

Journal of Materials Chemistry C

Color tunable single-phase Eu^{2+} and Ce^{3+} co-activated Sr_2LiAlO_4 phosphors

Journal:	Journal of Materials Chemistry C
Manuscript ID	TC-ART-11-2018-005777.R2
Article Type:	Paper
Date Submitted by the Author:	17-May-2019
Complete List of Authors:	Ha, Jungmin; University of California San Diego, Materials Science and Engineering Program Kim, Yoon Hwa; Chonnam National University, School of Materials Science and Engineering Novitskaya, Ekaterina; University of California San Diego, Department of Mechanical and Aerospace Engineering Wang, Zhenbin; University of California, San Diego, Department of NanoEngineering Sanchez, Maritza; University of California San Diego, Materials Science and Engineering Program Graeve, Olivia; University of California San Diego, Department of Mechanical and Aerospace Engineering Ong, Shyue Ping; University of California, San Diego, Nanoengineering Im, Won Bin; Chonnam National University, School of Materials Science and Engineering McKittrick, Joanna ; University of California San Diego, Department of Mechanical and Aerospace Engineering; University of California San Diego, Department of Diego, Materials Science and Engineering; University of California San Diego, Department of Mechanical and Aerospace Engineering; University of California San Diego, Department of Mechanical and Aerospace Engineering; University of California San Diego, Department of Mechanical and Aerospace Engineering; University of California San Diego, Materials Science and Engineering Program

SCHOLARONE[™] Manuscripts

Color tunable single-phase Eu²⁺ and Ce³⁺ co-activated Sr₂LiAlO₄ phosphors

Jungmin Ha^a, Yoon Hwa Kim^b, Ekaterina Novitskaya^c, Zhenbin Wang^d, Maritza Sanchez^a, Olivia A. Graeve^{a,c}, Shyue Ping Ong^d, Won Bin Im^b, Joanna McKittrick^{a,c‡}

 ^a Materials Science and Engineering Program,
 ^c Department of Mechanical and Aerospace Engineering,
 ^d Department of Nanoengineering,
 University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
 ^b School of Materials Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
 [‡] Corresponding author: Tel: 858-534-5425, Fax: 858-534-5698; E-mail: jmckittrick@ucsd.edu

ABSTRACT

High purity Eu^{2+} and Ce^{3+} singly and co-activated Sr_2LiAIO_4 phosphors were successfully synthesized through a facile combustion reaction. Fabrication of color tunable, single-phase phosphors was achieved by varying the Eu^{2+}/Ce^{3+} ratio that utilized the energy transfer between Ce^{3+} to Eu^{2+} . For the singly activated compositions, the highest quantum efficiencies were 25% and 40% for $Sr_{1.998}Eu_{0.002}LiAIO_4$ and $Sr_{1.998}Ce_{0.002}LiAIO_4$, respectively. The emission of Sr_2LiAIO_4 : Ce^{3+} and the excitation of Sr_2LiAIO_4 : Eu^{2+} overlap in the range of 400 nm - 500 nm, so that energy transfer from $Ce^{3+} \rightarrow Eu^{2+}$ takes place. The emission color of Eu^{2+} and Ce^{3+} coactivated Sr_2LiAIO_4 changes from blue, to cool-white, to green depending on the activator concentrations. The maximum quantum efficiency of Eu^{2+} and Ce^{3+} co-activated Sr_2LiAIO_4 was 55%, a 40% increase over the singly activated phosphors, which demonstrates that the quantum efficiency improves by co-activation.

KEYWORDS: Sr₂LiAlO₄, Eu²⁺, Ce³⁺, color tunable, solid state lighting

1. INTRODUCTION

Phosphor-converted white-light-emitting diodes (pc-WLEDs) are considered as the most promising next generation solid-state lighting technology due to their longer life time, superior efficiency, and low operating temperatures compared with traditional incandescent bulb and fluorescent lamp technologies $\frac{1\cdot3}{}$. Typical approaches to produce pc-WLEDs is a combination a blue-emitting (450 nm) InGaN LED with yellow-emitting phosphors (Y₃A₁₅O₁₂:Ce³⁺), but it suffers from a low color rendering index (CRI) value < 80 and high correlated color temperature CCT > 5000 K due to a lack of red emission $\frac{4\cdot6}{}$. To improve the CRI and CCT, an alternative approach is to utilize near-UV (380-420 nm) LEDs with a mixture of red, green, and blue (RGB) phosphors ⁷. However, in the RGB phosphors converted system, the efficiency of blue emission is poor due to the strong re-absorption of blue light by the red and green phosphors. Single phase phosphors are considered as a possible solution to avoid this re-absorption issue $\frac{8-10}{}$. In the LED device, heat generation occurs during LED lighting operation (~200°C), leading to emission loss from the phosphors (thermal quenching) is also an important property to be considered $\frac{1}{2}$. ¹¹.

