

Analyst

Initial estimation method by cosine similarity for multivariate curve resolution: Application to NMR spectra of chemical mixture

Journal:	Analyst
Manuscript ID	AN-ART-07-2019-001416.R1
Article Type:	Paper
Date Submitted by the Author:	02-Sep-2019
Complete List of Authors:	Nagai, Yuya; Chuo University, Department of Chemistry Sohn, Woon Yong; Chuo University, Department of Applied Chemistry Katayama, Kenji; Chuo University, Department of Chemistry; Kagaku Gijutsu Shinko Kiko, Precursory Research for Embryonic Science and Technology

SCHOLARONE[™] Manuscripts

1		
2		
3		
4		
5	1	Initial estimation method by assing similarity for multivariate
7	1	milital estimation method by cosine similarity for multivariate
, 8		
9	2	curve resolution: Application to NMR spectra of chemical mixture
10		
11	3	Yuya Nagai ¹ and Woon Yong Sohn, ¹ Kenji Katayama ^{1,2*}
12	4	1 Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan;
13	5	2 DRESTO Japan Salanaa and Tashnalagu Aganay (JST) Saltama 222 0012 Japan
14	5	2 I KESTO, Japan Science and Technology Agency (JST), Sanama 552-0012, Japan
15	6	*Corresponding authors:
10	7	
18	/	K. Katayama, Phone: +81-3-3817-1913, E-mail: <u>kkata@kc.chuo-u.ac.jp</u>
19	0	Abstract
20	8	Abstract
21	9	Multivariate curve resolution (MCR) has been widely utilized to reveal the constituents of chemicals
22	,	Wurtvariate curve resolution (Wert) has been widely utilized to reveal the constituents of chemicals
23	10	from the multiple spectral data of chemical mixtures. In the MCR calculation, the singular value
24	11	decomposition (SVD) has been utilized to obtain the initial estimation of the spectra for pure chemicals
25 26	12	and they are adjusted to obtain the best fit using the alternating least square (ALS) algorithm. However,
20	13	wrong initial estimation by SVD frequently leads convergence at an incorrect local minimum of the
28	1.	wrong initial estimation by 5 v D nequency leads convergence at an incontect local initial of the
29	14	least square error. To overcome this problem, we have developed a robust calculation technique, which
30	15	utilizes a new initial estimation using cosine similarity, and the following optimization was performed
31	16	by MCR. The calculation was applied for ¹ H-NMR spectra of 4 different chemicals, and this
32	17	methodology could recover the spectra of pure chemicals (>85 $\%$ consistency) and the concentration
33	1/	methodology could recover the spectra of pure chemicals (>85 % consistency) and the concentration
34 25	18	profile for each mixture within an accuracy of <10 %.
36	19	
37	20	Keywords: multivariate curve resolution, cosine similarity, initial estimation, chemical mixture
38	21	spectro ¹ H NMP
39	21	specification specification and specification an
40	22	
41		
42		
43 44		
44 45		
46		
47		
48		

58 59 60

23 Introduction

We often encounter various mixtures of chemicals in material researches. In chemical reactions, the reaction system includes not only the reactant and product species but also various by-products and intermediate species. For example, in biological processes in cells, many different proteins and lipids are involved and various chemicals are uptaken and discharged from the cell. To analyze the involved chemicals, we need to separate them into pure ones and to perform chemical analyses such as nuclear magnetic resonance (NMR), infrared absorption (IR), mass spectroscopy (MS), etc. In organic syntheses, usually, the reaction cannot be halted for the analyses of the reactants, products, and by-products by separating them during the reaction. In biological cells, much spectral information can be obtained but the spectrum is different at each position because the constituents are different depending on the local positions. As such, in many chemical processes, it is not always easy to extract pure chemicals, and we frequently encounter the situation where only information on a mixture of chemicals is obtained as an overlap of spectra.

Thus, it is beneficial if we could obtain spectra for pure chemicals and their concentrations from the overlapped spectra consisting of different ratio of chemicals for mixture samples. There are several methods to extract the information from the spectra of chemical mixtures in the field of chemoinformatics; the partial least square (PLS) regression has been widely used for this purpose¹ to identify important components from the multiple spectral data of chemical mixtures. In PLS, the data dimension is reduced much by extraction of the featured spectra using the principal component analysis (PCA) from the dataset. By ignoring the multicollinearity, a small number of components consisting of the spectra can be properly extracted. However, this process makes it difficult to interpret chemical information directly, because the loadings and scores obtained from the analyses are different from the pure spectra and the concentration profiles.

