
Structure and proton conduction in sulfonated poly(ether 
ether ketone) semi-permeable membranes: a multi-scale 

computational approach

Journal: Physical Chemistry Chemical Physics

Manuscript ID CP-ART-01-2019-000598.R1

Article Type: Paper

Date Submitted by the 
Author: 21-Mar-2019

Complete List of Authors: Molina, Jarol; Corporacion Universitaria Minuto de Dios - UNIMINUTO, 
Departamento de Ciencias Basicas
de Pablo, Juan J.; Liew Family Professor of Molecular Theory and 
Simulation, Institute for Molecular Engineering
Hernandez-Ortiz, Juan; Universidad Nacional de Colombia, Sede 
Medellinin, Department of Materials and Nanotechnology; University of 
Chicago,  Institute for Molecular Engineering 

 

Physical Chemistry Chemical Physics



Journal Name

Structure and proton conduction in sulfonated
poly(ether ether ketone) semi-permeable membranes:
a multi-scale computational approach

Jarol Molina,a Juan de Pablo,b,c and Juan P. Hernández-Ortizd,e∗

The design of polymeric membranes for proton or ionic exchange highly depends on the fun-
damental understanding of the physical and molecular mechanisms that control the formation of
the conduction channels. There is an inherent relation between the dynamical structure of the
polymeric membrane and the electrostatic forces that drive membrane segregation and proton
transport. Here, we used a multi-scale computational approach to analyze the morphology of
sulfonated poly(ether ether ketone) membranes at the mesoscale. A self-consistent description
of the electrostatic phenomenon was adopted, where discrete polymer chains and a continuum
proton field were embedded in a continuum fluid. Brownian dynamics was used for the evolution
of the suspended polymer molecules, while a convection–diffusion transport equation, including
the Nernst-Planck diffusion mechanism, accounted for the dynamics of the proton concentration
field. We varied the polymer concentration, the degree of sulfonation and the level of confinement
to find relationships between membrane structure and proton conduction. Our results indicate
that the reduced mobility of polymer chains, at concentrations above overlap, and a moderate
degree of sulfonation – i.e., 30% – are essential elements for membrane segregation and proton
domain connectivity. These conditions also ensure that the membrane structure is not affected
by size or by potential gradients. Importantly, our analysis shows that membrane conductivity
and current are linearly dependent on polymer concentration and quadratically dependent on the
degree of sulfonation. We found that the optimal polymeric membrane design requires a polymer
concentration above overlap and a degree of sulfonation around 50%. These conditions promote
a dynamical membrane morphology with a constant density of proton channels. Our results and
measurements agree with previous experimental works, thereby validating our model and obser-
vations.

1 Introduction
The selective transport of chemical species through membranes
is central in many biological and technological systems1–5. The
characteristics of the structural membrane component determine
the conditions and forces that control the dynamic morphology of
the membrane and the formation of the transport channels. From
the technological perspective, a comprehensive understanding of
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the molecular interplay between the membrane components and
the transported species is vital to mimic biological systems in en-
gineering and physics. For instance, polyelectrolyte membranes
have received a lot of attention in the last decade due to their
capacity to perform selective transport for fuel cell applications.
These alternative energetic platforms offer numerous potential
benefits, such as high efficiency, high power density, low or zero
emissions and reliability.

Polymeric proton exchange membranes, typically used in poly-
mer membrane fuel cells and in direct methanol fuel cells, foster
proper transport environments for proton conduction from the
anode to the cathode. They provide selective barriers against
electrons, gas and fuel molecules. Among the portfolio of poly-
mers, previous efforts have shown that sulfonated poly(ether
ether ketone) (SPEEK), see Fig. 1A, is a promising option for fuel
cell application as it possesses good thermal stability, mechanical
strength and adequate proton conductivity. SPEEK is a sulfonated
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hydrocarbon polymer and it stands as a hydrophobic–hydrophilic
polymer that promotes segregation and the formation of highly
branched, narrow channels for proton conduction. The presence
of the sulfonic acid (R-SO3H) in the monomers determines the po-
larity of the polymer segments, i.e. unsulfonated monomers are
hydrophobic, while sulfonated ones are hydrophilic. Therefore,
the fraction of sulfonated monomers, or the degree of sulfona-
tion (DS), determines the charge and the level of amphiphilicity
of the polymer molecule. Typical SPEEK membranes employed
in fuel cells contain a DS between 15% and 50%, which, in the
context of Fig. 1A, is defined by:

DS =
ns

n+ns
. (1)
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Fig. 1 A. Sulfonated poly(ether ether ketone) monomeric structures;
B. Coarse-grain representation of the Kuhn segment and SO3H group
depronotation; C. SPEEK bead-spring model; and D. Schematic of the
semi-permeable membrane.

The polymer volume fraction, ΦP, in a semi-permeable mem-
brane is always above polymer overlap (ΦP > ΦP,OL = 0.6), the
water content is low and the concentration of protons is re-
lated to the degree of sulfonation: the SO3H groups are de-
protonated resulting in SO−3 + H+ (Fig. 1B). Consequently, the
SPEEK monomers that hold the sulfonic acids become negatively
charged and the water solvent receives the protons, thereby ac-
quiring a positive charge. Recall that the principal characteristic
of a polymeric membrane for proton exchange is the species’ se-
lectivity. Low efficiency in fuel cells and energy losses are as-

sociated to poorly selective membranes6. Therefore, a funda-
mental understanding of the molecular forces that control and
relate membrane structure with proton conduction is central in
the design of these systems, which motivated previous theoreti-
cal efforts7–10. In a semi-permeable polymeric membrane, rapid
dynamics, such as the diffusion of protons, molecular vibrations
and water transport, are coupled to slower processes, such as the
diffusion of the long polymer chains; thus, the difference between
characteristic time scales range from three to ten orders of mag-
nitude. These restrictions forced past works to rely in simula-
tions over atomistic scales11,12, mesoscopic scales ignoring elec-
trostatic interactions9,13 or discrete models with simplified elec-
trostatic considerations14–16.

