

Difluoromethane as a Precursor to Difluoromethyl Borates

Journal:	ChemComm
Manuscript ID	CC-COM-02-2019-001565.R1
Article Type:	Communication

Difluoromethane as Precursor to Difluoromethyl Borates

Jacob B. Geri,^[a] Ellen Y. Aguilera,^[b] Nathaniel K. Szymczak^{[b]*}

'Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Difluoromethane (CF_2H_2) is an ecologically-friendly refrigerant which holds promise as a source of CF_2H^- . However, its weak acidity ($pK_a = 35-41$) and low stability of the conjugate base has prevented its utilization as a chemical feedstock. In this manuscript, we use a Lewis pair approach to deprotonate CF_2H_2 and capture CF_2H^- as $R_3B CF_2H^-$ adducts. One reagent can be used as a base-free Suzuki reagent in palladium-mediated difluoromethylation, where $CF_2H^$ transfer is templated by precoordination to an azaborine derived $R_3B-CF_2H^-$ reagent.

When incorporated into biologically active molecules, the difluoromethyl group acts as a metabolically stable lipophilic bioisostere of OH or SH groups.¹⁻³ As a result of these desirable properties, molecules containing -CF₂H groups are routinely investigated in drug development.⁴⁻⁶ Many of the commonly used CF₂H transfer reagents (such as SiMe₃CF₂H and Zn(CF₂H)₂) are prepared from halofluoromethanes (XCF₂H; X = Cl, Br, F) and their derivatives,⁷⁻¹² compounds with high ozone depleting potential.¹³ In contrast, difluoromethane (CF₂H₂) would represent an attractive source of the difluoromethyl group if it could be deprotonated to reveal nucleophilic CF₂H⁻ fragments. It is nontoxic, has no ozone-depleting potential, and is already manufactured on a large scale as a refrigerant.¹⁴ However, no approaches for nucleophilic difluoromethylation from difluoromethane have been reported.

Despite the attractive properties of CF_2H_2 as a source of CF_2H^- , challenges associated with deprotonation and capture have prevented its use as a chemical synthon. In addition to low acidity (gas phase proton affinity: 389 kcal/mol;¹⁵ HCF₃: 376 kcal/mol),¹⁶ free CF_2H^- is unstable to α -fluoride elimination.¹⁷

Figure 1. Conceptual outline of Lewis acid/base strategy to enable CF_2H capture/transfer from H_2CF_2 .

Furthermore, if CF₂H⁻ is generated in the presence of a fluorophilic cation such as Li+, immediate defluorination occurs.¹⁷ If the Li is replaced with [Cs(18-crown-6)₂]⁺, a cation with low F⁻ affinity, the corresponding [CF₂H]⁻ is highly basic and readily deprotonates THF. For these reasons, CF₂H₂ has not been used to prepare synthetically useful CF₂H⁻ equivalents. These problems may be mitigated by deprotonating CF₂H₂ in the presence of a Lewis acid (LA) that can capture CF₂H⁻ as a LA- $\mathsf{CF}_2\mathsf{H}^{\scriptscriptstyle -}$ adduct, and then later release $\mathsf{CF}_2\mathsf{H}^{\scriptscriptstyle -}$ in a subsequent reaction. To realize this strategy, selection of an appropriate Brønsted base and Lewis acid is critical, because the Lewis acid and base must be strong enough to deprotonate CF₂H₂ and to stabilize CF₂H⁻ while also avoiding the formation of *inert* acidbase adducts.¹⁸ We previously described a compatible Lewis acid / base approach that can resolve categorically similar issues with ArCF₂H substrates;¹⁹ the acid/base partners mediate CF₂Ph⁻ generation, capture, and release. In this communication, we report the direct synthesis of R₃B-CF₂H⁻ adducts from difluoromethane and their ability to serve as nucleophilic sources of CF₂H⁻.

We hypothesized that an appropriate Lewis pair for difluoromethane deprotonation / CF_2H^- capture must satisfy several key criteria. The base must be sufficiently strong to deprotonate CF_2H_2 and not contain fluorophilic cations such as Li⁺ and Na⁺. The Lewis acid must be sufficiently strong to stabilize CF_2H^- against α -fluoride elimination but weak enough

^{a.} Current Address: Merck Center for Catalysis at Princeton University, Washington Road, Princeton, NJ 08544 (USA)

^{b.} Department of Chemistry, University of Michigan Ann Arbor 930 N. University, Ann Arbor, MI 48109 (USA)

E-Mail: nszym@umich.edu

Homepage: http://www.umich.edu/~szymlab.