Multivariate curve resolution (MCR) method paves the way to solve this problem, where multiple spectral data as a matrix is decomposed into a matrix of the spectra for pure chemicals (S) and a matrix of the concentration ratio (C) in the mixtures. In this calculation, S and C matrixes are updated alternatively to minimize the least square error between the spectra and concentrations for the mixtures and S and C are estimated. (MCR-ALS) with penalty terms such as non-negativity, restriction of the value range and the number of components, etc. The MCR-ALS has been utilized for various applications; chromatography data has been analyzed from the beginning of the MCR application in the field of analytical chemistry;²⁻⁵ time-dependent spectral data were analyzed for the kinetic analysis of the protein folding,^{6,7} the drug degradation⁸ and the reaction of amino acid with a drug candidate;^{9,10} electrochemical analysis;^{11,11} mixture analysis of chemical blends using the near-infrared absorption spectra,^{12,13} the UV/VIS absorption spectra;^{14–16} the circular dichroism,¹⁷ gas chromatography / liquid chromatography-mass spectrometry data^{18,19} and x-ray absorption spectra;²⁰ the optical spectra, IR

spectra and mass spectra obtained by scanning a sample surface was decomposed into pure spectra and concentration profiles;²¹⁻²⁴ the intermediate species were estimated from the temperature dependence of the near-infrared absorption;²⁵ metabolite profile analysis using the capillary-electrophoresis mass spectrometry and liquid chromatography-mass spectrometry data;²⁶⁻²⁸ and ¹H-NMR data;²⁹ the separation of excitation-emission matrix into the components for different fluorophores;³⁰ polymer crystallinity at the side chain was estimated from the Raman spectra.^{31,32} In recent years, spatial distribution of each chemical species or biological components was mapped out using Raman microscopy by collecting many spectra of mixtures from the different locations of biological cells,^{33–37}

However, the calculation sometimes does not work well due to strong background.³⁸ unclear number of components,³⁹ rotational ambiguities in the matrix decomposition process,⁴⁰ and most severely affected by the initial estimation of the spectra of pure chemicals, which is conventionally obtained by the singular value decomposition (SVD). Once the least square error is in the local minimum, it is difficult to recover the correct spectra for pure chemicals.⁴¹ To overcome this problem, we have developed the categorization of the spectral components by using the cosine similarity (hereafter called *cos-s*) of the peak intensity correlation in three steps. The *cos-s* estimation could provide a reasonable initial estimation and the following MCR process could refine the spectra and obtain the concentration profile with high reliability. In this paper, we demonstrated that the ¹H-NMR spectra of the mixtures consisted of 4 different chemicals were decomposed into the correct pure spectra and concentrations of the mixtures.

78 Theory and method

Scheme.1 The overall workflow of *cos*-s MCR is shown. The algorithm is divided into 7 sections: (a) data pre-processing, (b) spectral convolution, (c) division of the spectral regions, (d) cos-s estimation, (e) data augmentation, (f) MCR optimization, (g) deconvolution. The cos-s estimation is consisted of 3 steps; the peak overlap is evaluated in the first step, and the peak region correlation is examined in the second step, and the overlapped peak region is separated.

Scheme 1 represents the overall workflow of the MCR calculation we have developed. Because the original ¹H-NMR data had minor errors of chemical shifts for each measurement (<0.005 ppm), and a peak of ¹H-NMR typically is consisted of 10 data points, only 1-point shift gives a large error for the calculation. To remove the minor shifts, *i*coshift algorithm⁴² was applied to adjust the true peak positions, (Scheme 1 (a)) which has been used for ¹H-NMR data to adjust the peak shifts of spectra.

Before the data processing, the spectrum data, $s_{i,i}$ for the sample number, *i* and the chemical shift, *j*, was centered to the average intensities of samples as:

(1)

$$s_{ij} = s_{ij} - \overline{s}_j$$

This process ensures that the intensity variation for different samples is considered. (Scheme 1(a))

Even though the *i*coshift algorithm could adjust the chemical shifts, the original raw spectra have unknown shifts in peaks' positions and unexpected distortion or split. These biases of peaks did not satisfy the condition that a spectrum of the chemical mixture should be represented by a linear summation of the spectra of pure chemicals. To overcome this problem, each spectrum was convoluted by a Gaussian function to obscure tiny differences. (Scheme 1(b)) The used function had ~ 0.005 ppm of the full width of half maximum (FWHM), which was interactively determined. As shown in Eqn. (2), the convolution calculation was performed as

 $(f * g)(\delta) = \int f(\delta^*)g(\delta - \delta^*)d\delta^*$ (2),

where $g(\delta)$ is the Gaussian function and $f(\delta)$ is the original spectral data. Since this study focuses on the separation of major components in the mixture samples, the minimum molar fraction of each component was larger than 0.1, where this convolution procedure did not eliminate any signal peaks. Furthermore, any separated peaks were not merged into a single peak by the Gaussian function with a width of 0.005 ppm.