Motivated by the intrinsic relation between the polymer chemi-
cal characteristics, the membrane segregation and proton conduc-
tion, we resort to a multi-scale computational approach to model
a semi-permeable SPEEK membrane at the mesoscale. The highly
concentrated polyelectrolyte molecules are suspended in a contin-
uum solvent harboring protons. Importantly, we use a continuum
concentration field for the protons, which parallels stochastic ap-
proaches that use continuum approximations to model the mo-
mentum transfer for the “small" molecules. Our objective is to
provide novel insights about the membrane structure and to pre-
dict the formation of conduction channels over tens or hundreds
of nanometers.

We start this manuscript with the mathematical description
of the polymeric membrane, the evolution equations and the
required variation of the General geometry Ewald-like method
(GgEm)17,18 needed to properly calculate the electrostatic contri-
butions. We then proceed to describe the results for the polyelec-
trolyte membranes, where polymer concentration, confinement
and degree of sulfonation are varied. We make conclusions re-
garding the limiting conditions for membrane stability, we esti-
mate membrane conductivity and current and, lastly, we summa-
rize our most important conclusions.

2 Model and Mathematical Method

2.1 Polymer model

SPEEK is a flexible molecule with a Kuhn segment (b) that spans
approximately three aromatic rings19–22 (Fig. 1A-B). We use a
bead-spring model to represent the polymer molecule, where
each bead covers the volume of three aromatic rings, resulting
in a bead diameter σ = 0.92 nm.

The N beads that form a polymer molecule are connected with
finitely extensible non-linear elastic springs with a non-zero equi-
librium distance, i.e., a FENE-Fraenkel (FF) spring23 (Fig. 1C).
The elastic force between two interconnecting beads ν and µ is
then defined as follows:

fS
νµ (rνµ ) = HQ

1−q/|Q|
1− [(|Q|−q)(qmax−q)]2

, (2)

where H is the spring constant, Q = xµ − xν is the connector
vector between the beads, q is the non-zero equilibrium length
and qmax is the spring maximum extension. In particular, we
use H = 100kBT , q = 2σ = 1.84 nm and qmax = 3.7σ = 3.4 nm.

2 | 1–14Journal Name, [year], [vol.],

Page 2 of 14Physical Chemistry Chemical Physics



A bead-spring representation of the SPEEK polymer with a con-
tour length L = 337 nm requires N = 100 monomers. It cor-
responds to a molecular weight of 2.67×104 g/mol. Past ex-
perimental work places the average polymer molecular weight
around 3.92×104 g/mol24. We adopt the Gaussian radius of gy-
ration, RG = b2N/6 = 3.76 nm, as the characteristic size for the
polymer molecule that will help us identify the polymer concen-
tration and the level of confinement during the simulations.

The polymer model includes additional bead-to-bead and bead-
to-wall excluded volume interactions, where a repulsive Lennard-
Jones or Weeks-Chandler-Andersen (WCA) potential25,26 is used
with a characteristic energy scale given by ε = kBT , i.e.,

φ
WCA
νµ = 4ε

[(
σ

rνµ

)12
−
(

σ

rνµ

)6
]
+ ε, (3)

if the distance between the beads rνµ = |xµ − xν | ≤ 21/6σ , while
φWCA

νµ = 0 for rνµ > 21/6σ .

2.2 Membrane

The semi-permeable membrane is constructed by confining the
polymer molecules in a slit geometry Lx × Ly × Lz (Fig. 1D).
The system is considered periodic in the xy−plane. The level
of confinement and the size of the membrane are determined
by the molecule radius of gyration. In particular, we use Lz =

[5RG,10RG]. The periodic dimensions are Lx = Ly = 3Lz, ensuring
that the electrostatic interactions are not affected by the periodic
images17,27–29. The polymer concentration is varied and mea-
sured with the polymer volume fraction that is defined as follows:

ΦP =

[
NP
(

4/3πR3
G
)][

9L3
z
] , (4)

where NP is the number of polymer molecules. Here, we con-
sider three concentration regimens, namely finite-concentration,
overlap and concentrated, i.e., ΦP = [0.4,0.6,0.8], respectively.
For completeness, these regimens required simulations with 75
to 2,000 polymer chains and up to 200,000 monomer beads.
The hydrated membrane density for ΦP = [0.4,0.6,0.8] are 7.98×
104 g/mol, 1.19×105 g/mol and 1.59×105 g/mol, respectively.

The nature of the polymer charge is the de-protonation of the
sulfonic acids (Fig. 1B). Therefore, the total proton concentration
is calculated according to the degree of sulfonation (DS):

C0
+ =

NP

9L3
z NA

DS, (5)

where NA is Avogadro’s number. During our simulations, the
number of polymer molecules remain constant; therefore, the
total proton concentration, C0

+, is also kept constant to ensure
global electro-neutrality.

We denote z = 0 as the anode and z = Lz as the cathode. In
the anode, we impose a known proton flux condition, j+(z = 0) =
j0, considering that it is the place where the fuel decomposition
reaction occurs. The flux is calculated every time to ensure that
C0
+ is constant. On the other hand, at the cathode, we assume an

instantaneous reaction, represented by a homogenous Dirichlet

boundary condition for the proton concentration: C+(z = Lz) = 0.
The electrostatic potential at both, anode (φA) and cathode (φC),
are known, thereby representing conducting walls.

2.3 Evolution equations

The stochastic differential equation that governs the dynamics of
the polymer beads in a viscous solvent is obtained from the force
balance on each bead. Neglecting inertia – the Reynolds number
is zero – we write

fh
ν + fB

ν + fS
ν + fE

ν + fv
ν + fw

ν = 0, (6)

for each bead ν = 1, ...,N ×NP, where, fh
ν is the hydrodynamic

force, fB
ν is the Brownian force, fS

ν is any configurational spring
force, fv

ν is the bead-bead excluded volume, fw
ν is the wall-bead

excluded volume and fE
ν is the electrostatic force.