Electronic Supplementary Information (ESI) available. See DOI: 10.1039/x0xx00000x

Figure 2. a) Synthesis of 1 from H_2CF_2 . b) X-Ray crystal structure of 1. K(18-c-6)(THF)⁺ counterion omitted for clarity.

to release CF_2H^- nucleophiles. In addition to these requirements, the Lewis acid / base pairs must not quench their respective reactivity through the formation of irreversible adducts.¹⁸ We selected KCH₂Ph as an initial base for experimental evaluation because of its high basicity (pK_a = 42 (DMSO)),²⁰ straightforward preparation,²¹ and potassium counteraction. Hexamethylborazine (B₃N₃Me₆) was selected as the initial Lewis acid partner because it forms a reversible adduct with KCH₂Ph and is known to stabilize fluoroalkyl nucleophiles (CF₃⁻ and CF₂Ar⁻).^{19, 22, 23}

When CH_2F_2 gas was added to a deep red THF solution containing a 1:1:1 ratio of KCH₂Ph, B₃N₃Me₆, and 18-crown-6 at 0 °C, the solution became colorless after 90 minutes. ¹⁹F NMR spectroscopy revealed the formation of a new species at -128.23 ppm exhibiting ${}^{2}J_{11B-19F}$ and ${}^{1}J_{1H-19F}$ coupling (32, 49 Hz) consistent with a $B\text{-}\mathsf{CF}_2\mathsf{H}$ unit.^{24} Trituration with pentane afforded a white solid in 95% yield, which was characterized by ¹H, ¹¹B, ¹³C, and ¹⁹F NMR spectroscopy. The ¹H NMR spectrum revealed loss of symmetry of the $B_3N_3Me_6$ unit with four $-CH_3$ resonances (2.51, 2.49, 0.05, -0.39 ppm), as well as a new -CF₂H resonance at 5.20 ppm with $^{1}\!J_{\rm 1H-19F}$ coupling (51 Hz). The $^{11}\text{B-}$ NMR spectrum revealed one broad (32.3 ppm) and one sharp resonance (-5.7 ppm) integrating in a 2:1 ratio. These data are consistent with a dearomatized $B_3N_3Me_6$ unit containing one tetrahedral and two planar boron atoms, enabling assignment of the isolated compound as K(18-crown-6)B₃N₃Me₆(CF₂H) (1). Importantly, in the absence of $B_3N_3Me_6$, no tractable reaction products are observed.

Crystals suitable for X-Ray diffraction were obtained by allowing pentane to diffuse into a concentrated solution of **1** in THF at -35 °C. The solid-state structure revealed a CF₂H⁻ anion coordinated to a dearomatized B₃N₃Me₆ unit, capped with a K(18-crown-6)⁺ cation (Figure 2b). The B-CF₂H bond is elongated relative to the other B-CH₃ bonds (1.640(5) vs 1.621(5), 1.612(7), 1.594(7) Å), consistent with lower bond strength (*vide infra*). The structure is largely homologous with other fluoroalkyl-borazine adducts K(18-crown-6)B₃N₃Me₆(*CF*₃) and K(18-crown-6)B₃N₃Me₆(*CF*₂*Ph*), which also exhibit elongated B-C distances of 1.656(4) and 1.670(6) Å.^{19, 22}

1 is the first reported $R_3B-CF_2H^-$ adduct.²⁵ Organoboron –ate complexes of this type are the active form of commonly used Suzuki reagents in palladium-catalyzed cross coupling, and the known ability of K(18-crown-6)B₃N₃Me₆(CF₃) and K(18-crown-6)B₃N₃Me₆(CF₂Ph) to transfer fluoroalkyl anions to Pd(II) centers

Figure 3. a) Synthesis of 2 and 3 from CF_2H_2 . b) X-Ray structure of 3. K(18-c-6)(THF) counterion omitted for clarity.

such as Pd(TMEDA)(Ph)I (TMEDA = tetramethylethylenediamine) suggested that **1** may be able to promote similar reactivity. Unfortunately, **1** did not react with Pd(TMEDA)(Ph)I even under forcing conditions (24 h, 80 °C in THF). The lack of reactivity and shorter B-CF₂H bond relative to analogous $-CF_3^-$ and CF_2Ph^- adducts alluded to a stronger B-CF₂H bond preventing CF_2H transfer. We confirmed this hypothesis *in silico* and found that the calculated affinity of $B_3N_3Me_6$ for CF_2H^- (-33 kcal/moI) was 10 kcal higher than for CF_3^- (-23 kcal/moI) at the M062X/6-31g(d,p) level of theory.

