach outlined above is followed,
but with the constraint of a fixed distance between the centre of
charges of the two carriers. We control the separation distance
by fixing the parameter i0 for the two trial wavefunctions, and
minimize E0

B with respect to σ for the two envelopes. The exciton
potential for parameters corresponding to P3HT is given in Figure
4.
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Fig. 4 Exciton potential, i.e., binding energy as a function of
hole-electron distance, for P3HT obtained with εr = 2.0. (Inset)
Extrapolation to infinite separation. Energy is plotted versus 1/R (R the
hole-electron distance). Solid line is a fit to first four points; while dashed
line is a pure Coulomb interaction with the same intercept.

The potential follows the expected Coulomb behavior of two
interacting bare charges at large separation, as shown in inset of
Figure 4. At small separations, the spreading of the charge distri-
butions leads to deviation from this behavior. EB can be clearly
understood from the two Figures, 4 and inset, as the difference
between the minimum in the binding potential, which occurs at

Journal Name, [year], [vol.],1–13 | 7

Page 7 of 13 Physical Chemistry Chemical Physics



zero separation distance, and the value of the potential at the
large separation limit, where E0

B approaches the value for isolated
hole and electron polarons.

We also observe the size of the hole and electron probability
distributions at various separation distances along the exciton po-
tential (See Figure 5.) The size is measured as twice the standard
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Fig. 5 Evolution of the hole and electron sizes as the two carriers
approach each other.

deviation of the probability density. Far away from each other
the two carriers have a size determined by polarization and ring
reorganization. The charge carriers maintain these sizes as their
separation distance decreases until their charge distributions be-
gin to overlap. At this point, the carriers compete to polarize
the same medium. This competition contributes a positive energy
to their interaction, and the carriers expand to minimize this ef-
fect. When brought even closer, the two carriers begin to shrink
in order to maximize the attractive Coulomb interaction between
them. At very short separation distances, two sites and below,
the competition to polarize the same medium dominates the in-
teraction between the two carriers; they expand to minimize the
repulsive contribution to their interaction (see binding potential
at higher εr in Figure 6a).

All results above have used a dielectric constant εr = 2. We now
consider how the binding potential is affected by the magnitude
of εr.

Effect of dielectric constant on exciton binding potential

The dielectric constant of the medium affects the stability of the
separated electron and hole polarons, and controls the screen-
ing of their Coulomb interaction. A more polarizable medium
leads to more stable hole and electron polarons, and more effec-
tive screening of the Coulomb interaction between the separated
carriers. The result is a reduced binding energy of the exciton
relative to the polaron states EB (See Figure 6.)

Figure 6a reveals that the Coulomb attraction between the car-
riers at zero separation distance is unchanged, regardless the
dielectric constant, because the corresponding exciton is every-
where uncharged. The polaron stability as well as the path
from bound exciton to polarons is strongly affected by the di-
electric constant. For a dielectric constant of εr = 3 and larger,
the strongly screened Coulomb attraction is overcome by the the
short-range repulsive competition to polarize the dielectric, such
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Fig. 6 (a) Exciton potential for different dielectric constants εr. The
value used are (top to bottom curve): εr = 2, εr = 3, εr = 5, εr = 10,
εr = 20, and εr = ∞. (b) Exciton binding energy with respect to polaron
states as a function of dielectric constant (data points.) The dashed line
represents c/εr.

that the exciton becomes more stable when the carriers sit some
short distance apart (see the position of the binding potential min-
imum.) This picture is analogous to a solvent-separated ion pair,
for which the optimal configuration involves two ions separated
by some short distance. The formation and stability of such ion
pairs is primarily dictated by the dielectric constant of the solvent.

We also see that the depth of the minimum in the binding po-
tential decreases with increasing dielectric constant εr. Figure 6b
shows the exciton binding energy as a function of dielectric con-
stant. The behavior of EB versus εr closely follows the c/εr trend
expected of two interacting point charges in a dielectric medium,
as shown by the dashed curve. The constant c was adjusted to
match EB for εr = 1. The deviation observed at intermediate di-
electric constant is due to the solvent-separated-pair effect ex-
plained above.