The diffusion equation for the probability distribution function
for the bead locations has the form of a Fokker-Planck equation,
which is equivalently represented by an stochastic differential
equation for the evolution of the bead positions:30,31

dR =

[
U0 +M ·F+ ∂

∂x
·D
]

dt +
√

2B ·dW, (7)

where R = (x1,x2, ...,xN×NP) is a 3N ×NP vector containing the
spatial coordinates of the beads, U0 denotes a 3N×NP vector with
the unperturbed fluid velocity at the bead’s position, D = kBT M
is the [3N×NP]× [3N×NP] diffusion tensor, F is a 3N×NP vec-
tor with the non-Brownian and non-hydrodynamic components
of the force, kB is Boltzmann’s constant and T = 298 K is the tem-
perature. The diffusion tensor is given by D = kBT M, where M
is the mobility tensor that includes the Stokes’ drag and the pair-
wise Stokeslets that account for the hydrodynamic interactions
between beads18,32–34. In this work, we ignore these interactions
accounting that the systems are highly confined. Consequently,
the diffusion tensor is reduced to a constant diagonal tensor and
the drift term, ∂/∂x ·D, is zero. Finally, dW is a random vector, the
components of which are obtained from a real-valued Gaussian
distribution with zero mean and variance dt. It is coupled with
the diffusion tensor through the fluctuation-dissipation theorem:
D = B ·BT .

The dynamics of the proton concentration field, C+(x), is ob-
tained from a species mass balance, resulting in a convection-
diffusion equation:

∂C+

∂ t
=−∇ · j+. (8)

Ignoring fluctuating hydrodynamic velocities, the diffusive flux,
j+, is given by the Nernst-Planck expression17,35,36:

j+ =−D
[

∇C++

(
q+
kBT

)
C+∇φ

]
, (9)

where D = 2.26× 10−5 cm2/s37,38 is the diffusion coefficient of
the protons and q+ = +e the elementary charge. The charac-
teristic time for the continuum ions to diffuse over the poly-
mer bead is σ2/D ≈ 3.8−10 s, while the bead diffusion time is
ζ σ2/kBT ≈ 2× 10−7 s. These times provide the numerical reso-
lution of the time stepping, i.e. they are the smallest time scale
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to be resolved. In addition, the polymer diffusion time over the
membrane thickness determines how long the simulation must
be carried out to ensure good statistics. Our simulations were run
over 20 to 50 membrane diffusion times (around 10−2 s).

2.4 Electrostatic forces and the NP-GgEm

The charged polymer beads and the protons contribute to the
charge density, ρ(x). As the charges diffuse, local electroneutral-
ity is not satisfied and the charge density drives an electrostatic
potential given by the solution of Poisson’s equation,

∇
2
φ(x) =−ρ(x)

ε0ε
, (10)

where ε0 is the vacuum permittivity and ε is the solvent relative
permittivity.

The electric field, E(x) = −∇φ(x), imposes an electric force,
fE , on all the charged entities (discrete and continuum). To cor-
rectly solve Poisson’s equation, appropriate boundary conditions
are in order. In correspondence with the physical system that we
are modeling, periodic boundary conditions are selected for the
xy−plane, while Direchlet conditions are imposed at the confining
walls, i.e. φ(z = 0) = φA and φ(z = Lz) = φC.

The polymer beads are considered “regularized" point-forces,
where the charge is distributed through a Gaussian function with
a variance related to their diameter σ . Consequently, the discrete
beads and the continuum proton field define the following charge
density:

ρ(x) =
N×NP

∑
ν=1

qPSE (x−xν )+NAq+C+(x), (11)

where NA is Avogadro’s number, qP = −1e is the charge of the
polymer bead and q+ = +1e is the proton charge. The regulariz-
ing Gaussian function is given by:

SE(x) =
ξ 3

π3/2
exp(−ξ

2|x|2), (12)

where ξ is the parameter that is adjusted to distribute the charge
over the bead size.

The long-range nature of electrostatic forces had motivated
mathematical approaches that allow the calculation of the elec-
trostatic potential and the electric field in a fast and reliable way.
Most of them are based on the Ewald summation concept for sin-
gular Green’s functions25,26,39, where the long-range (1/r) de-
caying operator is split into fast decaying functions in real and
Fourier spaces. Ewald summation methods had evolved into
O(N) algorithms40–42 to treat electrostatics in free-space and pe-
riodic domains, which have already been embedded into popular
molecular dynamics packages, like Gromacs43,44 and Lammps45.
The General geometry Ewald-like method (GgEm), developed by
Hernández-Ortiz, de Pablo and Graham18, is among those meth-
ods, having a unique feature of calculating Green’s functions in
any geometry; i.e., it deals with any type of boundary condi-
tions. GgEm also offers the possibility of including another type of
Green’s function-based singularities, long-range interactions and
fields, such as hydrodynamic interactions46–49 and the concentra-
tion of charged continuum species (Nernst-Planck-GgEm)17. De-

tails of the GgEm, including its implementation and algorithms,
can be found in some of our previous works50–53.

For completeness, the GgEm starts with redefining the charge
density ρ(x) = ρl(x)+ρg(x). Given the linearity of Poisson’s equa-
tion, it results in a “local" and a “global" contribution of the elec-
trostatic potential: φ(x) = φl(x) + φg(x). The idea is to use a
smoothing function, gE(α,x), that “screens" the local contribution
over a distance of 1/α. This function must satisfy the condition∫
all space gE(α,x)dx = 1. The most common selection for gE is a

Gaussian function25,26

gE(α,x) =
α3

π3/2
exp(−α

2|x|2). (13)

With the inclusion of the screening function, the local charge den-
sity is written as follows:

ρl(x) =
N×NP

∑
ν=1

qP [SE (x−xν )−gE (α,x−xν )] , (14)

while the global charge density is defined by:

ρg(x) =
N×NP

∑
ν=1

qP [gE (α,x−xν )]+NAq+C+(x). (15)

The local contribution for the electrostatic potential is resolved
analytically ignoring the walls. This calculation resembles a free-
space Green’s function calculation, i.e.

