CrystEngComm

Effect of growth temperature conditions on the optimization of OH1 single-crystalline thin film by physical vapour deposition

Journal:	CrystEngComm		
Manuscript ID	CE-ART-10-2019-001598.R1		
Article Type:	Paper		
Author:		07-Nov-2019 \quad	Complete List of Authors:
:---		Wang, Pei-bin; Nagoya University	
:---			
Takeya, Kei; Nagoya University			
Kawase, Kodo; Nagoya University			
Uchida, Hirohisa; Nagoya University; Arkray Inc			

Received 00th January 20xx,
Accepted 00th January 20xx
DOI: 10.1039/x0xx00000x

Effect of growth temperature conditions on the optimization of OH 1 single-crystalline thin film by physical vapour deposition

Pei-bin Wang, ${ }^{\text {a }}$ Kei Takeya, *a Kodo Kawase, ${ }^{\text {a }}$ and Hirohisa Uchida *a,b
2-(3-(4-hydroxystyry1)-5,5-dimethylcyclohex-2-enylidene malononitrile (OH1) is the only organic nonlinear optical (NLO) crystal that can be crystallized by physical vapour deposition (PVD) for terahertz (THz) wave generation. We report some optimizations of the growth temperature conditions of single-crystalline thin film by PVD. After transforming the setting temperature conditions from $90-120-180^{\circ} \mathrm{C}$ to $90-145-180^{\circ} \mathrm{C}$, we observed that the temperature conditions influence the size of the OH 1 single-crystalline thin film. Moreover, we found that, when the temperature gradient conditions were held at $90-135-180^{\circ} \mathrm{C}$ during PVD for the growth of OH 1 single-crystalline thin film, the single-crystalline thin films had longer baxial extensions, which may be better-suited to nonlinear optics. The infrared transmission spectroscopy absorption peak positions of the OH 1 single-crystalline thin film fabricated in this study were the same as those of bulk OH 1 crystal. The crystallinity of the OH 1 single-crystalline thin film was higher than that of bulk OH 1 crystal, under all temperature conditions.

Introduction

Organic nonlinear optical crystal OH1.

Nonlinear optical (NLO) crystal is a superior material widely used for wavelength conversion. Among NLO crystals, organic NLO crystals have higher NLO coefficients than inorganic NLO crystals. ${ }^{1-3}$ 2-(3-(4-hydroxystyry1)-5,5-dimethylcyclohex-2enylidene malononitrile (OH1) is a type of organic NLO crystal that has a high nonlinear coefficient ($\mathrm{d} 33=120 \mathrm{pm} / \mathrm{V} @ 1.9$ $\mu \mathrm{m}) .{ }^{4,5}$ Therefore, OH 1 crystals are expected to find applications in various optical devices. ${ }^{6,7}$

Terahertz generation using nonlinear optical crystals.

An effective application of nonlinear optical crystals is terahertz (THz) wave generation and detection. THz waves are electromagnetic waves with frequencies from 100 GHz to 10 THz , i.e., between radio waves and light waves. Several unique applications of THz waves are currently under development. ${ }^{8,9}$ In particular, there are many applications based on THz timedomain spectroscopy (THz-TDS), such as high-resolution tomography, ${ }^{10}$ measurement of tablet-coating thickness, ${ }^{11}$ determination of chloride ion concentrations in concrete, ${ }^{12}$ and communications. ${ }^{13}$ Many studies on THz sources using various NLO crystals have been performed, and they can generate THz waves efficiently, with relative ease. However, we must improve the performance of THz sources before they can be used to make advanced measurements. ${ }^{14-18}$

[^0]In previous studies, we investigated organic NLO crystals in terms of THz generation using the prism-coupled Cherenkov phase-matching (PCC-PM) method. ${ }^{19-22}$ This method enables us to generate coherent THz waves along the Cherenkov angle, and therefore suppress absorption of the NLO crystal. ${ }^{23-25}$ However, the thickness of the NLO crystal can cause phase mismatches when using the PCC-PM method. ${ }^{26,27}$ The generated THz waves interfere with and cancel each other out, because of their different points of generation. We can solve the phase mismatch using a thin crystal. ${ }^{26,28}$ Regarding the crystal shape, the result given by Lee showed a large crystal with an area of $\sim 600 \mathrm{~mm}^{2}$ has been grown from a 0.2 mm thick OH 1 seed with an area of $3.5 \mathrm{~mm}^{2}$ with a method of solution evaporation. ${ }^{29}$ The phenolic polyene OH 1 crystals with higher purity and better optical quality have been achieved by using a particular ionic organic addictive from the results of Choi's report. ${ }^{30}$ The growth of OH 1 thin film crystals by evaporation-induced local supersaturation method has been reported by Kwon. ${ }^{31}$ However, according to the former methods, it is not easy to design a shape of organic NLO crystals, due to mechanical fragility, the solubility of organic crystals and other problems. ${ }^{2}$ As described above, the shape control of organic nonlinear optical crystals is very important to increase the optical applicability.