One option to lower the kinetic barrier to CF₂H transfer is via pre-coordination to an adjacent ligand donor group. To implement this design principle for CF₂H⁻ transfer, we targeted two [6,6]-fused 1,2-azaborine rings that either contain (1,2,3,4tetrahydro-[1,2]azaborinino[1,2-a][1,2]azaborinine)²⁶ or omit (octahydro-[1,2]azaborinino[1,2-a][1,2]azaborinine)²⁷ а nucleophilic π -system. Their calculated CF₂H⁻ affinity (M062X/6-31g(d,p)) is similar to $B_3N_3Me_6$ (-33 (2) and -34 (3) vs. -33 (1) kcal/mol) making these adducts suitable candidates to test our hypothesis. Adducts between these Lewis acids and CF₂H⁻ would present nucleophilic -C and/or -N nucleophilic sites proximal to the CF₂H⁻ group, and could serve to direct CF₂H⁻ transfer. When a solution of either of the [6,6]-fused 1,2-azaborine Lewis acids, KCH₂Ph, and 18-crown-6 was treated with CH₂F₂, CF₂H⁻ adducts analogous to 1 (K(18-crown-6)(2: 1,2,3,4-tetrahydro-[1,2]azaborinino[1,2-a][1,2]azaborinine)(CF₂H); 3: K(18-crown-6)(octahydro-[1,2]azaborinino[1,2-a][1,2]azaborinine)(CF₂H)) were obtained as solids in 62% and 34% yield. The yield of 3 was increased to 78% by substituting bulky KN(ⁱPr)₂²⁸ for KCH₂Ph.

¹⁹F-NMR spectra of **2** exhibited two resonances (-127.10 and 131.96 ppm) with ²J_{19F-19F}, ¹J_{1H-19F}, and ²J_{11B-19F} coupling (311, 54, and 20 Hz), while the ¹¹B-NMR spectrum showed a sharp peak at -10.22 ppm. These data are consistent with a B-CF₂H unit containing diastereotopic fluorine units. **3** exhibited a single ¹⁹F resonance (127.04 ppm, ¹J_{1H-19F}, ²J_{11B-19F} = 51 and 18 Hz), a sharp ¹¹B-NMR resonance at -12.4 ppm, and C₂-symmetric ¹H and ¹³C NMR resonances. A single crystal of **3** was grown by allowing pentane to diffuse into a THF solution at -35 °C, and the solid state structure revealed that **3** exhibits a bent geometry of the azaborine unit, similar to that of the hydrocarbon decalin, capped by a B-CF₂H group. The B-CF₂H bond in **3** (1.633(3) Å) is within error of that in **1** (1.640(5) Å), and is consistent with their similar calculated CF₂H⁻ affinities and B-CF₂H bond lengths (1.633 and 1.638 Å).

Journal Name

a) transmetalation/reductive elimination at Pd

Figure 4. a) Transmetalation of 1-3 to Pd(TMEDA)(Ph)I and subsequent reaction with 1,1'-bis(diphenylphosphino)ferrocene (DPPF). b) Computed pathway for transmetalation using 2 (M06L2X/6-31g(d,p). Hydrogen atoms omitted for clarity.

To assess whether pre-coordination could provide a more kinetically accessible pathway for CF₂H⁻ transmetalation, we evaluated the reactivity of **2** and **3** with Pd(TMEDA)(Ph)I. Heating a mixture of **2** and **1.5** equivalents Pd(TMEDA)(Ph)I (**4**) at 80 °C afforded a 1:1 ratio of Pd(TMEDA)(CF₂H)₂ (**5**)²⁹ and Pd(TMEDA)(CF₂H)(Ph) (**6**)³⁰ in 55% combined yield as identified by ¹⁹F-NMR spectroscopy. Addition of two equiv. DPPF, followed by heating to 80 °C for 2 h triggered reductive elimination of difluoromethylbenzene in 28% combined yield over both steps.³¹ In contrast, **3** or **1**, which do not contain a nucleophilic π -system, afforded Pd(TMEDA)(CF₂H)₂ in only trace quantities; further reaction with DPPF did not yield PhCF₂H.