φl(x) =
ND

∑
ν=1

qPGR
l (x−xν ) , (16)

where

GR
l (x) =

1
4πε0ε

[
erf(ξ |x|)
|x|

− erf(α|x|)
|x|

]
. (17)

On the other hand, the global contribution is approximated
numerically over a mesh, with any preferred method, and us-
ing superposition between the local and global fields to impose
the appropriate boundary conditions. For instance, homogeneous
Dirichlet boundary conditions are obtained with φg|wall =−φl |wall.
Particularly in this paper, we used a combination between a dis-
crete fast Fourier transform, in the periodic directions, and finite
differences in the confined direction, to resolve the global field.
We included a detailed description of the numerical method in
the Appendix.

The characteristic variables for the system are set by the
polymer bead radius, a = σ/2, for length, bead diffusion time,
ζ a2/kBT , for time (where ζ = 6πηa is the drag coefficient and
η the solvent viscosity), e/4πε0εa for the electrostatic potential,
and the elementary charge e for the charge. The total concentra-
tion for the protons, C0

+, is used as the characteristic concentra-
tion for the continuum proton field. The parameter βk = ζ D/kBT
defines the ratio between the polymer bead and the proton diffu-
sion coefficients. The ratio between electrostatic forces and ther-
mal forces denotes the Bjerrum length, λB = e2/4πε0εkBT , while
the ionic strength, I = 1/2C0

+z2
+ , determines the Debye length,

λ
−2
D = 2Nae2I/ε0εkBT .
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3 Results
To best illustrate the relation between the morphology of the poly-
mer membrane and the proton conduction, we explore how poly-
mer concentration, confinement and electrostatic potential gradi-
ent influence the inner structure of the membrane. Our task is
to lay down the basics behind the polymer–proton interactions to
then proceed to study conduction channels and properties. The
first questions to ask are how the protons and polymers are dis-
tributed across the membrane and how stable is the membrane.

To quantify average concentrations and distributions, we define
time and ensamble averages in the z-direction and the xz−plane
as follows:

ω̄(z) =
1

LxLy
〈
∫ Lx

0

∫ Ly

0
ω(x,y,z)dxdy〉,

ω̄(x,z) =
1
Ly
〈
∫ Ly

0
ω(x,y,z)dx〉,

(18)

where ω(x,y,z) is any property or measurement and 〈〉 denotes
time averaging.

3.1 Internal distributions with Lz = 5RG and ∆φ = 0.

Let’s begin by analyzing the time averaged distributions of pro-
tons and monomers of a membrane with Lz = 5RG containing
polymers with DS = [0.1,0.3,0.5] and in the absence of electro-
static potential differences: φA = φC = 0. Table 1 lists the pro-
ton concentrations and the corresponding Debye lengths for the
Lz = 5RG membrane.

Table 1 Proton concentration and Debye lengths.

DS ↓ ΦP→ 0.4 0.6 0.8
C0
+ (M) 0.030 0.045 0.060

DS = 0.1 λD (nm) 2.50 2.05 1.77
λD/σ 2.71 2.22 1.93
C0
+ (M) 0.090 0.135 0.180

DS = 0.3 λD (nm) 1.44 1.18 1.02
λD/σ 1.57 1.28 1.11
C0
+ (M) 0.151 0.255 0.299

DS = 0.5 λD (nm) 1.12 0.91 0.79
λD/σ 1.21 0.91 0.86

Figure 2 shows the time averaged proton concentration and
number density of sulfonated and uncharged monomers as a func-
tion of the z−direction. The results we are presenting here are for
simulations that were equilibrated between 100 and 200 polymer
diffusion times over Lz (6 ms for the smaller system and 48 ms for
the bigger one). The proton concentration profiles, Fig. 2(left),
satisfy the anode and cathode boundary conditions, where there
is a constant flux of protons at z = 0 and a fast reaction at z = Lz.
A common feature between the proton profiles, despite polymer
concentration and degree of sulfunation, is the presence of a lo-
cal minima at z≈ 0.8σ . After the local minima, there is a natural
increase in proton concentration as z approaches the center of the
membrane; and, finally, there is a transition in the concentration
profile, near the cathode, to accommodate the C+ = 0 at z = Lz.

Importantly, an uniform internal proton concentration is observed
for ΦP = 0.6 or 0.8 at DS = 0.3, and at any polymer concentration
for DS = 0.5. Conversely, an internal uniform proton concentra-
tion can never be achieved for DS = 0.1.

The time averaged number density of sulfonated n̄S(z), and
uncharged monomers n̄(z), in Fig. 2(center) and 2(right) are
highly correlated with the proton concentrations. The number
density for both types of monomers is zero at the walls due to
the excluded volume interactions. Also, high degrees of polymer
concentration and sulfonation ensure uniform internal distribu-
tions for the charged and uncharged monomers. In addition, as
the polymer concentration increases, there is a layering effect of
monomers near the walls, which follow previous theoretical re-
sults on confined polymer solutions and colloids46,54–57. How-
ever, near the anode z = 0, the location of the first peak in the
number density of sulfonated monomers is at z≈ 1.6σ . Note that
the depletion layer for z = Lz is 1σ , corresponding to the excluded
volume range. The location of this peak at z ≈ 1.6σ is due to
the electrostatic interactions between protons, walls and charged
monomers. At z = 0, the electrostatic potential is known, a condi-
tion that serves to represent a conductive wall. In principle, the
constant flux of protons at the anode generate an attraction to
the charged negative monomers. However, the “proton images“
with respect to the wall are negative, thereby pushing them away
from the anode58,59. The resulting distribution, which balances
both interactions: proton-monomer and monomer-wall, drives
the presence of the z ≈ 0.8σ local minima in the proton concen-
tration and the z ≈ 1.6σ first peak in the sulfonated monomers.
The relative position between protons and charged monomers fol-
low the values for the Debye length in Table 1: around 1σ or
2σ . On the other hand, near the cathode at z = Lz, the number
density of sulfonated monomers is abnormally higher than the
uncharged ones. This is a consequence of the C+ = 0 condition
at the cathode, which allows charged monomer adsorption. This
phenomenon is more significative as the polymer concentration
and/or the degree of sulfonation are low. In other words, high
values of DS and ΦP determine the stability of the membrane by
decreasing the polymer mobility (diffusion) and forming uniform
distributions of protons and charged monomers.