Optimize the condition of OH1 crystallization by PVD.

Recently, we developed an easy physical vapour deposition (PVD) method to grow OH1 single-crystalline thin films, via which we achieved successful THz generation. ${ }^{7}$ In previous studies, employing a PVD setting temperature gradient of 90-$120-180^{\circ} \mathrm{C}$, we obtained single-crystalline thin film with a width of hundreds of $\mu \mathrm{m}$. The width of the OH 1 thin film crystal represents the b-axial extension. In this study, the
shape of the OH 1 single-crystalline thin film is controlled by the growth conditions. The temperature gradient of the PVD affects the crystal size by influencing the convection and deposition rates of OH 1 gas molecules. Therefore, we varied the temperature settings to identify the best temperature gradient for the growth of OH 1 single-crystalline thin films with a long b-axial extension, and appealing crystal shape and habit.

Experiments

The schematic diagram of the PVD experiment for fabricating OH 1 single-crystalline thin film is shown in Figure 1.

Figure 1. Schematic of the physical vapour deposition (PVD) apparatus. OH 1 crystal powder is heated in a tubular furnace with temperature gradient A-B-C, and sublimated; it then crystalizes at the glass substrate.

A tubular furnace with a three-zone temperature gradient (A-$B-C)$, from high to low. The OH 1 powder was placed in section A of the tubular furnace, and two pieces of semi-cylindrical glass substrate were inserted into sections B and C. By using cocks and a vacuum pump, we reduced the pressure inside the tubular furnace to a vacuum, and then implanted Argon gas to maintain the pressure at 0.07 MPa . The heating time of the tubular furnace was 24 hours under every temperature condition tested.

At first the high temperature section A was investigated based on our previous research. 7 By thermogravimetry and differential thermal analysis measurements of powdered OH1 crystals, the endothermic peak was observed $212{ }^{\circ} \mathrm{C}$, near the melting point. Moreover, the weight of OH 1 gradually decreased from $100^{\circ} \mathrm{C}$ to $190^{\circ} \mathrm{C}$ at atmospheric pressure. Conversely, when temperature condition was set at 185-120$90^{\circ} \mathrm{C}$, the OH 1 powder turned black because of pyrolysis after 24 h crystallization experiment. Therefore, the high temperature section A was determined at $180^{\circ} \mathrm{C}$ to sublimate at a temperature as high as possible.

The temperature of section C was investigated by X-ray diffraction (XRD) measurement. The growth of the OH 1 single crystal thin film used for the evaluation was varied the temperature of section C from $30{ }^{\circ} \mathrm{C}$ to $100{ }^{\circ} \mathrm{C}$. Then, sections A and B were set to the conditions where temperatures were kept at $180^{\circ} \mathrm{C}$ and $120^{\circ} \mathrm{C}$, respectively. The X-ray diffraction patterns of OH 1 single-crystalline thin films grown under different temperature conditions were obtained from out-ofplane measurements ($2 \theta / \omega$-scan) and X-ray rocking curve
measurements (ω-scan) in the bc-plane using a thin film X-ray diffraction device (ATX-G; RIGAKU). The device used a Cu-Ka1 source and its highest power was 18 kW . The voltage and current in this experiment were set to 50 kV and 300 mA , respectively. The diffraction of the OH 1 crystal was recorded at 0.001 deg intervals, from 10 to 40 deg, ± 0.2 deg from the peak position. Figure 2 is shown the XRD measurement results. A full width half maximum by rocking curve measurement of OH 1 single crystalline thin films were decreased that as temperature increases. In addition, when the temperature of section C exceeded $100^{\circ} \mathrm{C}$, only microcrystals that were not suitable for THz wave generation were grown. When the temperature of section C is about the same as that of section $\mathrm{B}, \mathrm{OH} 1$ molecules were less likely to aggregate, which suppresses crystal growth. Conversely, when the temperature of section C is extremely lower than the temperature of section B, the two-dimensional nucleation was excessively grown, so that the grown thin films were considered to be polycrystalline or low-oriented. In the fact, the full width at half maximum by rocking curve measurement of OH 1 singlecrystalline thin films were depended on the temperature of section C . Therefore, sections C was set to $90^{\circ} \mathrm{C}$.