There are several methods to produce white light or color tunable light in single-phase phosphors with (1) single rare earth ions such as Eu^{3+} , Eu^{2+} , or Dy^{3+} as an activator in proper hosts $\frac{12}{13}$; (2) the combination of multiple rare earth ions such as $Tm^{3+}/Tb^{3+}/Sm^{3+}$ and $Tm^{3+}/Tb^{3+}/Eu^{3+}$ emitting blue, green and yellow, or blue and yellow light $\frac{14}{14}$; (3) rare earth ion pair co-activators to use energy transfer mechanisms such as $Ce^{3+} \rightarrow Eu^{2+}$, $Ce^{3+}/Eu^{2+} \rightarrow Tb^{3+}$, $Eu^{2+} \rightarrow Mn^{2+}$, or $Ce^{3+} \rightarrow Mn^{2+}\frac{15-24}{2}$; and (4) emission of white light by controlling the point defect concentration $\frac{25, 26}{2}$.

In the rare-earth ion pair co-activators, luminescent properties of single phase phosphors with Ce^{3+} and Tb^{3+} have been reported $\frac{15, 17, 27-30}{5}$, showing that the color could be adjusted

between blue- (Ce³⁺) and green-, (Tb³⁺) emissions, depending on the activator concentrations. For example, Jia et al. ¹⁵ reported a color tunable phosphor NaBa₃La₃Si₆O₁₂:Ce³⁺,Tb³⁺. The emission of NaBa₃La₃Si₆O₁₂:0.07Ce³⁺ was a broad band ranging from 340 nm to 500 nm in the blue emitting range for the excitation wavelength (λ_{ex}) of 331 nm. On the other hand, λ_{ex} of NaBa₃La₃Si₆O₁₂:0.02Tb³⁺ were 268 nm and 378 nm. Energy transfer from Ce³⁺ \rightarrow Tb³⁺ enhanced the green emission of Tb³⁺ due to the overlapping emission band of Ce³⁺ and excitation band of Tb³⁺ and color tunable emission from blue to green was achieved, depending on the Ce³⁺ and Tb³⁺ concentrations. Quantum efficiency (Φ) was not reported for this phosphor.

Single-phase phosphors activated by Ce^{3+} and Eu^{2+} have been studied for application in solid state lighting devices $\frac{18, 20-24}{2}$. For the blue emitting phosphor, co-activated $Ca_8La_2(PO_4)_6O_2: 0.04Ce^{3+}, 0.02Eu^{2+20}, \Phi$ (43%) was enhanced compared to that of the single activator Eu^{2+} (13%). Furthermore, the color tunable (blue to yellow) phosphors $Li_2SrSiO_4:xEu^{2+}:0.01Ce^{3+}$ (0.0025 $\leq x \leq 0.01$) were studied to examine the energy transfer from $Ce^{3+} \rightarrow Eu^{2+} 21$. The emission intensity of Eu^{2+} was enhanced with Ce^{3+} co-activator although the Φ was not reported. Ce³⁺ and Eu²⁺ co-activated Ca₂BO₃Cl phosphors exhibited a color change from blue to yellow with $0.06Ce^{3+}$ and $0.015Eu^{2+}$ having CIE coordinates (0.326, 0.334) that are close to the white point (0.33, 0.33) $\frac{22}{2}$; however the Φ value was not reported. An emission wavelength shift from 461 to 494 nm was found for $Sr_{0.96-v}SiAl_2O_3N_2:0.04Ce^{3+}$, vEu^{2+} ($0 \le y \le$ 0.06), because the emission from Eu^{2+} increased and the emission from Ce^{3+} decreased with an increase in y. The substitution of Ba in Sr_{0.96-x}Ba_xSiAl₂O₃N₂:0.04Ce³⁺:0.04Eu²⁺ ($0 \le x \le 0.92$) showed an emission shift from 491 nm to 505 nm, but Φ values were not reported. The series $x Eu^{2+}$ and $y Ce^{3+}$ in Li₂SrSiO₄ were prepared for white emission by a combinatorial approach $\frac{24}{2}$. A bright yellow luminescence was shown with x = 0.005 - 0.060 and y = 0. The yellow emission