According to our results, DS = 0.3 can be thought of as a critical
degree of sulfonation to ensure uniform distributions through the
membrane: (i) DS = 0.1 are always non-uniform, and (ii) DS =
0.5 are always uniform. In addition, at DS = 0.3, the controlling
variable towards uniformity is the polymer mobility (diffusion):
(iii) a concentrated polymer solution, ΦP = 0.4, the molecules
are able to diffuse, move and accommodate near the walls, while
(iv) polymer molecules at overlap concentrations or higher, ΦP ≥
0.6, have a low diffusion and their mobility is highly reduced.
Envisioning the high correlation between uniform distributions
through the membrane and proton conduction, our results are
congruent with previous experimental studies that concluded that
SPEEK and Nafion membranes with DS < 0.3 lack ion and proton
conduction capability60–64.

We measured the monomer-to-monomer probability distri-
bution function through a two-dimensional radial distribution
function, gxy(r) (where r is the Euclidean distance between
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Fig. 2 Time averaged proton concentration (left), number density of sulfonated monomers (center) and number density of uncharged monomers
(right) along the z−direction for a membrane with Lz = 5RG, ΦP = [0.4,0.6,0.8] and: A. DS = 0.1; B. DS = 0.3; and C. DS = 0.5.

monomers). In general, we found that the probability of finding
the first neighboring monomers at r = σ increases with DS. For
ΦP ≤ 0.6, the probability depends strongly on DS. For instance,
for DS = 0.1 and ΦP = 0.4, there is a low probability of finding
a neighbor: gxy(σ) = 0.5; while for DS = 0.5 and ΦP = 0.6, the
probability is relatively high: gxy(σ) = 1.4. On the other hand,
for ΦP = 0.8, there is always a high probability of finding the
first monomer neighbor at r = σ : gxy(σ) ∈ [1.3,1.5]. According
to Spohr et al.65–68, a gxy(σ) > 1 favors the formation of water
clusters that drive polymer segregation and channel conduction.
Our result for ΦP = 0.8, i.e. the presence of monomer neighbors
at r = σ independent of DS, is consistent with previous reports on
SPEEK membranes12.

3.2 Membrane stability with DS ≥ 0.3 and ∆φ 6= 0

To test the stability of membranes with DS ≥ 0.3, we now pro-
ceed to apply an electrostatic potential difference between the
anode and the cathode. We impose a ∆φcell = φA− φC, by defin-
ing φA = −∆φcell/2 and φC = +∆φcell/2. A 100 µm SPEEK mem-
brane typically operates with a ∆φcell = 0.74 V24,69. We, there-
fore, adopt a ∆φcell = 0.014 V as the operational potential differ-
ence in the Lz = 5RG membrane. Figures 3, 4 and 5 summarize
the time averaged proton concentration and number density of
sulfonated (charged) monomers as a function of the z−direction
for ΦP = 0.4, 0.6 and 0.8, respectively. We are not including the
number density of uncharged monomers because they follow the
same rational than the profiles in Fig. 2(right).

The effects of the potential difference in membranes with ΦP =

0.4 are shown in Fig. 3. Rigorously, the polymer volume fraction
defines this membrane as a concentrated polymer solution. Con-
sequently, as the voltage is increased, the mobility of the polymer

chains allows a disruption of the membrane structure. Even for
polymers with DS = 0.5, the voltage drives a non-uniform dis-
tribution of protons. Noticeable differences are observed in the
sulfonated monomer distributions between DS = 0.3 and DS =
0.5. When the polymer charge is DS = 0.3, polymers tend to be
absorbed at the cathode, z = Lz, whereas at DS = 0.5, the high
charge drives a more uniform distribution towards the center of
the membrane. Note that as the voltage is increased, the desire of
the charged monomers to be close to de cathode also decreases.
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Fig. 3 Time averaged proton concentration (top) and number density
of sulfonated monomers (bottom) the z−direction for a membrane with
Lz = 5RG, ΦP = 0.4 and ∆φ = [0.0,0.014,0.14] V: A-C. DS = 0.3; and B-D.
DS = 0.5

Once the mobility of the chains is drastically reduced, ΦP ≥
0.6, the uniformities within the membrane, for protons and
monomers, are always conserved. Figures 4 and 5 summarize
the proton and charged monomers’ distributions along the con-
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Lz = 5RG, ΦP = 0.8 and ∆φ = [0.0,0.014,0.14] V: A-C. DS = 0.3; and B-D.
DS = 0.5

fined direction for different applied voltages. Some general ob-
servations are in order: (i) as DS increases, the number density
of sulfonated monomers at z≈ 1.6σ and z = Lz−σ increases, (ii)
despite these accumulations that are parallel to the walls, protons
and charged monomers are internally uniform, and (iii) the stabil-
ity of the membrane, quantified by the concentration uniformity,
increases as the degree of sulfonation is increased.

It is important to highlight that the concentrations and distri-
butions in Figs. 2 to 4 are time averages, therefore, the uniform
distributions are not indications that the membrane is completely
immobile. On the contrary, polymer segments, monomers and
entire molecules constantly diffuse through the membrane, with
a diffusion time that increases as the polymer concentration in-
creases. The high correlation between sulfonated monomers and
the proton concentration that we are predicting agrees with pre-
vious studies that suggested that the SO−3 functional groups are
responsible for the membrane morphology70–72.