Then, the spectra were separated into each peak-region and non-peak regions were removed, which helped improve the calculation accuracy. (Scheme 1(c)) In ¹H-NMR spectra, many data points are near the baseline, and it is natural to pick up the peak regions and analyze them. To process this, the noise level was estimated from the standard deviation (σ) of the baseline. The signals/peaks were selected if the S/N ratio exceeded 2. The peaks were grouped under the criteria that the peaks are in the same group if the chemical shifts of a pair of peaks was less than 0.02 ppm. In practice, the incorrect grouping of peaks did not matter because the overlapped peak is separated and each peak are categorized again into each component corresponding to a single chemical species in the following cos-s estimation processes.

Generally, SVD has been utilized for the initial estimation for MCR-ALS, but we adopted the cos-s estimation as an alternative for the initial estimation. The cos-s procedure had three steps for the initial estimation of the pure spectra; the evaluation of the peak overlap in each peak region, the evaluation of the correlation between peak regions, and the separation of the overlapped peaks. The 116 cosine similarity is defined as follows:

117
$$\cos\theta = \frac{a \cdot b}{|a||b|}$$
(3),

118 which provides the information about the similarity of the vector **a** and **b**.

First, the *cos*-s estimation was utilized for the evaluation of the peak overlap with multiple chemical species, (Scheme 1(d)) and the procedure is summarized in Scheme 2. The similarity in each peak region was evaluated if the peak region consists of multiple chemical species. The spectral intensities for each peak region and for the sample number are regarded as a matrix, whose component is represented as s_{ij} for the sample number, *i* and the chemical shift, *j*. For each chemical shift, *j, coss* was calculated as:

125
$$(\cos\theta)_{j=j_1,j_2} = \frac{\mathbf{s}_{j_1} \cdot \mathbf{s}_{j_2}}{|\mathbf{s}_{j_1}||\mathbf{s}_{j_2}|} = \frac{\sum_{i=1}^n s_{ij_1} s_{ij_2}}{\sqrt{\sum_{i=1}^n s_{ij_1}^2} \sqrt{\sum_{i=1}^n s_{ij_2}^2}} \quad (i = 1...n)$$
 (4)

In Eqn. (4), n represents the total sample number. This calculation provides the correlation matrix indicating if the signal intensity variation in the sample number direction is correlated for the two chemical shifts, i and j.

Based on the mapping of the correlation matrix, $(cos\theta)_{j=j_1,j_2}$, it is determined if each peak region is composed of a single or multiple chemicals. In this study, if the average of the cosine similarity correlation matrix was larger than 0.8, we empirically evaluated that the peak region was dominated by a single chemical.

Scheme.2 The first step *cos-s* similarity procedure is shown. This process corresponds to the first process of Scheme 1(d). In each peak region, the similarity of the spectral intensity is examined. Based on the average similarity values in each peak region, the evaluation was made if there is an overlap in the region. The threshold of the similarity value was set to 0.8.

Analyst

136 In the second step of the initial estimation, the correlation between the different peak regions 137 was examined. In this procedure, the correlation of the peak areas were calculated and they were used

138 for the cos similarity. The procedure is summarized in Scheme 3. At first, the peak area was calculated

Scheme.3 The second cos similarity procedure is shown. This process corresponds to the second process of Scheme 1(d). The similarity between the peak regions were evaluated. Based on the similarity values between the peak regions, it is evaluated if the peaks are derived from the same chemical.

139 for each peak, which was represented as a matrix component a_{ij} for the sample number, *i* and the index 140 of the peak regions, *j*. For each peak, *cos-s* was calculated by Eqn. (5).

141
$$(\cos\theta)_{j=j_1,j_2} = \frac{a_{j_1} \cdot a_{j_2}}{|a_{j_1}||a_{j_2}|} = \frac{\sum_{i=1}^n a_{ij_1} a_{ij_2}}{\sqrt{\sum_{i=1}^n a_{ij_1}^2} \sqrt{\sum_{i=1}^n a_{ij_2}^2}} \quad (i = 1...n)$$
 (5)

In Eqn. (5), *n* represents the total sample number. Considering that the spectral intensity for two peak regions derived from the same chemical origins should vary the intensities in a similar way in the sample number direction, *i*. It is obvious that highly correlated peak regions are derived from the same chemical species. Based on the correlation matrix, the similarity is utilized to evaluate the correlation of the peak regions and the independence of the peaks. From these two cos-s evaluation processes, it is evaluated how many components (chemicals) compose the spectra of chemical mixtures, and which peak regions are composed of multiple/single chemical species, and which peak regions are correlated each other.

A highly correlated peak region with an overlapped peak region is utilized to separate it into the

peaks of pure chemicals, which is the third step of the *cos-s* procedure. Figure 1 illustrates the overview for the separation of peaks in the overlapped peak. When the overlapped peak region (red) is highly correlated with another peak region for a pure chemical (purple), the correlated component included in the overlapped peak region could be extracted using the cosine similarity and the residual signal component was regarded as a non-correlated component.