Figure 2. X-ray rocking curve measurement results of OH 1 single-crystalline thin films grown under different temperature conditions of section C . The temperature of section A and B were $180^{\circ} \mathrm{C}$ and $120^{\circ} \mathrm{C}$, respectively.

The temperature of B was varied from $120^{\circ} \mathrm{C}$ to $145{ }^{\circ} \mathrm{C}$ as shown in Table 1. The spatial distribution of the growth of the OH 1 crystal on the glass substrate, and the size of each crystal, was measured using a microscope (VW-6000; KEYENCE).

Table 1. Setting growth temperature conditions of PVD in this study

$\mathrm{A}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{B}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{C}\left({ }^{\circ} \mathrm{C}\right)$	
I	180	120	90
II	180	125	90
III	180	130	90
IV	180	135	90
V	180	140	90
VI	180	145	90

Figure 3 shows the actual temperature gradient of the OH 1 single-crystalline thin film crystallization environment, measured by installing several thermocouple sensors inside the tubular furnace. There are similar temperatures at the A

Journal Name

section around $185{ }^{\circ} \mathrm{C}$ and C section around $95^{\circ} \mathrm{C}$ in the tubular furnace. But the temperature conditions I-VI have considerably different values at the B section from $129^{\circ} \mathrm{C}$ to $150{ }^{\circ} \mathrm{C}$. And there are also deviations between setting temperatures and actual temperatures. The actual temperature conditions were utilized to explain the effect of growth temperature conditions on the optimization of OH 1 single-crystalline thin film by physical vapour deposition.

Figure 3. The measurement temperature gradient in the tubular furnace. The red lines at A, B and C show the locations of the PVD thermocouple sensors.

The Fourier transform infrared (FTIR) spectra of the OH1 single-crystalline thin films were measured by micro-Fourier transform infrared spectroscopy (FT/IR6100; JASCO Corporation) at room temperature. The spectra were recorded at $1.92847 \mathrm{~cm}^{-1}$ intervals, from $399.193 \mathrm{~cm}^{-1}$ to $8,001.21 \mathrm{~cm}^{-1}$. The FTIR spectra of OH 1 bulk crystal were also measured for comparison and reference. The thickness of the OH 1 bulk crystal was approximately $600 \mu \mathrm{~m}$ and that of the thin film crystal was $8 \mu \mathrm{~m}$.

Results and discussion

Effect of temperature gradient on the shape of crystals.

Using a polarizing microscope, we observed that the size of the OH 1 single-crystalline thin films varied with the growth temperature conditions in the tubular furnace. Images of six OH 1 single-crystalline thin film are shown in Figure 4. While many crystals were fabricated under each temperature condition, the photograph in Figure 4 shows those with large distributions between them (see also Figure 6). We can clearly see that the sizes of the crystals vary with temperature, and the crystals created under temperature conditions III (B: $130^{\circ} \mathrm{C}$) and IV (B: $135^{\circ} \mathrm{C}$) were wider than the other crystals (Figure 4). The obtained OH 1 single-crystalline thin films were

Figure 4. Images of OH 1 single-crystalline thin films grown under six conditions. All pictures have the same scale.

Figure 5. Optical micrographs of an OH 1 single-crystalline thin film with a polarized light source at $0,30,45$ and 90 degrees.

Figure 6. Distribution of the b -axial dimension categories of OH 1 crystals obtained under different temperature conditions.
single crystals, as shown by their uniform polarization characteristics (Figure 5). The obtained OH 1 single-crystalline thin films were of optical quality and had a much longer extension in the b -axis direction under temperature condition

IV (B: $135^{\circ} \mathrm{C}$). The longer extension along the b -axis allows for ample interaction between the pump laser and the crystal for THz generation. Thus, the shape of the obtained OH 1 singlecrystalline thin film under condition IV (B: $135^{\circ} \mathrm{C}$) should be suitable as a THz source.