3.3 Confinement effects: Lz = 5RG vs. Lz = 10RG

To continue the validation that DS = 0.3 and ΦP ≥ 0.6 are the
limiting conditions to guarantee membrane stability and unifor-
mity, we study the effects of the membrane thickness or “polymer
confinement". Figure 6 shows the averaged proton concentration
and number density of charged monomers for membranes with
DS = 0.3 and thicknesses Lz = 5RG and Lz = 10RG as a function
of the polymer concentration. Below polymer overlap, ΦP = 0.4,
the distributions within the membrane are still not uniform once
the confinement is increased; however, there is a clear improve-
ment for the Lz = 10RG membrane. This tendency of “better dis-
tributions as the thickness is increased" is crucial once ΦP ≥ 0.6,
where according to Fig. 6, protons and monomers are able to sus-
tain a time-averaged uniformity. At the cathode and anode, the
monomers (charged and uncharged) no longer show evidence of
parallel packaging layers for Lz = 10RG. For membranes with DS
= 0.1 and DS = 0.5 (data not shown), the previously discussed
behaviors are enhanced for better and worse: (i) for ΦP < 0.6 and
DS = 0.1, the distributions are less uniform than DS = 0.3, (ii)
for ΦP ≥ 0.6 and DS = 0.5, the inner membrane structure is flat
uniform.

In Fig. 7, we tested the effects of an electrostatic potential
difference between the cathode and anode for membranes with
Lz = 10RG and DS = 0.3. We sustain the same level of electric field
by applying a ∆φ = [0.0,0.028,0.28] V. These results demonstrate,
similar to the Lz = 5RG membrane, that as long as DS ≥ 0.3 and
the polymer mobility is highly reduced, above overlap, an electric
field is not able to perturb the time-averaged membrane’s inner
structure.

3.4 Current i, structure factor ψ and conductivity κ

Now that we have established limiting conditions for membrane
uniformity (DS≥ 0.3 and ΦP≥ 0.6), hinting the proper generation
of proton channels to ensure conduction, we proceed to provide
quantitative descriptors of the membrane exchange capabilities.

Assuming that the limiting factor for proton conduction is
their diffusion from the anode to the cathode, common feature
in fuel cells, the current can be estimated by the proton flux:
i = Fj+ 35,73,74. Figure 8 shows the current time evolution for
three representative cases: (i) a “poor" membrane with ΦP = 0.4
and DS = 0.1; (ii) a “stable" membrane with ΦP = 0.6 and DS
= 0.3; and (iii) a “rich" membrane with ΦP = 0.8 and DS = 0.3.
At t = 0, the proton and monomers are constantly distributed and
we only include the current dynamics over 80 µs. According to
Fig. 8A, the current in poor membranes decreases to near zero
values as the polymer segregation occurs. There is fast initial con-
sumption of protons near the cathode and the absence of charged
monomer connectivity avoids the current to be sustained. On the
other hand, for stable and rich membranes, Figs. 8B and 8C, the
current increases after the initial proton consumption due to the
formation of the conduction channels that establish a continuous
proton flux from the anode to the cathode. These interconnec-
tions, driven by the sulfonated monomers, were also observed
and reported in previous works68,75,76. In Fig. 8, we are including
two dimensional average contours of the proton concentration
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for the three representative cases. The contours suggest that the
magnitude of the steady-state current depends on the density of
channels or interconnections. Concomitantly, no channels for the
poor membrane drive a purely Fickean diffusive proton current
of 0.010 A/cm2, whereas the interconnections for the stable and
rich membranes result in 0.155 A/cm2 and 0.280 A/cm2, respec-
tively. The higher density of channels demarcates an important
difference between a limiting stable membrane, with ΦP = 0.6
and DS = 0.3, and rich membranes with ΦP > 0.6 and DS ≥ 0.3.
Therefore, the previously discussed uniformity in protons and
monomers over time along the membrane is not enough to en-
sure an effective proton conduction.

A feature to highlight is that our mesoscopic and multi-scale
model is able to predict polymer segregation and the forma-
tion of proton channels for conduction. The interconnections
between the anode and cathode do not depend on specific sul-
fonated monomer distributions; recall that the sulfunated groups
are randomly placed at every polymer molecule that constitutes
the membrane. Jang et. al72 and Savage and Voth71 used molec-

ular dynamics simulations and reported that the membrane seg-
regation depends strongly on the sulfonic group distribution. We
believe that this particular discrepancy between our model and
their model is a consequence of the different length scales; their
periodic box is between 1.5 to 2.0 nm, while our confined system
is in the order of hundreds of nanometers.

The structure factor ψ(t) serves as a parameter that quantifies
the segregation in a polymeric membrane for proton exchange22.
In this work, we define this factor by:

ψ(t) =
1
V

∫ [C+(x, t)
C0
+

]2

−1

dx, (19)

which, in principle, provides a measurement of the level of sep-
aration between the hydrophobic and the hydrophilic sections of
the polymer21,22,60,61. Consequently, a high value of the struc-
ture factor is typically associated with a better membrane struc-
ture towards an efficient proton conduction. In Figure 9, we
are showing the structure factor for two systems: a poor mem-
brane with ΦP = 0.4 and DS = 0.1 and a rich one with ΦP = 0.8
and DS = 0.3. What we want to highlight is that even though
ψpoor ≈ 0.5 > ψrich ≈ 0.3 there is no connectivity between an-
ode and cathode, resulting in low proton conduction for the poor
membrane (as indicated in Fig. 8A). In the figure, we are also
including representative iso-surfaces for both membranes. Effec-
tively, there is a higher segregation for the poor case, but the pro-
tons are located near the anode and the polymer molecules do not
guarantee the connectivity through the membrane. In contrast,
the lower separation of domains for the rich membrane ensures
an even channel formation and distribution.