These experiments highlight ring unsaturation as a key structural element that can be used to direct CF_2H^- transfer and suggests that precoordination of the $R_3B-CF_2H^-$ adduct may facilitate transmetalation. We assessed this hypothesis using a combined experimental / theoretical approach. Combination of 2 and 4 at 25 °C afforded a deep red species (7) with new NMR resonances. Titration of 2 with 4 identified 7 as a 1:1 adduct of 2 and 4. Alternative reagents 3 and 1, which lack a nucleophilic π -system, did not form observable adducts when combined with 4. Heating 7 at 80 °C for 2 hours afforded

Pd(TMEDA)(CF₂H)(Ph) **(6**), establishing **7** as an intermediate formed prior to CF₂H⁻ transfer. ¹H-¹H COSY and ¹H-¹³C HSQC spectra allowed a partial structural assignment for **7**. Notably, ¹H-NMR resonances associated with the sp² C-H groups in the azaborine fragment (C1-H:4.89, C2-H: 4.85, C3-H: 4.07, C4-H: 7.86) are significantly shifted with respect to those found in unbound **2**, suggesting a Pd- π interaction in **7**. To augment the assignment, DFT analyses were used to identify two structural isomers of **7** as energetic minima, in which the closest Pd-C contact is at either the C3 or C1 position. Of these two isomers, the isomer with Pd-C3 coordination was more stable by -1.3 kcal/mol and the calculated NMR shifts³² more closely resembled the experimental values ((C1-C4)-H: 5.40, 5.01, 3.15, 8.20 vs. 2.58, 7.63, 5.29, 6.26), allowing us to assign the connectivity of **7** as depicted in Figure 4.

An associative mechanism for CF₂H⁻ transmetalation from **2** to **4** via **7** was then computationally evaluated (MO6L2X/6-31g(d,p)). In the first step, I⁻ is displaced by **2** to form the observed prereactive complex **7** in an exothermic process (-3.8 kcal/mol). Rotation of the ring positions the CF₂H⁻ group in close proximity to the Pd(II) center (**8**: +1.3 kcal/mol). CF₂H⁻ transfer occurs through β-alkyl elimination (transition state **9**) to form

Journal Name

product **6** and the free azaborine Lewis acid with a net barrier of 34.7 kcal/mol. These computational and experimental data support our hypothesis that an associative mechanism for CF_2H^- transmetalation to Pd(II) is operative for reagent **2**.

In conclusion, we have developed the first strategy to repurpose CF_2H_2 , widely available refrigerant, into a $-CF_2H^$ building block. A compatible Lewis acid/base pair approach enabled the preparation of a family of three boron- $CF_2H^$ adducts (1-3) following difluoromethane deprotonation. Of these reagents, only **2** can transmetalate CF_2H^- to palladium(II), a challenging transformation which has not been demonstrated using B-CF₂H⁻ sources.^{29, 30, 33, 34} We identified that templated coordination through the π -system of **2** is required to facilitate -CF₂H⁻transfer, and used the resulting difluoromethylpalladium complex to prepare PhCF₂H. We anticipate that this conceptual approach to difluoromethane activation and transfer may be applied to other reactive nucleophiles and that difluoromethylborate adducts will find applications in organic synthesis through further optimization.

Acknowledgments

This work was supported by the University of Michigan Department of Chemistry, a Rackham Predoctoral Fellowship (JBG), and an NSF CAREER (grant CHE-1350877). X-ray diffractometers used were funded by the NSF (CHE 1625543). N.K.S. is a Camille Dreyfus Teacher-Scholar. We thank Dr. Jeff Kampf for crystallographic assistance, and Prof. Arthur Ashe for helpful discussions regarding the synthesis of 1,2,3,4-tetrahydro-[1,2]azaborinino[1,2-a][1,2]azaborinine and octahydro-[1,2]azaborinino[1,2-a][1,2]azaborinine.

Conflicts of interest

We have submitted a patent application regarding chemistry similar to that described in this work.