Figure 1 The schematic representation how to extract pure spectrum from the overlapped spectral region by using the correlation between the peak regions.

The calculation process is described here. It is assumed that $s_{pure, i, j}$ and $s_{overlapped, i, j}$ as the spectral intensities for a pure region and an overlapped peak one, respectively. Since the pure component in the overlapped spectra should be varied in an intensity similar to the pure spectra, the following equations were utilized for separation of the peak intensities. Assuming k as the number of the overlapped components in the peak region, $r_{j,k}$ was regarded as the ratio representing how much the overlapped peak includes a pure component and it is expressed as:

$$164 r_{j,k} = \left(\frac{s_{pure_{j_0,k}} \cdot s_{overlapped_j}}{|s_{pure_{j_0,k}}||s_{overlapped_j}|}\right)^2 = \left(\frac{\sum_{i=1}^n s_{pure_{i,j_0,k}} s_{overlapped_{i,j}}}{\sqrt{\sum_{i=1}^n s_{pure_{i,j_0,k}}^2 \sqrt{\sum_{i=1}^n s_{overlapped_{i,j}}^2}}\right)^2 (6)$$

165
$$s_{extracted,i,j,k} = r_{j,k} s_{i,j}$$
 (7)

166
$$s_{res_{i,j}} = (1 - \sum_k r_{i,j,k}) s_{i,j}$$
 (8)

Analyst

In Eqn.(6), $s_{pure_{i,j_0,k}}$ corresponds to the peak values in $s_{pure_{i,j,k}}$, representing a pure component. The similarity (6) was squared to make the value positive. A highly correlated component in the overlapped peak with another peak region is obtained by Eqn. (7). By subtracting all the correlated spectra, the residual spectrum $s_{res_{i,j,k}}$ can be obtained (Eqn. (8)). In most cases, the residual spectrum represents the baseline since it is not correlated with any peak regions. However, it could be a spectrum for a chemical with a single peak such as acetone, CHCl₃ or TMS. Thus, even if the spectrum does not have any correlation with other peak regions, it could be extracted as $s_{res_{i,i,k}}$.

Based on the analysis, the total number of chemical species is determined, and the spectrum intensity matrix was arranged as $s_{i,i,m}$ (m: number of species). The initial estimates for the pure spectra $(S_{est,m,i})$ was obtained by averaging it for the sample number, i. From these procedures, we can obtain a chemically meaningful initial estimation without using any prior information about the samples. Before the MCR calculation, the spectral data were augmented, (Scheme 1(e)) which indicates the procedure to increase the spectral data by mixing the original spectra with random ratios. In our calculation, the extended spectral number was set to 100 by compromising the solution stability and the calculation time.

For the MCR calculation, MCR-ALS GUI 2.0 ⁴³ was utilized with some modification by setting the criteria of the program to keep the spectral intensity within the 50-150 % range from the initial *cos*-s estimation. The recovered spectra were deconvoluted to obtain the final pure spectra. (Scheme 1(g))

187 Experiment

> Acetone, cyclopentanone, ethyl acetate, tetrahydrofuran (Wako) were utilized as purchased. These 4 chemicals were mixed in the molar fraction as shown in Table1. Each mixed sample was put into an NMR tube (OPTIMA), and ¹H-NMR (500 MHz, JEOL) spectra were measured at room temperature. A deuterated solvent, chloroform-d (Wako), was used as an internal standard. The reference spectra of these chemicals are shown in Figure 2(a) (The spectra around 2 ppm is expanded in Figure 2(b).)

Figure 2 ¹H-NMR spectra of 4 chemicals (tetrahydrofuran, ethyl acetate, acetone, cyclopentanone) in the whole range (a) and enlarged around 2 ppm where the spectra are overlapped (b).

Sample number	THF	Ethyl acetate	Acetone	Cyclopentanone
1	0.217	0.191	0.382	0.209
2	0.345	0.221	0.205	0.229
3	0.229	0.249	0.325	0.197
4	0.426	0.266	0.141	0.168
5	0.484	0.161	0.225	0.131
6	0.244	0.323	0.162	0.271
7	0.320	0.280	0.213	0.187
8	0.239	0.439	0.188	0.135
9	0.177	0.158	0.392	0.273
10	0.212	0.213	0.179	0.396
11	0.241	0.189	0.324	0.246
12	0.197	0.237	0.254	0.313
13	0.130	0.301	0.271	0.298
14	0.283	0.228	0.332	0.157
15	0.200	0.240	0.226	0.334
16	0.276	0.243	0.141	0.340

Table. 1 The molar fractions of the prepared samples.