decreased with an increase in the concentration of Ce^{3+} , emitting bright blue light with x = 0 and y = 0.005 - 0.050. The CIE color coordinates, Φ and thermal quenching at 150°C were (0.359, 0.341), 27%, and 69%, respectively ¹, ¹¹. These previous studies using Eu^{2+} and Ce^{3+} as co-activators in a single-phase phosphor demonstrated that color tunable ability can be achieved and Φ can be enhanced.

This is the first report on the preparation and analysis of co-activated Sr_{2-x-}

 $_{y}$ Eu_xCe_yLiAlO₄. Building on our recently reported phosphors ³¹, Sr_{2-x}Eu_xLiAlO₄ (green-emitting) and Sr_{2-y}Ce_yLiAlO₄ (blue-emitting) were used to explore the possibility of fabricating colortunable, single phase compositions. The purity of Sr₂LiAlO₄ synthesized by combustion reaction was reported previously ³¹, however, the present work provides new findings on the effect of (1) post-annealing temperature on the amount of impurity phases and (2) the addition of excess Li ions to compensate for Li loss during processing. The optimum concentrations of Ce³⁺ or Eu²⁺ were determined and the emission color changes were examined as a function of the concentration of Ce³⁺ and Eu². The improved Φ s are investigated in Eu²⁺ and Ce³⁺ co-activated combustion reaction powders.

2. EXPERIMENTAL PROCEDURE

2.1. Synthesis of Sr₂LiAlO₄ and Sr₂LiAlO₄:Eu²⁺/Ce³⁺

All chemicals were used without further purification. Synthesis of host Sr₂LiAlO₄, Sr₂₋ _xEu_xLiAlO₄ (0.001 \leq x \leq 0.040), Sr_{2-y}Ce_yLiAlO₄ (0.001 \leq x \leq 0.040), and Sr_{2-x-y}Eu_xCe_yLiAlO₄ (0.0005 \leq x, y \leq 0.05) were performed through the combustion reaction using Sr₂(NO₃)₂ (99.99%, Sigma Aldrich), LiNO₃ (ReagentPlus, Sigma Aldrich), Al(NO₃)₃•9H₂O (ACS reagent, J. T. Baker), Eu(NO₃)₃ from Eu₂O₃ (99.99%, Alfa Aesar) with nitric acid (69.3%, Fisher Scientific),

Journal of Materials Chemistry C

and Ce(NO₃)₃ (99.99%, Alfa Aesar) as precursors, assisted by the exothermic reaction between urea (Certified ACS, Fisher Scientific) and ammonium nitrate (Certified ACS, Fisher Scientific) at 600°C.

For Solution 1, Sr(NO₃), LiNO₃, and Al(NO₃)₃ in the molar ratio of 2:1:1 was added to 50 mL of deionized water in a 100 mL beaker with a magnetic stirrer. Solution 2 consisted of the desired amount of Eu₂O₃, which had been dissolved in 4 mL of nitric acid in a beaker to prepare Eu(NO₃)₃. For Sr_{2-x}Eu_xLiAlO₄, the desired amount of Solution 2 was introduced into Solution 1. For undoped Sr₂LiAlO₄, Solution 2 was not needed. For Sr_{2-x}Ce_xLiAlO₄, Solution 1 was used and the desired amount of Ce(NO₃)₃ was added. For Sr_{2-x}-yEu_xCe_yLiAlO₄, Solution 2 and Ce(NO₃) were introduced in Solution 1. Urea (1 g, CH₄N₂O) and ammonium hydroxide (1.3 g), with the molar ratio of urea/ammonium hydroxide = 1:1, were added into the solutions. After achieving transparency, it was poured into a large Pyrex beaker and placed into a muffle furnace at 600°C.