To confirm the effect of the growth temperature conditions, we calculated the distributions of b-axial dimension categories of the OH 1 crystals under different temperature conditions, as shown in Figure 6; the distributions varied among temperature conditions. We can see that, under conditions I (B: $120^{\circ} \mathrm{C}$), II ($\mathrm{B}: 125^{\circ} \mathrm{C}$), $\mathrm{V}\left(\mathrm{B}: 140^{\circ} \mathrm{C}\right)$, and $\mathrm{VI}\left(\mathrm{B}: 145^{\circ} \mathrm{C}\right)$, b-axial dimensions were mostly in the range of 0-100 $\mu \mathrm{m}$, i.e., most of the OH 1 single-crystalline thin films had b-axial dimensions of no more than $100 \mu \mathrm{~m}$. Meanwhile, under temperature conditions III (B: $130^{\circ} \mathrm{C}$) and IV (B: $135^{\circ} \mathrm{C}$) many thin films had b-axial

Figure 7. Image of an OH 1 single-crystalline thin film grown under temperature condition IV.
dimensions over $100 \mu \mathrm{~m}$. Under condition IV (B: $135^{\circ} \mathrm{C}$), we obtained an OH 1 single-crystalline thin film with the largest $b-$ axial dimension ($974.97 \mu \mathrm{~m}$) achieved thus far (Figure 7).

Section B along the temperature gradient (see Figure 3) is the point at which there is a switch from slow to rapid cooling. Substantial amounts of droplet-like amorphous materia adhered to the substrate when the switch point occurred at less than $140^{\circ} \mathrm{C}$, while many microcrystals were grown on the substrate when the switch point exceeded $140^{\circ} \mathrm{C}$. Under all temperature conditions, the temperature at section A, where the crucible was placed, was $180^{\circ} \mathrm{C}$, and the heating time was 24 hours. Hence, the mass of evaporated OH1 molecules was the same under all temperature conditions. We suggest that the PVD of OH1 depends largely on the temperature switch point and the phase; when the switch point was $140^{\circ} \mathrm{C}$, the single-crystalline thin film extended along the b-axis. This confirms experimentally that two-dimensional nucleation and crystal growth were in balance at $140^{\circ} \mathrm{C}$.

The average growth velocity of OH 1 single-crystalline thin film at each condition was calculated by the b-axial dimension distribution data, shown in Figure 8. It can be observed that OH 1 single-crystalline thin films has the highest growth velocity relatively at condition IV (B: $135^{\circ} \mathrm{C}$). When the temperature of section B increases, the temperature gradient
from section A to section B turns slower. This results in the local residence time extension of OH 1 molecule, so the growth velocity gradually increases as B temperature increases. However, when it exceeds condition IV, the environment temperature is too high for OH 1 molecules to aggregate and we can just get some microcrystals.

Figure 8. The average growth velocity in the b -axis direction of OH 1 singlecrystalline thin film at each condition.
Here, it can be assumed that the diffusion rates of gas molecules in the tubular furnace, and the local residence time and concentration distribution, vary depending on the temperature conditions in the furnace at section B. The temperature difference at a furnace of approximately 150 mm , shown in Figure 3, affected the magnitude of the convection and velocity of the gas molecules. Furthermore, the locations of the gas molecules may vary depending on the temperature distribution around section B. Efficient crystal growth occurs when the area in which OH 1 molecules gather has a temperature of approximately $140^{\circ} \mathrm{C}$, and we can assume that a difference in crystal growth will be seen at other temperatures.

Infrared transmission spectroscopy of OH1 bulk crystal and thin film crystal.

Figure 9. Infrared transmission spectroscopy results of OH 1 bulk and thin film crystals.
We carried out infrared transmission spectroscopy in the 4,000 to 2,000 cm-1 region of the OH1 bulk and thin film crystals, as shown in Figure 9. The blue, orange, and green areas are the regions of $\mathrm{O}-\mathrm{H}$ stretching vibrations at 3,400 to $3,500 \mathrm{~cm}-1, \mathrm{C}-\mathrm{H}$ stretching vibrations at $3,000 \mathrm{~cm}-1$, and $\mathrm{C} \equiv \mathrm{N}$
stretching vibrations at $2,200 \mathrm{~cm}-1$, respectively. The absolute absorption values of the OH 1 bulk crystal are greater than those of the OH 1 single-crystalline thin film, because the OH 1 bulk crystal has a thickness of $600 \mu \mathrm{~m}$, which is about 70 times greater than that of OH 1 single-crystalline thin film (thickness of $8 \mu \mathrm{~m}$). This result is compatible with those calculated based on the Lambert-Beer law. However, there were no differences in the positions of the peaks of the IR spectra between the OH 1 bulk crystal and thin film. Therefore, it appears that OH 1 single-crystalline thin film grown by PVD has the same molecular structure as OH 1 bulk crystal.