At very large dielectric constant, the binding energy can fall
below the threshold of thermal energy at ambient temperature
(kT ), and the exciton would readily dissociate after formation.
Given the hopping parameters of P3HT, the relative permittivity
for which EB would match kT is εr = 40. Increasing the dielectric
constant of the photoactive layer is being pursued as an avenue
for increasing the exciton separation efficiency and therefore the
power conversion efficiency of organic photovoltaics70. As po-
tentially effective as this strategy may be, one must keep in mind
that a high dielectric constant also leads to more stable polaron
states57, with associated reduced carrier mobility71. One must
also consider the polarization mechanism, not just the magnitude
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of the dielectric constant, since slow polarization modes may not
be effective at screening the hole-electron Coulomb interaction.

Exciton polarization and dissociation
Unconstrained exciton wavefunctions
Before examining the dissociation of the exciton in an electric
field and at a donor-acceptor 1D interface, we introduce the fol-
lowing simplification: we set te and th to 0.98 eV, the hopping
integral of the hole. This decouples the effects of the introduced
external factors on the probability distribution of carriers from
those associated with the difference of hopping integrals. We also
relax the constraint that restricts the shape of the hole and elec-
tron envelopes to a Gaussian, so that we have no restriction on
the shape the individual carrier wavefunctions can adopt. In other
words, we minimize the binding energy E0

B, given by Equation 16,
with respect to the entire set of wavefunction onsite amplitudes
{ai}.

We find that the optimal states deviate from a Gaussian shape,
as external factors (electric field and interface) are added to po-
larize the charge carrier distributions. As above, the binding po-
tential is obtained by performing the minimization for different
separation distances between hole and electron. We use umbrella
potentials to control the positions of the two centers of charge.
The resulting potential is portrayed in Figure 7a. We have used
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Fig. 7 (a) Exciton potential without Gaussian constraint, for P3HT
obtained with εr = 2.0. (b) Wave functions involved in the exciton
potential in (a); the dashed curves are for the hole, and the solid curves
for the electron.

a smaller system size (20 sites) because of the larger cost of min-
imizing over the whole set of {ai}. Examples of the resulting
charge carrier probability distributions are shown in Figure 7b,
where the solid line is for the electron, and the dashed line for

the hole. The distributions are color-coded by their relative dis-
tance.

Exciton in an electric field

We examine the exciton binding potential under an applied ex-
ternal electric field. The external electric field applied along the
direction of the chain adds a linear potential of the form U =−Ez,
where E is the field and z is the coordinate along the chain axis.
It introduces a bias for pulling the charge carriers apart, i.e., the
energy decreases when the electron moves down the field and the
hole moves up the field. The result is a tilted binding potential,
as shown in Figure 8.
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Fig. 8 Effect of applied external electric field of various strengths on the
exciton. The field strengths are E = {0.0,0.01,0.02,0.03,0.04,0.05} from
the top curve to the bottom one, respectively.

Figure 8 was obtained by adding to the bare exciton potential
(see Figure 7a,) a linear potential U with magnitudes of E ranging
between 0 and 0.05 V/Å. The figure reveals that the field reduces
the depth of the binding/dissociation potential minimum; larger
field strengths lead to a shallower minimum. The field that just
manages to suppress the minimum in the potential is able to un-
bind the charge carriers. The value of this threshold field is 39
mV/Å; however, exciton dissociation can practically occur when
the depth of the minimum is comparable to kT . Negative values
of the x-axis in Figure 8 indicate separations of an electron and
hole in a direction that opposes the electric field.

The threshold field is equal to the largest attractive force be-
tween the electron and hole. This force corresponds to the largest
slope in the exciton binding potential. Figure S2 shows the slope
of the bare binding potential (see Figure 7a) as a function of the
hole-electron distance. The maximum force of attraction between
the two carriers is around 40 meV/Å, which matches the field
strength that leads to dissociation in Figure 8.

We have seen that, without the contribution of other factors to
aid the exciton dissociation, a large external electric field is re-
quired to overcome the Coulomb attraction between the hole and
the electron. In practice, organic photovoltaics rely on the pres-
ence of two semiconducting materials for efficient photocurrent
generation. An electron donor material, in which excitons usu-
ally form by photo-excitation, is mixed with an electron acceptor,
such that the HOMO/LUMO energy level offset at the interface
between the two materials facilitates the dissociation of excitons.
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Below we examine quantitatively the role played by such inter-
face in the generation of free charge carriers.