The solution boiled and after ~ 5 min. burst into flame due to the exothermic reaction of urea and the nitrates, producing a white-colored powder. The reaction during combustion is:

$$2Sr(NO_3)_2(s) + LiNO_3(s) + Al(NO_3)_3(s) + CH_4N_2O(s) + 3(NH_4)(NO_3)(s) \rightarrow Sr_2LiAlO_4(s) + 3(NH_4)(NO_3)(s) + 3(NH_4)(NH_4)(NO_3)(s) + 3(NH_$$

$$8N_2(g) + 10O_2(g) + 8H_2O(g) + CO_2(g)$$

Post-annealing was performed between 700 °C and 850 °C for 1-5 h in a 5% H_2 / 95% N_2 atmosphere to transform Eu³⁺ to Eu²⁺. In some experiments, excess Li precursor was added in amounts up to 30 mol.% to compensate for Li sublimation during synthesis $\frac{32}{2}$.

For comparison, powders were also synthesized by a solid-state reaction using powders of SrO (Kojundo, 99.9%), Li₂CO₃ (Kojundo, 99.9%), α -Al₂O₃ (Kojundo, 99.9%), and Eu₂O₃ (Kojundo, 99.9%) or CeO₂ (Kojundo, 99.99%). The starting materials were ground in an agate

mortar, placed in alumina crucibles and annealed at 900°C for 4 hours in a 25%H₂ / 75%N₂. Excess Li (10 wt.%) was added to compensate for Li evaporation ³¹.

2.2 Characterization

The powders were analyzed by X-ray diffraction (XRD, Bruker D2 Phaser, Karlsruhe, Germany) using CuK α radiation and a step size of 0.014° over a 2 θ range of 20-80°. Structural information of the synthesized samples was derived by refinement using the TOPAS 4.2 software (Bruker) suite. The calculated XRD data were taken from Wang et al. ³¹ who first reported this structure. A field emission scanning electron microscope (FESEM, XL30, Philips, Amsterdam, Netherlands) at 10 keV was used to image the powders to determine their size and morphology. Samples were coated with iridium at 85 µA for 10 s before imaging. Quantum efficiency (Φ) measurements, photoluminescence (PL) emission, and excitation spectra were performed using a Hamamatsu C9920-02 (Hamamatsu City, Shizuoka, Japan) system. Absolute Φ measurements were performed using an integrating sphere system, with sodium salicylate (Φ = 44%) as a reference standard. Φ is the ratio of the number of photons absorbed by the sample with respect to the number of photons emitted from the sample (Φ = photons out / photons in). Color coordinates were obtained using ColorCalculator program (version 7.23, OSLAM SYLVANIA Inc., Beverly, MA, USA) by analyzing the emission spectra from the PL analysis. Thermal quenching analysis (25° C to 150° C) was performed using a custom designed device that consists of a heater, thermocouple, and the spectrophotometer.

3. RESULTS AND DISCUSSION

3.1 Synthesis of Sr₂LiAlO₄, and Eu²⁺- or Ce³⁺-activated Sr₂LiAlO₄

The optimal post-annealing condition was examined through XRD analysis (Figure 1a) resulting in the desired Sr₂LiAlO₄ phase with some impurities. The impurity peaks of SrAl₄O₇ and Sr₂Al₆O₁₁ are located at ~25° and ~27°, respectively. The post-annealing treatment at 700°C for 1 hour produced 73 mol.% of Sr₂LiAlO₄ with 25 mol.% of SrAl₄O₇ and 2 mol.% of Sr₂Al₆O₁₁. The post-annealing at 800°C for 1 hour reduced the amount of impurities (18 mol.% SrAl₄O₇, 3 mol.% Sr₂Al₆O₁₁), as illustrated in Figure 1a. After annealing at 850°C for 5 h, the intensity of the (110) reflection at $\sim 22^{\circ}$ decreased, possibly arising from defects within the structure. The intensity in the XRD diffraction patterns is proportional to modulus squared of the structure factor, $I_{hkl} \propto |F_{hkl}|^2$ where the structure factor, F_{hkl} , is sum of the ionic location value that are proportional to ionic scattering factors, $f_i \frac{33}{2}$. When one or more ions are absent on the plane, the f_i value of the absent ions is equal to zero, therefore the value of F decreases along with the corresponding diffraction intensity. The intensity of the (110) reflection at $\sim 22^{\circ}$ decreased with the post-annealing of 850°C for 5 h, indicating that the one or more ions are absent on the planes. The diffraction peak intensity decrease by vacancies present on the diffraction plane has been shown in earlier literature $\frac{34}{2}$.