195 Result and discussions

¹H-NMR spectra for 16 different chemical mixtures are shown in Figure 3(a), and the overlapped peak region around 2 ppm is expanded in Figure 3(b). For comparison, the result by using the conventional initial estimation by SVD and the following MCR calculation is shown in Figure 4. In the SVD calculation, 4 components were selected because the number of components is known in advance in this case, and the following MCR calculation was processed under the constraints of the number of components and the non-negativity of spectral intensities and concentrations. Figure 4(a) is the spectra obtained by the initial estimation by SVD, and Figure 4(b) shows the result after the

Figure 3 ¹H-NMR spectra of chemical mixtures of 4 chemicals (THF, ethyl acetate, acetone, cyclopentanone) (a) in the whole range and (b) enlarged around 2 ppm.

203 MCR calculation.

The comparison between Figure 2(b) and 4(b) clearly showed an inconsistency between them. From the similarity between the initial guess by SVD and the obtained result by MCR (Figure 4(a) and (b)), the final result by MCR is greatly affected by the initial estimation, and a reliable initial estimation is needed for the MCR calculation.

Figure 4 The estimated ¹H-NMR spectra are shown; (a) the initial estimation by singular value decomposition, and (b) the optimized spectra of (a) after the MCR calculation.

Then, the initial estimation described in the theory was utilized. At first, the *i*coshift calculation was processed for all the spectrum data, which adjusted the minor peak shifts, and the spectra were centered to the average spectrum to have a variation of the peak intensity from the average spectrum for the samples. (Scheme 1(a)) Next, the spectra were convoluted with a gaussian function to blur the peaks to some extent (Scheme 1(b)), and separated into 7 peak regions (Scheme 1(c)).

Analyst

To recognize if each peak region has an overlapped region, the first cos-s calculation (Scheme 1(d)) for each region was processed based on Eqn. (4). Figure 5 represents a correlation mapping at each region and decided if there is an overlap of different chemicals based on the criteria as described in Scheme 2. The averaged similarity values are also presented in each map. In the six out of seven regions, the average values were larger than 0.8; meaning a single chemical constitutes the peak, except for the peak region C, which showed lower similarity values in the correlation mapping, and it was evaluated as an overlapped peak region.

Figure 5 The correlation mapping in each peak region is shown, obtained by the first cos-s calculation. The alphabets correspond to the peak regions labelled in Figure 3. The average similarity values are shown in the center.

Table 2The table of the cosine similarity values between different peak regions. Theywere calculated for the peak area in each region.

The second step of the *cos-s* calculation was processed to examine if multiple peak regions are originated from an identical chemical species, based on Scheme 1(d) and Eqn. (5). The correlation table between the peak regions is tabulated in Table 2. The peak region, A had a correlation with D and G, from which these three regions are originated from the identical chemicals. Similarly, B and F were due to the same chemical. However, the correlation between C and E showed medium values for any other peak regions, and further analyses were necessary.

Based on the second *cos-s* estimation, the peak regions, C and E showed a weak correlation. Also, the first *cos-s* estimation indicated the spectral overlap in the peak region C. Considering these results, it is assumed that the peak region C includes the overlap region which is attributed to the same chemical origin as the peak region E. Thus, by applying Eqn. (6) to the peak region C as *soverlapped*

Figure 6 (a) The initial estimated spectra by using the cosine similarity estimations.in the whole spectrum region. and (b) an enlarged figure around 2 ppm region. 14

Analyst

and the peak region E as s_{pure} , the corresponding pure spectrum from the overlapped region C (Eqn. (7)) was extracted. At the same time, the non-correlated spectrum was calculated by Eqn. (8). The initial estimation of the spectra is calculated by Eqn. (9), (10) and shown in Figure 6. ¹H-NMR spectra for 4 chemicals were estimated without any prior information.

After this new initial estimation, the MCR calculation was processed for the spectrum/sample data matrix to refine the spectra for pure chemicals and also to obtain the concentrations of the chemicals in the samples. The result is shown in Figure 7 with the reference spectra and the experimentally prepared concentration ratio. From the comparison between the initially estimated spectra (Figure 6(b)) and the MCR-optimized spectra (Figure 7(d)), it is obvious that the spectral shape was optimized. More detaild performance of the calculated results are tablated in the Table. 3 and Table. 4 with the relative errors of the calcualted concentrations from the original sample concentrations and the correaltion coefficients between the pure reference spectra and the caluclated spectra. Therefore, even if the initial estimation would have a minor error, the MCR process could

Result1 Result2 Result3 Result4

(b)

 $\times 10^4$

Result1

Result2

Result3

Result4

Figure 7 The concentration profile (a) and the pure spectra (b) recovered by the newly developed *cos-s* MCR is shown. For comparison, the actual ratio of the prepared samples (c), and the reference spectra of pure chemicals (d) are shown.

adjust it. From this method, even though we do not have any prior knowledge such as the number and
the species of chemicals and the mixture ratio, we could recover the spectra for pure chemicals with
more than 85 % consistency and the concentration profile for each mixture within an accuracy of less
than 10 % error on average. There was some minor systematic error in the concentrations, and it is
now under research.