Covalent donor-acceptor interface
Here we look at an exciton at an idealized covalent interface be-
tween donor and acceptor blocks, with a HOMO energy difference
∆D−A (level offset) between the two polymer segments. For sim-
plicity we assume both the HOMO and the LUMO on one side of
the interface are shifted by the same amount. This is done by
adjusting the onsite energy parameters (Equation 1) across the
interface. We place the interface exactly between the two middle
sites along the chain, and leave the hopping parameters unmodi-
fied between all sites.

The effects of the energy level offset at the interface are shown
in Figure 9, where the distance between the center of charge
of the electron and the hole is plotted versus the level off-
set. The exciton is increasingly polarized at the interface as the
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Fig. 9 Effect of the HOMO level offset on the exciton. The hole-electron
distance evolves with the magnitude of the offset (primary y-axis).
Evolution of the carrier sizes with HOMO level offset or hole-electron
distance (secondary y-axis).

HOMO/LUMO energy level offset increases. Once the offset is
large enough to achieve a separation of one unit, the slope of
Figure 9 decreases with carrier sizes, to maximize their Coulomb
interaction. Increasing the energy offset at the interface is an ef-
fective strategy for overcoming this attraction only up to a certain
magnitude, beyond which the benefit of this strategy becomes
marginal. This is important to realize for the optimization of or-
ganic solar cells, where there is a trade-off between the energy
level offset driving exciton dissociation and the device open cir-
cuit voltage.

The dissociation of the exciton is accompanied by a change in
shape and size of the charge carriers. The size versus offset is
also plotted in Figure 9 (see secondary y-axis), which reveals that
the electron and hole shrink when they are pulled apart by the
interface. (Here the size change is the same for the two car-
riers, because we assumed they have the same hopping matrix
elements.) The hole and electron shape adjustment is evident
from Figure 10, where representative carrier probability distribu-
tions are shown. The carrier wavefunctions became asymmetric
to keep the two centers of charge close to each other while stay-
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Fig. 10 Hole and electron wavefunctions for four different values of the
HOMO level offset at the interface. The values of the offset are {0.0, 0.2,
1.0, 2.0} eV.

ing on the favored side of the interface. The hole favors the side
of the interface with a higher HOMO, while the electron prefers
the side with a lower LUMO. As a result, the exciton shows a pref-
erence for being at the interface whenever an energy level offset
exists.

To better understand the effect of the interface on the exciton,
we show how the level offset affects the exciton binding poten-
tial. Figure 11 displays the potential for three different scenarios:
(1) in the absence of any HOMO/LUMO offset, and (2) and (3)
when an energy offset of 0.2 and 0.3 eV exists at the interface,
respectively. It is energetically less expensive to pull the exciton
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Fig. 11 (a) Effect of the level offset on the exciton potential. The values
of the offset are 0.0, 0.2 and 0.4 eV. (b) Binding energy with respect to
separated polarons versus level offset.
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apart when the hole is on the higher-HOMO side of the interface
and the electron is on the lower-LUMO side of the interface (pos-
itive distances in Figure 11). This bias is reflected in tilted bind-
ing potentials when there is a level offset (non-symmetric curves)
compared to the situation with no level offset (symmetric curve).

We observe a reduction in binding energy with respect to the
separated polarons EB, but the reduction does not increase lin-
early with the level offset (See Figure 11b). This is because both
the separated polaron state (see potential at infinity) and the min-
imum in the binding potential shift down to lower energies with
the level offset. However, the energy change for the polaron state
matches exactly the level offset, whereas the change in the bind-
ing potential minimum does not. The minimum shifts from the
optimal singlet exciton, in the absence of any level offset, to a
configuration in which the electron and hole centers of charge
respectively lie on the acceptor and and the donor side of the in-
terface (see also Figure 10), called the charge transfer (CT) state.
A possible strategy for further improving the rate of exciton disso-
ciation in organic solar cells could be by raising the energy of the
CT state relative to the optimal singlet exciton, for a given level
offset.