An impurity peak from $Sr_4Al_{14}O_{25}$ was also found at ~26°. The condition of 800°C for 5 hours was selected as the optimal to obtain high crystallinity that typically occurs for high temperature annealing ³⁵ and fewer impurities (7 wt.% SrAl₄O₇, 5 wt.% Sr₂Al₆O₁₁).

Due to the easy evaporation of Li ions during the synthesis or post-annealing process $\frac{32}{7}$, the optimum concentration of excess Li ions to obtain high purity resultant material was analyzed by Reitveld refinement. The obtained R_{wp} , R_p , GOF values are presented in Table 1 for 1.10, 1.20, 1.25, and 1.30 mole fractions of Li, where R_{wp} is the weighted profiles residual factor, R_p is the profile residual factor and GOF is the goodness of fit $\frac{36}{7}$. R_p and R_{wp} show how well the

crystallographic model matches the experimental X-ray diffraction. Typically, the value of R_{wp} < 10% or GOF close to 1 is considered a close match. Figure 1b illustrates the XRD patterns for the selected concentrations of Li. The impurities, $SrAl_4O_7$ and $Sr_2Al_5O_{11}$, were reduced from 7 mol.% to 6 mol.%, and from 5 mol.% to 0 mol.%, respectively, when the Li concentration was 1.25 mole fraction. This demonstrates that Li evaporation occurred during the synthesis or annealing process. When the concentration increased to 1.30 mole fraction, more impurity peaks of $SrAl_4O_7$ appeared (Figure 1c), but $Sr_2Al_6O_{11}$ was not detected. In the calculated phase diagram SrO-Li₂O-Al₂O₃ ³¹ as shown in Figure 1d, Sr₂Al₆O₁₁ is located between SrAl₂O₄ and SrAl₂O₇, closer to the Sr₂LiAlO₄, and further away from Li₂O than SrAl₄O₇. Thus, the Li concentration affects the Sr₂Al₆O₁₁ stronger than SrAl₄O₇. Hence, the optimum processing conditions for Sr₂LiAlO₄ are a Li concentration of 1.25 mole fraction and an annealing treatment at 800°C for 5 h, which results in a final purity of 94 mol.% with 6 mol.% of $SrAl_4O_7$ (Figure 1c). This is a higher purity compared to solid-state reaction powders (86 mol.%) $\frac{31}{10}$ with 5 mol.% of SrAl₄O₇; 6 mol.% of Sr₂Al₆O₁₁, and 3 mol.% of SrO; thus the Φ of Eu²⁺ or Ce³⁺ activated Sr₂LiAlO₄ from combustion is expected to be higher than that from solid-state reaction. The XRD patterns of the Eu²⁺- and Ce³⁺- activated Sr₂LiAlO₄ are shown in Figure 1e. They are also well matched with the simulated Sr₂LiAlO₄ patterns previously reported $\frac{31}{2}$.

Table 2 lists the calculated and experimental structure parameters of Sr_2LiAlO_4 . The experimental *x*, *y*, *z* coordinates were found to be similar to the calculated *x*, *y*, *z* coordinates. The experimental and calculated unit cell parameters are provided in Table 3, showing a good match. The obtained residual values were $R_{wp} = 12.14\%$, $R_p = 8.81\%$, and GOF = 1.83, therefore, the experimental values are in good agreement with the calculated values (Table 2 and 3).

3.2 Photoluminescence spectra and quantum efficiency of Eu^{2+} or Ce^{3+} activated Sr_2LiAlO_4

The PL excitation (PLE) and PL emission spectra were measured for the Eu²⁺ or Ce³⁺ activated Sr₂LiAlO₄ (Figure 2). The PLE spectrum of Sr₂LiAlO₄:Eu²⁺ was monitored at 515 nm and it showed two broad peaks centered at 390 nm and 315 nm. The PL emission spectra for this material ($\lambda_{ex} = 390$ nm) showed two broad peaks at 515 nm as a maximum and 565 nm as a shoulder (see Figure 2a). The two broad peaks in the PLE and PL are attributed to the two Sr²⁺ sites where Eu²⁺ was substituted ³¹. Similar effects of two Sr²⁺ sites on the PL spectra have also been reported ^{31, 37, 38}. To determine the optimal *x* in Sr_{2-x}Eu_xLiAlO₄, the PL emission spectra were analyzed for concentrations of 0.001 < *x* < 0.04, as shown in Figure 2c. The corresponding intensities were normalized for *x* = 0.002, which had the maximum emission intensity with $\Phi = 25\%$, which was the same for the powders synthesized by the solid-state reaction.