With the membrane conductivity κ, we can estimate the pro-
ton exchange performance. Considering that in our system the
mechanism of conduction is the ionic exchange, the conductivity
is calculated as κ = F2〈D+C+〉/RT . Experimental measurements,
of membranes with 0.37 < DS < 0.82 at 25 to 80oC, place the
value of κ between 1×10−3 and 2×10−2 S/cm 24,69,77–79. On the
other hand, for hydrogen fed SPEEK membranes, reported values
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for the current are between 25 and 300 mA/cm2 80–83. These
experimental values accounted for the detailed complexity of a
polymeric membrane for proton exchange: type of catalyzer, fuel,
membrane preparation, among others. In our theoretical model,
we can hypothesize that all protons that are delivered would re-
act, thereby resulting in a diffusion-controlled membrane. Ta-
ble 2 summarizes the conductivity, the current and the structure
factor for a membrane that is under an experimental potential
difference of “∆φ = 0.7 V" (meaning that the current is measured
for ∆φ = 0.014 V in the case of Lz = 5RG and ∆φ = 0.028 V for
Lz = 10RG). The values for the conductivity and structure factor
are independent of size and potential gradient, therefore, the val-
ues in the table are averages over all the conditions covered by
the specific DS and ΦP.

The importance behind the values in Table 2 is the clear trends
that are predicted by the model: (i) the conductivity and current
increase monotonically as the polymer concentration and as the
degree of sulfonation increase, and (ii) the increasing trend for κ

and i as a function of ΦP is almost linear, while for DS the increase
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is quadratic, i.e. [κ, i] ∼ ΦP and [κ, i] ∼ DS2. In addition, notice
that comparing the “stable" (limiting) membrane, with ΦP = 0.6
and DS = 0.3, against what we denote a “rich" membrane, with
ΦP = 0.8 and DS = 0.5, corroborates previous experimental and
theoretical conclusions that suggest the use of membranes with
ΦP > 0.7. Recall that our first tentative conclusion, based on time
average proton concentration and monomer number density, was
that ΦP = 0.6 and DS = 0.3 should provide the membrane unifor-
mity intended for conduction. Our scaling laws for [κ, i] still place
ΦP = 0.6 and DS = 0.3 as a stable but non-optimum selection, as
increasing ΦP and DS results in a global increase of one order of
magnitude in [κ, i]. Previous experimental studies, on pure SPEEK
membranes69,79,84,85, indicate that degrees of sulfonation higher
than 0.5 drives an entire dissolution of the membrane once in
contact with water. Consequently, ΦP = 0.8 and DS = 0.5 offer
the best conditions to design and fabricate polymeric membranes
for proton exchange with SPEEK.

3.5 Conduction channels for ΦP = 0.8
In Figure 10, we are illustrating the significant differences in
the proton concentration (charged monomers) iso-surfaces for a
membrane with ΦP = 0.8 and the three DS. Our idea is to re-
inforce the conclusions regarding the level of sulfonation of an
optimum SPEEK membrane. The structure factors for DS = 0.1
and DS = 0.3 indicate that there is a level of segregation around
30% and a conductivity increase of one order of magnitude be-
tween these sulfonations. However, the separation between hy-
drophobic and hydrophilic regions is almost 70% for a DS = 0.5,
resulting in the highest membrane conductivity. Even though rep-
resentative, the iso-surfaces in Fig. 10 are able to provide a qual-
itative picture of the conduction channels: as the DS increases,
the structure of the interconnections between the anode and the
cathode are well defined and less “diffusive". Consequently, there
is a synergistic interplay between the polymer structure, given
by the confinement, concentration and entanglements, with the
electrostatic-driven diffusion, ensuring a dynamical membrane
morphology with a constant presence of proton channels. We
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Table 2 Membrane conductivity κ, current i and structure factor ψ(t→ ∞) for “∆φ = 0.7 V".

DS ↓ ΦP→ 0.4 0.6 0.8
DS = 0.1 κ (S/cm) (2.53±0.63)×10−4 (4.93±1.47)×10−4 (7.04±0.52)×10−4

at “∆φ = 0.7 V" i (A/cm2) (1.40±0.140)×10−2 (2.15±0.04)×10−2 (3.35±0.01)×10−2

ψ(t→ ∞) 0.485±0.06 0.325±0.02 0.365±0.01
DS = 0.3 κ (S/cm) (3.07±0.49)×10−4 (1.00±0.06)×10−3 (2.87±0.05)×10−3

at “∆φ = 0.7 V" i (A/cm2) (6.40±0.92)×10−2 (1.3±0.14)×10−1 (2.8±0.15)×10−1

ψ(t→ ∞) 0.440±0.04 0.315±0.01 0.315±0.02
DS = 0.5 κ (S/cm) (2.13±0.46)×10−3 (6.58±0.48)×10−3 (3.70±1.41)×10−2

at “∆φ = 0.7 V" i (A/cm2) (9.3±0.35)×10−2 (2.8±0.56)×10−1 (9.9±1.38)×10−1

ψ(t→ ∞) 0.295±0.01 0.300±0.01 0.685±0.01

measured the average size of the proton channel from the proton
concentration iso-surfaces that go from the anode to the cathode
with C+ > 3C0

+. Based on these criteria, we found that the average
size of the channels is between 0.5 and 2 nm, agreeing with previ-
ous experimental measurements of poly-sulfonate membranes86.
In addition, from the 70% segregation, there are, on average,
70% interconnected regions that form proton channels, i.e. 30%
of the membrane is proton free, 20% are regions with isolated
protons and 50% of the membrane are proton channels.

The bulk polymer diffusion time on water at 25oC is estimated
from the molecule radius of gyration and the free draining diffu-
sion coefficient: τBULK ≈ 6πµR3

G/kBT = 2.5 µs. The level of con-
finement and concentration that we use to form our polymeric
membranes dramatically reduce the polymer diffusivity23,87–89,
thereby increasing the characteristic polymer diffusion time. In
Figure 11, we compare the morphology evolution of membranes
with DS = 0.1 and DS = 0.5. Here, we also use the proton
concentration to illustrate the differences. The level of confine-
ment and concentration are the same for the membranes and the
two-dimensional cuts are located in the same position. The time
frames are taken every 10 µs, which correspond to four bulk poly-
mer diffusion times. In the figure, we zoomed membrane regions,
delimited by the green circles and squares, to show the constant
formation and dispersion of the conduction channels, and we use
red dotted lines to mark proton paths from the anode to the cath-
ode. We found that for DS = 0.5, the membrane mobility is higher
when compared with one with DS = 0.1. This increase in poly-
mer segment diffusion, driven by the electrostatic contributions,
is what ensures the dynamic formation of channels. It is essen-
tial for a proper proton conduction and it explains the sudden
increase in performance for membranes with DS > 0.3.