We have seen that the donor-acceptor interfacial energy level
offset weakens the hole-electron interaction by producing CT
states with a reduced binding energy EB relative to the singlet
exciton in the donor material. The CT state is easier to unbind.
To illustrate that, we determine the critical field that unbinds the
exction for different magnitudes of the offset. We summarize the
critical field as a function of the energy level offset in Figure 12.
As anticipated from the binding energy versus level offset trend
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Fig. 12 Required field for dissociation (of the CT state) as a function of
the level offset at the D-A interface.

discussed above (See Figure 11b), Figure 12 shows the field re-
quired to unbind the CT state decreases with the level offset. This
can also be seen from the tilted binding potentials in Figure 11a.
These potentials have a reduced maximum slope (attractive force
between the two charge carriers) in the second half of the figure,
so that a smaller field is required to overcome the hole-electron
attraction. However, even with an offset as large as 2 eV, a still
large field of 15 mV/Å is needed for complete dissociation.

CT state binding energy are routinely estimated based on
the interfacial intermolecular distance and even measured to be
about 0.5 eV72,73, but a value as high as 0.84 eV has been re-

ported for molecular organic semiconductors74. Given the high
internal quantum efficiency of some high-performing organic
photovoltaic devices, many explanations for how the hole and
electron escape the still-large Coulomb binding energy of the CT
state have been suggested. One such explanation is that the ex-
cess energy available after dissociation of the bound exciton at the
interface leads to the formation of a ‘hot CT state’, as opposed to
the lowest-energy CT state, with more delocalized electron and
hole, and easier to unbind75,76. Another explanation suggests
that the generation of free carriers from the CT state is aided by
energetic disorder and dynamic effects59,60,77. We did not con-
sider disorder in this work, though our flexible and cost effective
tight-binding model can lend itself well to the study of the ef-
fects of both energetic and spatial disorder at the interface on the
dissociation of the CT state.

Conclusions
We have developed a model based on the tight binding approxi-
mation for the description of singlet excitons on one-dimensional
polythiophene chains. Our model is similar in some respects to
the Pariser-Parr-Pople model, but we treat the electron and hole
and the their effective interaction explicitly, which allows for a si-
multaneous description of the two carriers spatial probability dis-
tribution. Our model also takes into account the carrier-induced
reorganization of nuclei along the chain and the polarization of
the surrounding dielectric medium. These effects are responsi-
ble for the formation of polarons when the hole and electron are
separated, and for screening the interaction between the two par-
ticles, in the case of dielectric polarization.

We used this model to study the binding and dissociation of ex-
citons on single chains. On an isolated P3HT chain, we find that
vertical excitons have a binding energy of about 1.9 eV. When we
turn on reorganization of nuclei and consider a chain in a polariz-
able medium, we observe that nuclear reorganization lowers the
exciton energy by about 0.2 eV, but the binding energy is reduced
to 0.9 eV because of polaronic effects arising mainly from dielec-
tric polarization. These findings agree well with higher level cal-
culations following the GW-BSE approach and TD-DFT with tuned
range-corrected hybrid functionals.

We computed the exciton binding potential, and study the ef-
fect of the dielectric constant of the surrounding medium. We de-
fine the exciton binding energy as the energy difference between
the minimum in the potential and its value at infinite charge sep-
aration, which corresponds to two separated polarons. Polariza-
tion, governed by the dielectric constant, dictates the value of
the potential at infinity and screens the hole-electron interaction.
For dielectric constant larger than 2, the optimal exciton adopts
a configuration resembling a solvent-separated ion pair, in which
the hole and electron center of charges are separated by some dis-
tance. The binding energy closely follows an inverse relationship
with the dielectric constant, with a small deviation for intermedi-
ate dielectric constants due to the solvent-separated-pair effect.

We then investigated the effects on the exciton of an applied
electric field and a covalent donor-acceptor interface . We find
that the field tilts the exciton binding potential. The critical field
to unbind the exciton is the field that just manages to suppress the
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minimum in the potential. This field equals the maximum attrac-
tive force between the hole and electron, i.e., the largest slope in
the binding potential. We also show how a donor-acceptor inter-
face with a given HOMO/LUMO energy offset pulls the hole and
electron apart, and forms a charge-transfer state with reduced
binding energy. The binding energy decreases with increasing
level offset, but the effect quickly saturates at high offset values.
Along with a reduction in binding energy, the level offset also re-
duces the maximum slope in the hole-electron binding potential,
such that the hole-electron pair can be more easily unbound.