Notes and references

- 1. E. P. Gillis, K. J. Eastman, M. D. Hill, D. J. Donnelly and N. A. Meanwell, *J. Med. Chem.*, 2015, **58**, 8315-8359.
- D. B.-D. Jean-Pierre Bégué, Bioorganic and Medicinal Chemistry of Fluorine, Wiley, 2008.
- 3. C. Xu, W.-H. Guo, X. He, Y.-L. Guo, X.-Y. Zhang and X. Zhang, *Nature Communications*, 2018, **9**, 1170.
- 4. N. A. Meanwell, J. Med. Chem., 2018, **61**, 5822-5880.
- Y. Zafrani, D. Yeffet, G. Sod-Moriah, A. Berliner, D. Amir, D. Marciano, E. Gershonov and S. Saphier, *J. Med. Chem.*, 2017, 60, 797-804.
- C. D. Sessler, M. Rahm, S. Becker, J. M. Goldberg, F. Wang and S. J. Lippard, J. Am. Chem. Soc., 2017, 139, 9325-9332.
- E. Yerien Damian, S. Barata-Vallejo and A. Postigo, Chemistry – A European Journal, 2017, 23, 14676-14701.
- K. Aikawa, Y. Nakamura, Y. Yokota, W. Toya and K. Mikami, *Chemistry – A European Journal*, 2015, **21**, 96-100.
- 9. W. P. Dailey, P. Ralli, D. Wasserman and D. M. Lemal, *The Journal of Organic Chemistry*, 1989, **54**, 5516-5522.

- 10. G. K. S. Prakash, J. Hu and G. A. Olah, *The Journal of Organic Chemistry*, 2003, **68**, 4457-4463.
- 11. G. K. S. Prakash, P. V. Jog, P. T. D. Batamack and G. A. Olah, *Science*, 2012, **338**, 1324-1327.
- 12. A. Tyutyunov, V. Boyko and S. Igoumnov, *Fluorine notes*, 2011, 7-8.
- 13. S. Montzka, P. Fraser, J. Butler, D. Cunnold, J. Daniel, R. Derwent, S. Lal, A. McCulloch, D. Oram and C. Reeves, *Scientific Assessment of Ozone Depletion: 2002*, 2003.
- 14. Difluoromethane (HFC-32) CAS No. 75-10-5 (Second Edition), European Centre for Ecotoxicology and Toxicology of Chemicals, Brussels, 2008.
- 15. E. P. F. Lee, J. M. Dyke and C. A. Mayhew, *The Journal of Physical Chemistry A*, 1998, **102**, 8349-8354.
- 16. S. T. Graul and R. R. Squires, J. Am. Chem. Soc., 1990, **112**, 2517-2529.
- 17. D. Chen, C. Ni, Y. Zhao, X. Cai, X. Li, P. Xiao and J. Hu, Angew. Chem. Int. Ed., 2016, **55**, 12632-12636.
- D. W. Stephan, J. Am. Chem. Soc., 2015, 137, 10018-10032.
- 19. J. B. Geri, M. M. Wade Wolfe and N. K. Szymczak, J. Am. Chem. Soc., 2018, **140**, 9404-9408.
- 20. F. G. Bordwell, D. Algrim and N. R. Vanier, *The Journal of Organic Chemistry*, 1977, **42**, 1817-1819.
- 21. L. Lochmann and J. Trekoval, *J. Organomet. Chem.*, 1987, **326**, 1-7.
- J. B. Geri and N. K. Szymczak, J. Am. Chem. Soc., 2017, 139, 9811-9814.
- 23. B. Geri Jacob, M. Wade Wolfe Michael and K. Szymczak Nathaniel, *Angew. Chem. Int. Ed.*, 2018, **57**, 1381-1385.
- 24. S. Ito, N. Kato and K. Mikami, *Chemical Communications*, 2017, **53**, 5546-5548.
- 25. Cambridge Structural Database, version 5.40, January 2019
- 26. A. D. Rohr, J. W. Kampf and A. J. Ashe, *Organometallics*, 2014, **33**, 1318-1321.
- M. Dewar and R. Jones, J. Am. Chem. Soc., 1968, 90, 2137-2144.
- L. Lochmann and J. Trekoval, J. Organomet. Chem., 1979, 179, 123-132.
- 29. Y. Gu, X. Leng and Q. Shen, *Nature Communications*, 2014, **5**, 5405.
- 30. K. Aikawa, H. Serizawa, K. Ishii and K. Mikami, *Organic Letters*, 2016, **18**, 3690-3693.
- Difluoromethylbenzene was quantified by ¹⁹F-NMR spectroscopy and GCMS with comparison to an authentic standard.
- 32. K. Wolinski, J. F. Hinton and P. Pulay, *J. Am. Chem. Soc.*, 1990, **112**, 8251-8260.
- 33. Y. Gu, D. Chang, X. Leng, Y. Gu and Q. Shen, Organometallics, 2015, **34**, 3065-3071.
- 34. C. Lu, H. Lu, J. Wu, H. C. Shen, T. Hu, Y. Gu and Q. Shen, *The Journal of Organic Chemistry*, 2018, **83**, 1077-1083.

80x29mm (300 x 300 DPI)