Table. 3 Relative error (%) of the calculated concentrations from the prepared ones.

Sample number	THE	Ethyl acetate	Acetone	Cyclopentanone
1	11.30	-16.86	1.94	0.09
2	13.36	-11.47	-4.41	-5.16
3	7.72	-13.51	4.20	1.25
4	8.52	-17.86	10.5	-2.07
5	4.15	-5.46	8.42	-23.00
6	11.35	-8.19	6.36	-4.26
7	1.31	-12.41	25.71	-13.02
8	7.83	-8.42	16.04	-8.84
9	-0.23	-28.63	20.91	-13.24
10	7.64	-15.75	2.73	3.15
11	0.15	-24.79	7.03	9.68
12	8.22	-10.17	17.75	-11.87
13	10.92	-11.70	9.93	-2.05
14	7.08	-13.02	7.47	-9.64
15	7.23	-11.97	6.64	-0.24
16	11.5	-14.93	12.14	-3.74

 Table. 4
 Correlation coefficients between the calculated spectra and the reference ones.

Chemicals	Correlation coefficients
TUE	0.0721
INF	0.9731
Ethvl acetate	0.9606
Acotono	0.0720
Acelone	0.0730
Cyclopentanone	0.9645

Although the peak splitting due to the spin-spin coupling and the integrated area of the recovered spectra almost matched with the pure ones, some peak positions did not perfectly match, which caused a minor error. It is supposed that this is caused by a small shift of the spectra due to the intermolecular interaction in chemical mixtures.⁴⁴ In this application, the linear combination of the multiple pure spectra with different coefficients was utilized from the viewpoint of qualitative and quantitative chemical analyses, and this minor difference of the chemical shift was ignored. With the

Analyst

obtained accuracy, it is safely stated that the pure spectra can be recovered by using the MCR method with the new initial estimation using cosine similarity. On the other hand, it is a useful application if the chemical environemnt were varied, leading to the spectral change for species, due to molecular interaction,⁴⁵ intermediate or aggregate formation, etc, and the monitoring of the chemical state change is another important application of MCR,^{7,46} and our method will be extended for such applications, too.

267 Conclusion

We have developed a new estimation technique from the multiple spectral information of unknown chemical mixtures to extract the pure spectra and the concentration profiles of them. We utilized a combination methodology of the multivariate curve resolution and the cosine similarity as an initial estimation instead of using the conventional singular value decomposition. By applying this method to ¹H-NMR spectral data of chemical mixtures, we could obtain the spectra for pure chemicals and the concentration profiles in the chemical mixtures with high accuracy. By using this robust initial estimation procedures, the process can be completed without using reference spectra, therefore it can be applied to many other spectral data to extract the quantitative and qualitative information.