X-ray diffraction analysis of $\mathbf{O H} 1$ crystals grown under different conditions.

Figure 10. X -ray diffraction patterns of OH 1 single-crystalline thin films grown under different temperature conditions (I-V).

Figure 10 shows the XRD patterns of OH 1 single-crystalline thin films grown by PVD under different temperature conditions ($1-V$); the patterns were obtained from out-of-plane measurements ($2 \theta / \omega$-scan) in the bc-plane. Under all temperature conditions, peaks occurred at the same positions in the (200), (400), and (600) planes. Thus, we demonstrated that OH 1 single-crystalline thin films grown under different temperature conditions have the same lattice constant in the a-axis.

Figure 11. X-ray rocking curve measurements (ω-scan), for OH 1 single-crystalline thin film grown under five different temperature conditions.

The results of X-ray rocking curve measurements (ω-scan), for OH1 single-crystalline thin films grown under five different
temperature conditions, are shown in Figure 11. The full width at half-maximum (FWHM) of OH 1 single-crystalline thin film under temperature condition $I-V$ is 59.76 arcsec, 30.6 arcsec, 13.68 arcsec, 24.28 arcsec, 14.4 arcsec respectively, and the FWHM of the bulk crystal is 59 arcsec measured by our previous work, ${ }^{1}$ which is greater than those of the thin films grown under temperature conditions II-V. When the setting temperature at section B was increased from $120^{\circ} \mathrm{C}$ to $135^{\circ} \mathrm{C}$, we obtained OH 1 single-crystalline thin film with longer b-axial dimensions, which were more suitable for THz generation. Moreover, the FWHM of the OH 1 single-crystalline thin film was lower compared to bulk crystals and previously reported thin films. The results showed that, for the OH 1 singlecrystalline thin film, temperature condition IV yielded a crystalline perfection equivalent to, or better than, that obtained under the conditions used in previous studies, and of other films fabricated using conventional crystal growth methods. We will be able to obtain OH 1 single-crystalline thin films with the optimum shape according to the purpose by the growth temperature conditions.

Conclusions

We investigated the optimization of temperature conditions for PVD growth of OH 1 crystal. As a result, we achieved control over the growth of OH 1 single-crystalline thin film simply by changing the temperature conditions. By setting the temperature gradient of PVD to 90-135-180 ${ }^{\circ} \mathrm{C}$, a high crystallinity OH 1 single-crystalline thin film with long extension along the b -axis was obtained. We analysed the fabricated samples using infrared spectroscopy and XRD, and observed that the OH1 thin film crystal obtained by vapour phase growth has higher crystallinity than the bulk crystal. To obtain a large and high crystallinity OH 1 single-crystalline thin film in the b axis direction, it is extremely important to maintain the actual temperature of section B at $140{ }^{\circ} \mathrm{C}$. This confirms experimentally that two-dimensional nucleation and crystal growth were in balance at $140^{\circ} \mathrm{C}$.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We acknowledge the contributions of K. Okimura of Nagoya University for his experimental support and helpful discussion, and Prof. Tatsuo Mori of Aichi Institute of Technology for his advice related to the development of single-crystalline thin films.