4 Conclusions
We developed an unprecedented multi-scale mesoscopic model to
simulate the conduction channel formation in a poly-sulfonated
membrane for proton exchange. Our model explicitly includes
the effects of polymer concentration, degree of sulfonation and
confinement over length scales over hundreds of nanometers.
The polymeric membrane is constructed by freely jointed meso-
scopic polymer chains that represent sulfonated poly(ether ether
ketone) molecules with randomly distributed sulfonated-charged
monomers that obey a specific degree of sulfonation. These
molecules are embedded in a continuous solvent containing pro-

tons. The multi-scale character of the polymeric membrane
is resolved with the Nernst-Planck-General geometry Ewald-
like method (NP-GgEm), introduced by Hernández-Ortiz and de
Pablo17, adopting the Green’s function formalism for the long-
range electrostatic interactions.

We found that a polymer concentration above overlap, ΦP >

0.6, and a degree of sulfonation DS> 0.3 ensure proton and
monomer uniformities through the membrane. This “stable" con-
dition perdures as an electrostatic potential is applied and as the
thickness of the membrane is increased. However, the stable con-
ditions (ΦP = 0.6; DS= 0.3) do not ensure the constant or proper
formation of proton channels.

Our results correlate with previous experimental efforts, where
“rich" polymer conditions were suggested to be necessary for an
optimum proton exchange. These are high polymer concentra-
tions with limiting degrees of sulfonation around 50%. Our model
explains these conclusions based on the predicted linear propor-
tionality of the membrane conductivity, κ, and current, i, with
the polymer concentration and their quadratic dependency on
the degree of sulfonation: [κ, i] ∼ ΦP and [κ, i] ∼ DS2. We be-
lieve that the conductivity and current increase linearly with the
polymer concentration because, as the polymer concentration in-
creases, the number of charged monomers increases linearly (for
a constant DS). On the other hand, a change in the degree of
sulfonation implies a volumetric variation of the charges in the
polymer molecules. This increase drives the segregation of the
charged monomers, which, consequently, results in a proton de-
sire of inter-connect the membrane domains. However, the mem-
brane is effectively a confined/bi-dimensional system with an ex-
ponential screening of the potential along the confined direction.
Consequently, the current and conductivity have a quadratic de-
pendance with respect to DS.

We also determined a degree of sulfonation higher than 30%
is central to the formation of non-diffusive proton channels. We
identified ΦP = 0.8 and DS = 0.5 as the best conditions to en-
sure a constant and high membrane conductivity. On average,
we found that this membrane has 30% proton free, 20% isolated
proton regions and 50% of proton channels. Finally, we found
that the proton channels are dynamical and in constant forma-
tion/destruction driven by the electrostatic increase of the poly-
mer segment mobility.
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5 Appendix

5.1 Global field numerical approach

The solution for the global contribution of the electrostatic poten-
tial starts by translating the charge of the discrete particles to a

fluid mesh. This global density is defined as follows

ρg(xm) =F
nI

∑
i=1

ziCi(xm)+

ξ 3e
π3/2

np

∑
ν=1

zν exp(−ξ
3 ‖ xν −xm ‖2),

(20)

where ρg(xm) is the global charge density in each node of the
mesh with coordinates xm. This “discretized" global charge den-
sity is used to solve Poisson’s equation for the global electrostatic
field at the fluid mesh. In this paper, we used a Fast Fourier
Transform (FFT)90,91 method for the periodic directions (x and
y), while a second order finite difference method (FDM)92 in the
confined direction (z), i.e.

−φ̃g(kx,ky,zm−1)+ [2+(∆z)2(k2
x + k2

y)]φ̃g(kx,ky,zm)

−φ̃g(kx,ky,zm+1) =
−ρ̃g(kx,ky,zm)

εε0
(∆z)2, (21)

where φ̃g(kx,ky,zm) and ρ̃g(kx,ky,zm) are the kx and ky Fourier
modes of the global electrostatic potential and charge density
at node m, respectively. Each point of the mesh is located at
xm = (xm,ym,zm). Equation (21) results in a tri-diagonal system
for the 1D-FDM discretization in the z−direction for every (kx,ky)

Fourier mode. Thomas algorithm is used to solve the system93.

5.2 Nernst-Planck numerical approach

For the numerical solution and evolution of the Nernst-Planck
equation, the same fluid mesh form the Poisson’s equation is
used. Consequently, the mesh resolution must be selected appro-
priately to resolve the fluid characteristic length and time scales.
The Nernst-Planck equation is evolved using a semi-implicit Eu-
ler time integration scheme, where the Crank-Nicolson method is
employed for the concentration laplacian operator and the non-
linear terms are considered explicitly92:[

Ci(x,y,z)−
Di∆t

2
∇

2Ci(x,y,z)
]t+∆t

= [Bi(x,y,z)]
t , (22)

where

[Bi(x,y,z)]
t =

[
Ci(x,y,z)+

Di∆t
2

∇
2Ci(x,y,z)+

eziDi∆t
kbT

{∇Ci(x,y,z) ·∇φ(x,y,z)+ (23)

Ci(x,y,z)∇2
φ(x,y,z)

}]t
. (24)

For the spacial operators, we followed use a FFT in the periodic
directions and a 2nd order FDM in the confined direction, i.e.[

−C̃i(kx,ky,zm−1)+Θ(kx,ky)C̃i(kx,ky,zm)−

C̃i(kx,ky,zm+1)
]t+∆t

=

(
2∆z2

Di∆t

)[
B̃i(kx,ky,zm)

]t
, (25)
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where

Θ(kx,ky) =

(
2∆z2

Di∆t

)[
1+Di∆t(k2

x + k2
y +

1
∆z2 )

]
. (26)

Similar to the global electrostatic potential solution, the resulting
scheme is a tri-diagonal matrix system that is also resolved by the
Thomas algorithm.
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