The PLE of Sr₂LiAlO₄:Ce³⁺ was measured under monitoring at 430 nm and it showed two peaks centered at 290 nm and 380 nm (dashed line in Figure 2b). The PL emission spectra ($\lambda_{ex} = 380$ nm) showed two broad peaks at 430 nm as a maximum and 470 as a shoulder (solid line in Figure 2b). These two broad peaks in the PLE and PL emission spectra are also from the two sites of Sr²⁺ where Ce³⁺ was substituted ³¹. Several Ce³⁺ concentrations, 0.001 < *y* < 0.04, were examined to obtain the optimum concentration, as shown in Figure 2c. The emission intensities were normalized for *y* = 0.002, which had the maximum emission intensity with Φ = 40%, which is higher than the powders synthesized by the solid-state reaction (32%) ³¹. When there are impurities phases in Sr₂LiAlO₄, the activators are located in both impurities phases as well as in Sr₂LiAlO₄. The impurity content in the solid-state reacted powders (SrAl₄O₇, 5 mol.%; Sr₂Al₆O₁₁, 6 mol.%; SrO, 3 mol.%) is greater than in the combustion reactied powders (SrAl₄O₇, 6 mol.%). Therefore, the higher Φ of the combustion reacted powders (40%) than the solid-state reacted powders (32%) may be due to the reduced impurity content. The Φ of Sr_{1.998}Ce_{0.002}LiAlO₄ was higher than the Φ of Sr_{1.998}Eu_{0.002}LiAlO₄ although the host lattice is the same. There are several examples that different activators (Eu²⁺ and Ce³⁺) were in the same host lattice, but the Φ s (or emission intensity) were also not similar between them. The Φ s of Ba₂SiO₄:Eu²⁺ and Ba₂SiO₄:Ce³⁺ were 94% $\frac{39}{2}$ and 69% $\frac{40}{2}$, respectively. For Ba₉Lu₂Si₆O₂₄, the Φ for Eu²⁺ activation was 45% $\frac{41}{2}$ and the Φ for Ce³⁺ activation was 82% $\frac{42}{2}$. Another example is Ca₈La₂(PO₄)₆O₂ where the Φ s of the Eu²⁺ and Ce³⁺ activators were 14% and 67%, respectively $\frac{20}{2}$. Some phosphors showed higher Φ with Eu²⁺ than with Ce³⁺, but other phosphors showed higher Φ with Ce³⁺ activator than with Eu²⁺ activator $\frac{20, 39-42}{2}$. This indicates that Φ depends on the host lattice, not activators and it needs to be further investigation.

Both $Sr_{2-x}Eu_xLiAlO_4$ and $Sr_{2-y}Ce_yLiAlO_4$ have a low optimum concentration x, y = 0.002 while the optimum activator concentration is typically > 0.01 $\frac{11}{29}, \frac{39}{43}$. Since concentration quenching is related to the distance between activators $\frac{44}{4}$, the critical distance (R_c) between activators was calculated using $\frac{45}{2}$:

$$R_c = 2 \left(\frac{3V}{4\pi x_c N}\right)^{1/3} \tag{1}$$

where x_c is the critical activator concentration when the emission intensity is the maximum value, V is the volume of the unit cell, and N is the total number cations in the unit cell in the host lattice. The obtained R_c , was 2.9 nm from V (0.209 nm³), N (8), and X_c (0.002). This value of R_c is attributed to the small Stokes shift, arising from the stiffness of the host lattice from the AlO₄ tetrahedral network $\frac{46}{47}$. For example, Li₂Sr_{1-x}Eu_xSiO₄ $\frac{48}{48}$ also has a small optimal activator concentration (x = 0.005) with $R_c = 3.4$ nm, similar to the present work, which is also due to the small Stocks shift $\frac{48}{48}$.