References

1. H. Nakanishi, H. Matsuda, S. Okada and M. Kato, Organic polymeric ion-complexes for nonlinear optics. Proc. MRS Int. Meet. Adv. Mater. 1989, 1, 97.
2. M. Jazbinsek, L. Mutter and P. Gunter, IEEE Journal of selected topics in quantum electronics, 2008, 14, 12981311.
3. H. Ito, K. Suizu, T. Yamashita, A. Nawahara and T. Sato, Japanese Journal of Applied Physics, 2007, 46, 7321.
4. C. Hunziker, S.-J. Kwon, H. Figi, F. Juvalta, O.-P. Kwon, M. Jazbinsek and P. Günter, JOSA B, 2008, 25, 1678-1683.
5. C. Vicario, M. Jazbinsek, A. Ovchinnikov, O. Chefonov, S. Ashitkov, M. Agranat and C. Hauri, Optics express, 2015, 23, 4573-4580.
6. F. D. Brunner, O.-P. Kwon, S.-J. Kwon, M. Jazbinšek, A. Schneider and P. Günter, Optics express, 2008, 16, 1649616508.
7. H. Uchida, R. Yamazaki, K. Oota, K. Okimura, T. Minami, K. Takeya and K. Kawase, Crystal Growth \& Design, 2018, 18, 4029-4036.
8. M. Tonouchi, Nature photonics, 2007, 1, 97.
9. B. Ferguson and X.-C. Zhang, Nature materials, 2002, 1, 26.
10. J. Takayanagi, H. Jinno, S. Ichino, K. Suizu, M. Yamashita, T. Ouchi, S. Kasai, H. Ohtake, H. Uchida and N. Nishizawa, Optics express, 2009, 17, 7533-7539.
11. A. J. Fitzgerald, B. E. Cole and P. F. Taday, Journal of pharmaceutical sciences, 2005, 94, 177-183.
12. S. R. Tripathi, H. Ogura, H. Inoue, T. Hasegawa, K. Takeya and K. Kawase, Corrosion Science, 2012, 62, 5-10.
13. T. Kleine-Ostmann and T. Nagatsuma, Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32, 143-171.
14. D. H. Auston and M. C. Nuss, IEEE Journal of quantum electronics, 1988, 24, 184-197.
15. J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal and K. A. Nelson, JOSA B, 2008, 25, B6-B19.
16. H. Hirori, A. Doi, F. Blanchard and K. Tanaka, Applied Physics Letters, 2011, 98, 091106.
17. J. Hebling, G. Almasi, I. Z. Kozma and J. Kuhl, Optics Express, 2002, 10, 1161-1166.
18. K. Takeya, K. Suizu, H. Sai, T. Ouchi and K. Kawase, IEEE Journal of Selected Topics in Quantum Electronics, 2012, 19, 8500212-8500212.
19. K. Suizu, T. Shibuya, T. Akiba, T. Tutui, C. Otani and K. Kawase, Optics express, 2008, 16, 7493-7498.
20. K. Suizu, K. Koketsu, T. Shibuya, T. Tsutsui, T. Akiba and K. Kawase, Optics express, 2009, 17, 6676-6681.
21. H. Uchida, K. Oota, T. Minami, K. Takeya and K. Kawase, Applied Physics Express, 2017, 10, 062601.
22. K. Takeya, K. Okimura, K. Oota, K. Kawase and H. Uchida, Optics letters, 2018, 43, 4100-4103.
23. K. Chikuma and S. Umegaki, JOSA B, 1990, 7, 768-775.
24. T. Shibuya, T. Tsutsui, K. Suizu, T. Akiba and K. Kawase, Applied Physics Express, 2009, 2, 032302.
25. S. R. Tripathi, K. Murate, H. Uchida, K. Takeya and K. Kawase, Applied Physics Express, 2013, 6, 072703.
26. S. Fan, H. Takeuchi, T. Ouchi, K. Takeya and K. Kawase, Optics letters, 2013, 38, 1654-1656.
27. K. Takeya, T. Minami, H. Okano, S. Tripathi and K. Kawase, APL Photonics, 2017, 2, 016102.
28. H. Uchida, K. Oota, K. Okimura, K. Kawase and K. Takeya, Journal of Infrared, Millimeter, and Terahertz Waves, 2018, 39, 509-513.
29. S. H. Lee, S. J. Lee, M. Jazbinsek, B. J. Kang, F. Rotermund and O. P. Kwon, CrystEngComm, 2016, 18, 7311-7318.
30. E. Y. Choi, M. Jazbinsek, J. H. Jeong and O.P Kwon, CrystEngComm, 2012, 14, 1045.
31. S. J. Kwon, C. Kunziker, O. P. Kwon, M. Jazbinsek, P. Günter, Crystal Growth \& Design, 2009, 9, 2512-2516.

[^0]: a. Department of Electronics, Nagoya University, Nagoya, 464-8603, Japan
 b. ARKRAY Inc., Kamigyo-ku, Kyoto 602-0008, Japan.
 *Kei Takeya. takeya@nuee.nagoya-u.ac.jp,

 * Hirohisa Uchida. uchidah@arkray.co.jp