As demonstrated in this work for P3HT, our transparent tight
binding model offers the potential to answer a number of perti-
nent questions on the properties and behavior of exciton in con-
jugated polymers as relevant for photovoltaics. While we have
not shown and cannot claim that our method will work for all
conjugated polymers, we have no reason to doubt its applicabil-
ity to other conjugated polymers to some extent. The parameters
that enter the model, namely the hole and electron hopping inte-
grals, the effective onsite interaction parameter, the characteris-
tic nuclear reorganization energy, the effective dielectric constant
and the size of the moiety constituting a site, can all be deter-
mined for other conjugated polymers. Efforts along this direction
are underway, including the application of the model to push-pull
copolymers, and will be the subject of a future publication.

Acknowledgements
The authors acknowledge training provided by the Computa-
tional Materials Education and Training (CoMET) NSF Research
Traineeship (grant number DGE-1449785), and Wenlin Zhang for
his helpful input in determining the electronic contribution to the
dielectric constant.

Conflict of interest
There are no conflicts of interest to declare.

References
1 J. H. Burroughes, D. D. C. Bradley, a. R. Brown, R. N. Marks,

K. Mackay, R. H. Friend, P. L. Burns and a. B. Holmes, Nature,
1990, 347, 539–541.

2 F. Garnier, R. Hajlaoui, A. Yassar and P. Srivastava, Science,
1994, 265, 1684–1686.

3 N. Sariciftci, L. Smilowitz, a.J. Heeger and F. Wudl, Synthetic
Metals, 1993, 59, 333–352.

4 J. Brebels, J. V. Manca, L. Lutsen, D. Vanderzande and
W. Maes, Journal of Materials Chemistry A, 2017, 5, 24037–
24050.

5 H. Kang, G. Kim, J. Kim, S. Kwon, H. Kim and K. Lee, Advanced
Materials, 2016, 28, 7821–7861.

6 K. A. Mazzio and C. K. Luscombe, Chemical Society Reviews,
2015, 44, 78–90.

7 C. Deibel and V. Dyakonov, Reports on Progress in Physics,
2010, 73, 096401.

8 C. Deibel, D. Mack, J. Gorenflot, A. Schöll, S. Krause, F. Rein-
ert, D. Rauh and V. Dyakonov, Physical Review B, 2010, 81,
085202.

9 H. Sun, Z. Hu, C. Zhong, S. Zhang and Z. Sun, The Journal of
Physical Chemistry C, 2016, 120, 8048–8055.

10 J.-L. Bredas, Mater. Horiz., 2014, 1, 17–19.
11 J.-W. van der Horst, P. A. Bobbert, M. A. J. Michels, G. Brocks

and P. J. Kelly, Physical Review Letters, 1999, 83, 4413–4416.
12 J.-W. van der Horst, P. A. Bobbert, P. H. L. de Jong, M. A. J.

Michels, G. Brocks and P. J. Kelly, Physical Review B, 2000, 61,
15817–15826.

13 J. W. Van Der Horst, P. A. Bobbert, M. A. J. Michels and
H. Bässler, Journal of Chemical Physics, 2001, 114, 6950–
6957.

14 J.-W. van der Horst, P. Bobbert, W. Pasveer, M. Michels,
G. Brocks and P. Kelly, Computer Physics Communications,
2002, 147, 331–334.