278 Acknowledgments

279 The research was financially supported by the Institute of Science and Engineering, Chuo University,

280 JST PRESTO (#JPMJPR1675), The Science Research Promotion Fund from the Promotion and

281 Mutual Aid Corporation for Private Schools of Japan.

283 References

 2 H. Parastar and R. Tauler, Anal. Chem., 2014, 86, 286–297. 3 D. W. Osten and B. R. Kowalski, Anal. Chem., 1984, 56, 991-995. 4 E. Bezemer and S. Rutan, Anal. Chem., 2001, 73, 4403-4409. 5 J. C. Nicholson, J. J. Meister, D. R. Patil and L. R. Field, Anal. Chem., 1984, 56, 2447-2451. 6 S. Navea, A. de Juan and R. Tauler, Anal. Chem., 2002, 74, 6031-6039. 7 A. Domínguez-Vidal, M. P. Saenz-Navajas, M. J. Ayora-Cañada and B. Lendl, Anal. Chem., 2006, 78, 3257-3264. 8 R. M. Bianchini and T. S. Kaufman, Int. J. Chem. Kinet., 2013, 45, 734-743. 9 J. Jaumot, V. Marchán, R. Gargallo, A. Grandas and R. Tauler, Anal. Chem., 2004, 76, 7094–7101. 10 J. Saurina, S. Hernández-Cassou and R. Tauler, Anal. Chem., 1997, 69, 2329-2336. 11 M. C. Antunes, J. E. J. Simão, A. C. Duarte and R. Tauler, *Analyst*, 2002, **127**, 809–817. 12 J. Jaumot, B. Igne, C. A. Anderson, J. K. Drennen and A. de Juan, *Talanta*, 2013, **117**, 492–504. 13 R. R. de Oliveira, K. M. G. de Lima, R. Tauler and A. de Juan, *Talanta*, 2014, **125**, 233–241. 14 M. A. Hegazy, N. S. Abdelwahab and A. S. Fayed, Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 2015, 140, 524-533. 15 S. Nigam, A. de Juan, R. J. Stubbs and S. C. Rutan, Anal. Chem., 2000, 72, 1956–1963. 16 S. Nigam, A. de Juan, V. Cui and S. C. Rutan, Anal. Chem., 1999, 71, 5225-5234. 17 R. Gusmão, S. Cavanillas, C. Ariño, J. M. Díaz-Cruz and M. Esteban, Anal. Chem., 2010, 82, 9006-9013. 18 D. W. Cook and S. C. Rutan, Anal. Chem., 2017, 89, 8405-8412. 19 H. Parastar, J. R. Radović, M. Jalali-Heravi, S. Diez, J. M. Bayona and R. Tauler, Anal. Chem., 2011, 83, 9289-9297. 20 P. Conti, S. Zamponi, M. Giorgetti, M. Berrettoni and W. H. Smyrl, Anal. Chem., 2010, 82, 3629-3635. 21 M. B. Mamián-López and R. J. Poppi, Microchem. J., 2015, 123, 243-251. 22 C. J. G. Colares, T. C. M. Pastore, V. T. R. Coradin, L. F. Marques, A. C. O. Moreira, G. L. Alexandrino, R. J. Poppi and J. W. B. Braga, Microchem. J., 2016, 124, 356-363. 23 J. Jaumot and R. Tauler, Analyst, 2015, 140, 837-846. 24 S.-T. Tan, K. Chen, S. Ong and W. Chew, Analyst, 2008, 133, 1395–1408. 25 M. R. Alcaráz, A. Schwaighofer, H. Goicoechea and B. Lendl, Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 2017, 185, 304-309. 26 E. Ortiz-Villanueva, F. Benavente, B. Piña, V. Sanz-Nebot, R. Tauler and J. Jaumot, Anal. Chim.

1 Y. Uwadaira, Y. Sekiyama and A. Ikehata, Heliyon, 2018, 4, e00531.

- *Acta*, 2017, **978**, 10–23.

Analyst

5 4		
5	318	27 M M Sinanian D W Cook S C Rutan and D S Wijesinghe Anal Chem 2016 88 11092-
6	210	11000
7	220	$20M \text{ M}_{\text{const}} \text{ D}_{\text{const}} \text{ L}_{\text{const}} \text{ A}_{\text{const}} \text{ C}_{\text{const}} \text{ C}_{\text{const}} \text{ L}_{\text{const}} $
o 9	320	28 M. Navarro-Reig, J. Jaumot, A. Bagiai, G. VIVo-Truyois, P. J. Schoenmakers and R. Tauler, Anal.
10	321	<i>Chem.</i> , 2017, 89 , 7675–7683.
11	322	29 F. Puig-Castellví, I. Alfonso and R. Tauler, Anal. Chim. Acta, 2017, 964, 55–66.
12	323	30 Y. Casamayou-Boucau and A. G. Ryder, Anal. Chim. Acta, 2018, 1000, 132-143.
14	324	31 A. Z. Samuel, M. Zhou, M. Ando, R. Mueller, T. Liebert, T. Heinze and H. Hamaguchi, Anal.
15	325	<i>Chem.</i> , 2016, 88 , 4644–4650.
16	326	32 A. Z. Samuel, BH. Lai, ST. Lan, M. Ando, CL. Wang and H. Hamaguchi, Anal. Chem., 2017,
17	327	89 3043–3050
19	328	33 M Ando and H Hamaguchi <i>I Riomed Ont</i> 2013 19 011016
20	320	24 I. P. Smith E. C. Smith and K. S. Booksh. Analyst 2017, 142, 2140, 2156
21	329	54 J. F. Shihui, F. C. Shihui and K. S. Booksii, Analysi, 2017 , 142, $5140-5150$.
22	330	35 D. Zhang, P. Wang, M. N. Slipchenko, D. Ben-Amotz, A. M. Weiner and JX. Cheng, Anal. Chem.,
24	331	2013, 85 , 98–106.
25	332	36 H. Noothalapati and S. Shigeto, Anal. Chem., 2014, 86, 7828-7834.
26 27	333	37 L. Zhang, T. Cambron, Y. Niu, Z. Xu, N. Su, H. Zheng, K. Wei and P. Ray, Anal. Chem., 2019,
28	334	91 , 2784–2790.
29	335	38 J. Kuligowski, G. Quintás, R. Tauler, B. Lendl and M. de la Guardia, Anal. Chem., 2011, 83, 4855-
30 21	336	4862.
32	337	39 C. Fauteux-Lefebyre, F. Lavoie and R. Gosselin, Anal. Chem. 2018. 90, 13118–13125
33	338	40 R B Pellegrino Vidal A C Olivieri and R Tauler Anal Chem 2018 90 7040-7047
34	220	41 LA Jahreen LH Cree N. T. Dadahara and D. M. Wightman. Anal. Chem. 2017, 90, 10547
35	559	41 J. A. Johnson, J. H. Oray, N. 1. Rodeberg and R. M. Wightman, Andi. Chem., 2017, 89, 10547-
37	340	10555.
38	341	42 F. Savorani, G. Tomasi and S. B. Engelsen, J. Magn. Reson., 2010, 202, 190–202.
39	342	43 J. Jaumot, A. de Juan and R. Tauler, Chemom. Intell. Lab. Syst., 2015, 140, 1-12.
40 41	343	44 J. V. Hatton and R. E. Richards, Trans. Faraday Soc., 1961, 57, 28-33.
42	344	45 M. Besemer, R. Bloemenkamp, F. Ariese and HJ. van Manen, J. Phys. Chem. A, 2016, 120, 709-
43	345	714.
44 45	346	46 S. Navea, R. Tauler and A. de Juan, Anal. Chem., 2006, 78, 4768–4778.
46	347	
47	3/18	
48	240	
49 50	549	
51		
52		
53		

351	Figure captions
252	rigure captions
352	Scheme 1 The overall workflow of cos-s MCR is shown. The algorithm is divided in
354	sections: (a) data pre-processing (b) spectral convolution (c) division of the spectral regions (d)
355	estimation (e) data augmentation (f) MCR ontimization (g) deconvolution. The cos-s estimation
356	consisted of 3 steps: the peak overlap is evaluated in the first step, and the peak region correlati
357	examined in the second step, and the overlapped peak region is separated
358	
359	Scheme.2 The first step <i>cos-s</i> similarity procedure is shown. This process corresponds to
360	first process of Scheme 1(d). In each peak region, the similarity of the spectral intensity is exam
361	Based on the average similarity values in each peak region, the evaluation was made if there
362	overlap in the region. The threshold of the similarity value was set to 0.8.
363	
364	Scheme.3 The second cos similarity procedure is shown. This process corresponds to
365	second process of Scheme 1(d). The similarity between the peak regions were evaluated. Based o
366	similarity values between the peak regions, it is evaluated if the peaks are derived from the
367	chemical.
368	
369	Figure 1 The schematic representation how to extract pure spectrum from the overlapped spe
370	region by using the correlation between the peak regions.
371	
372	Figure 2 ¹ H-NMR spectra of 4 chemicals (tetrahydrofuran, ethyl acetate, acetone, cyclopentan
373	in the whole range (a) and enlarged around 2 ppm where the spectra are overlapped (b).
374	
375	Figure 3 ¹ H-NMR spectra of chemical mixtures of 4 chemicals (THF, ethyl acetate, acet
376	cyclopentanone) (a) in the whole range and (b) enlarged around 2 ppm.
377	
378	Figure 4 The estimated 'H-NMR spectra are shown; (a) the initial estimation by singular v
379	decomposition, and (b) the optimized spectra of (a) after the MCR calculation.
380	
381	Figure 5 The correlation mapping in each peak region is shown, obtained by the first <i>cos-s</i> calcula
382	The alphabets correspond to the peak regions labelled in Figure 3. The average similarity value
383	snown in the center.
384 285	Figure 6 (a) The initial estimated expects hereing the application for the sector of t
383	rigule o (a) the initial esumated spectra by using the cosine similarity estimations. In the w

1		
2		
5 4		
5	386	spectrum region. and (b) an enlarged figure around 2 ppm region.
6 7	387	
8	388	Figure 7 The concentration profile (a) and the pure spectra (b) recovered by the newly developed
9	389	cos-s MCR is shown. For comparison, the actual ratio of the prepared samples (c), and the reference
10	300	spectra of pure chemicals (d) are shown
11	390	spectra of pure chemicals (d) are shown.
13	391	
14	392	Table. 1 The molar fractions of the prepared samples.
15 16	393	
10	394	Table 2 The table of the cosine similarity values between different peak regions. They were
18	395	calculated for the peak area in each region.
19 20	396	
20 21	397	Table. 3 Relative error (%) of the calculated concentrations from the prepared ones.
22	398	
23	399	Table 4 Correlation coefficients between the calculated spectra and the reference ones
24 25	577	ruble. F Correlation opernetents between the enformated speetra and the reference ones.
25 26		
27		
28		
29 30		
31		
32		
33		
34 25		
36		
37		
38		
39 40		
41		
42		
43		
44 45		
46		
47		
48		
49 50		
51		
52		
53		
54 55		
56		
57		
58 50		
60		