15 J.-W. van der Horst, P. Bobbert and M. Michels, Synthetic Met-
als, 2003, 135-136, 281–282.

16 G. Samsonidze, F. J. Ribeiro, M. L. Cohen and S. G. Louie,
Physical Review B, 2014, 90, 035123.

17 M. Rohlfing and S. G. Louie, Physical Review B, 2000, 62,
4927–4944.

18 M. Rohlfing and S. G. Louie, Physical Review Letters, 1999, 82,
1959–1962.

19 D. Jacquemin, I. Duchemin and X. Blase, Journal of Chemical
Theory and Computation, 2015, 11, 3290–3304.

20 M. L. Tiago, M. Rohlfing and S. G. Louie, Physical Review B,
2004, 70, 193204.

21 M. L. Tiago, J. E. Northrup and S. G. Louie, Physical Review B,
2003, 67, 115212.

22 X. Wang, T. Garcia, S. Monaco, B. Schatschneider and
N. Marom, CrystEngComm, 2016, 18, 7353–7362.

23 N. Sai, M. L. Tiago, J. R. Chelikowsky and F. A. Reboredo,
Physical Review B, 2008, 77, 161306.

24 I. Duchemin and X. Blase, Physical Review B, 2013, 87,
245412.

25 F. Bruneval, S. M. Hamed and J. B. Neaton, The Journal of
Chemical Physics, 2015, 142, 244101.

26 X. Blase, I. Duchemin and D. Jacquemin, Chemical Society Re-
views, 2018, 47, 1022–1043.

27 J. P. Perdew, K. Burke and M. Ernzerhof, Physical Review Let-
ters, 1996, 77, 3865–3868.

28 C. Lee, W. Yang and R. G. Parr, Physical Review B, 1988, 37,
785–789.

29 A. D. Becke, The Journal of Chemical Physics, 1993, 98, 5648–
5652.

30 P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch,
The Journal of Physical Chemistry, 1994, 98, 11623–11627.

31 T. Stein, L. Kronik and R. Baer, Journal of the American Chem-
ical Society, 2009, 131, 2818–2820.

32 J. Autschbach and M. Srebro, Accounts of Chemical Research,
2014, 47, 2592–2602.

33 T. Körzdörfer and J.-L. Brédas, Accounts of Chemical Research,
2014, 47, 3284–3291.

34 A. Ruzsinszky, J. P. Perdew, G. I. Csonka, O. A. Vydrov and
G. E. Scuseria, The Journal of Chemical Physics, 2006, 125,

12 | 1–13Journal Name, [year], [vol.],

Page 12 of 13Physical Chemistry Chemical Physics



194112.
35 P. Mori-Sánchez, A. J. Cohen and W. Yang, The Journal of

Chemical Physics, 2006, 125, 201102.
36 S. Kümmel and L. Kronik, Reviews of Modern Physics, 2008,

80, 3–60.
37 A. J. Cohen, P. Mori-Sánchez and W. Yang, Chemical Reviews,

2012, 112, 289–320.
38 H. Iikura, T. Tsuneda, T. Yanai and K. Hirao, The Journal of

Chemical Physics, 2001, 115, 3540–3544.
39 O. A. Vydrov and G. E. Scuseria, The Journal of Chemical

Physics, 2006, 125, 234109.
40 J.-D. Chai and M. Head-Gordon, The Journal of Chemical

Physics, 2008, 128, 084106.
41 R. Baer, E. Livshits and U. Salzner, Annual Review of Physical

Chemistry, 2010, 61, 85–109.
42 S. Refaely-Abramson, S. Sharifzadeh, N. Govind,

J. Autschbach, J. B. Neaton, R. Baer and L. Kronik, Physical
Review Letters, 2012, 109, 226405.

43 H. Tamura and I. Burghardt, The Journal of Physical Chemistry
C, 2013, 117, 15020–15025.

44 S. Refaely-Abramson, M. Jain, S. Sharifzadeh, J. B. Neaton
and L. Kronik, Physical Review B, 2015, 92, 081204.

45 G. Heimel, ACS Central Science, 2016, 2, 309–315.
46 Y. Zhang, R. Steyrleuthner and J.-L. Bredas, The Journal of

Physical Chemistry C, 2016, 120, 9671–9677.
47 W. P. Su, J. R. Schrieffer and A. J. Heeger, Physical Review

Letters, 1979, 42, 1698–1701.
48 W. P. Su, J. R. Schrieffer and A. J. Heeger, Physical Review B,

1980, 22, 2099–2111.
49 A. J. Heeger, S. Kivelson, J. R. Schrieffer and W. P. Su, Reviews

of Modern Physics, 1988, 60, 781–850.
50 Z. Shuai, J. L. Brédas, S. K. Pati and S. Ramasesha, Physical

Review B, 1998, 58, 15329–15332.
51 L. A. Ribeiro, W. F. da Cunha, P. H. Oliveira Neto, R. Gargano

and G. M. e Silva, Chemical Physics Letters, 2013, 580, 108–
114.

52 J. Hubbard, Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 1963, 276, 238–257.

53 W. Barford and N. Paiboonvorachat, The Journal of Chemical
Physics, 2008, 129, 164716.

54 D. Zhang, Z. Qu, C. Liu and Y. Jiang, The Journal of Chemical
Physics, 2011, 134, 024114.

55 Z. Hu, A. P. Willard, R. J. Ono, C. W. Bielawski, P. J. Rossky
and D. A. Vanden Bout, Nature Communications, 2015, 6,
8246.

56 Z. Sun, S. Li, S. Xie and Z. An, Organic Electronics, 2018, 57,

277–284.
57 J. H. Bombile, M. J. Janik and S. T. Milner, Physical Chemistry

Chemical Physics, 2018, 20, 317–331.
58 J. H. Bombile, M. J. Janik and S. T. Milner, Phys. Chem. Chem.

Phys., 2016, 18, 12521–12533.
59 S. Barth, D. Hertel, Y.-H. Tak, H. Bässler and H. Hörhold,

Chemical Physics Letters, 1997, 274, 165–170.
60 S. N. Hood and I. Kassal, The Journal of Physical Chemistry

Letters, 2016, 7, 4495–4500.
61 Z. Sun and S. Stafström, Physical Review B, 2014, 90, 115420.
62 K. Ohno, Theoretica Chimica Acta, 1964, 2, 219–227.
63 H. Sun, C. Zhong and J.-L. Brédas, Journal of Chemical Theory

and Computation, 2015, 11, 3851–3858.
64 Y. Wang and J. P. Perdew, Physical Review B, 1991, 43, 8911–

8916.
65 S. A. Mewes, F. Plasser and A. Dreuw, The Journal of Physical

Chemistry Letters, 2017, 8, 1205–1210.
66 F. Plasser, B. Thomitzni, S. A. Bäppler, J. Wenzel, D. R. Rehn,

M. Wormit and A. Dreuw, Journal of Computational Chemistry,
2015, 36, 1609–1620.

67 R. &Ouml;sterbacka, Science, 2000, 287, 839–842.
68 S. Kahmann, M. A. Loi and C. J. Brabec, Journal of Materials

Chemistry C, 2018, 6, 6008–6013.
69 H.-W. Li, Z. Guan, Y. Cheng, T. Lui, Q. Yang, C.-S. Lee,

S. Chen and S.-W. Tsang, Advanced Electronic Materials, 2016,
2, 1600200.

70 J. Brebels, J. V. Manca, L. Lutsen, D. Vanderzande and
W. Maes, Journal of Materials Chemistry A, 2017, 5, 24037–
24050.

71 S. Y. Leblebici, T. L. Chen, P. Olalde-Velasco, W. Yang and
B. Ma, ACS Applied Materials & Interfaces, 2013, 5, 10105–
10110.

72 X.-Y. Zhu, Q. Yang and M. Muntwiler, Accounts of Chemical
Research, 2009, 42, 1779–1787.

73 S. Tscheuschner, H. Bässler, K. Huber and A. Köhler, The Jour-
nal of Physical Chemistry B, 2015, 119, 10359–10371.

74 N. R. Monahan, K. W. Williams, B. Kumar, C. Nuckolls and
X.-Y. Zhu, Physical Review Letters, 2015, 114, 247003.

75 A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht,
M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne and
R. H. Friend, Science, 2012, 335, 1340–1344.

76 G. Grancini, M. Maiuri, D. Fazzi, A. Petrozza, H.-J. Egelhaaf,
D. Brida, G. Cerullo and G. Lanzani, Nature Materials, 2013,
12, 29–33.

77 L. Shi, C. K. Lee and A. P. Willard, ACS Central Science, 2017,
3, 1262–1270.

Journal Name, [year], [vol.],1–13 | 13

Page 13 of 13 Physical Chemistry Chemical Physics