As shown in Figure 2, there are two emission peaks for both $Sr_{2-x}Eu_xLiAlO_4$ and $Sr_{2-x}V_yCe_yLiAlO_4$. According to Uitert ⁴⁹, the emission wavelength of Eu^{2+} or Ce^{3+} ions strongly

Journal of Materials Chemistry C

depends on its local environment. The possible positions of the emission peaks can be estimated by the following equation $\frac{49-51}{2}$:

$$E(cm^{-1}) = Q\left[1 - \left(\frac{V}{4}\right)^{1/V} \times 10^{(-nrE_a)/8}\right]$$
(2)

where *E* is the position of the emission peaks from Eu^{2+} or Ce^{3+} , *Q* is the energy from the lower *d*-band edge of Eu^{2+} or Ce^{3+} ions (34,000 cm⁻¹ for Eu^{2+} or 50,000 cm⁻¹ for $Ce^{3+}\frac{49-51}{2}$), *V* is the valence of Eu^{2+} and Ce^{3+} (2 for Eu^{2+} , 3 for Ce^{3+}), *n* is the coordination number for Eu^{2+} or Ce^{3+} (*n* = 8 for both of Eu^{2+} and Ce^{3+}), *E_a* is the electron affinity of the anions (eV), and *r* is the radius (nm) of the cation replaced by Eu^{2+} or Ce^{3+} . The value of *E_a* for Sr₂LiAlO₄ was taken from that of aluminates $\frac{49}{2}$, approximately, as 1.6 eV and *r* = 0.126 nm (8-coordinated Sr²⁺). The calculated and experimental emission wavelengths for Eu^{2+} and Ce^{3+} are listed in Table 4. The calculated emission wavelengths of Eu^{2+} and Ce^{3+} were 529 and 466 nm, respectively, which were in a good agreement with the experimental values (515 nm and 565 nm for Eu^{2+} ; 430 nm and 470 nm for Ce^{3+}). Although the host has two symmetrically distinct Sr sites $\frac{31}{2}$, the sites have the same coordination number so that the *E* value has only one estimation for each activator. To compare these two experimental values with the one calculated value, the average experimental values were 540 nm for Eu^{2+} and 450 nm for Ce^{3+} , which are similar to the calculated values.

3.3 Thermal quenching properties and particle morphologies

The thermal quenching properties of $Sr_{1.998}Eu_{0.002}LiAlO_4$ and $Sr_{1.998}Ce_{0.002}LiAlO_4$ were measured and Figure 3a,b shows that as the temperature increases, the PL emission intensity for both materials decreases. For $Sr_{1.998}Eu_{0.002}LiAlO_4$, the emission intensity at 150°C was 90% of the room temperature value, showing a very good thermal quenching property. Minimal thermal quenching means that in the host there are rigid bonding networks and high bond strength, enabling minimization of the emission loss with increasing temperature $\frac{52}{2}$. The obtained good thermal quenching behavior implies that Sr₂LiAlO₄ has a rigid bonding network together with high bond strength. For Sr_{1.998}Ce_{0.002}LiAlO₄, a similar trend was observed, retaining 88% of emission intensity at 25°C. This matches well with our previously reported value (91% of emission intensity at 25°C for powders synthesized by the solid-state reaction) $\frac{31}{2}$.

The SEM images of the $Sr_{1.998}Eu_{0.002}LiAlO_4$ and $Sr_{1.998}Ce_{0.002}LiAlO_4$ powders after annealing at 800°C for 5 hours are shown in Figure 4a and Figure 4b, respectively. The particles were sub-micrometer sized, ~102 ±15 nm, non-aggregated and had a narrow size distribution. As shown, the morphology of powders was oval shaped with a smooth surface.

3.4 Luminescence properties of Eu^{2+} and Ce^{3+} co-activated Sr_2LiAlO_4

The excitation spectrum of $Sr_{2,x}Eu_xLiAIO_4$ partially overlaps with the emission spectrum of $Sr_{2,y}Ce_yLiAIO_4$ in the range of 400-500 nm (Figure 5a) and, therefore, the emission from $Sr_2LiAIO_4:Ce^{3+}$ can be partially re-absorbed by $Sr_2LiAIO_4:Eu^{2+}$, indicating that Ce^{3+} acts as a sensitizer for $Eu^{2+}\frac{53}{2}$. The Ce^{3+} is excited from ${}^7F_{5/2}$ to 5*d* energy level ($\lambda_{ex} = 380$ nm) and then returns to its ground state with visible light radiation. Photons in the Ce^{3+} 5*d* energy level transfer to the $Eu^{2+} 4f^65d^1$ energy level, resulting in the $Eu^{2+} 4f^65d \rightarrow 4f^7$, and then Eu^{2+} emits a green emission (~515 nm), as illustrated in Figure 5b. This process enables the emission intensity of Eu^{2+} to improve with the presence of Ce^{3+} . Since $Sr_{1.998-x}Eu_xCe_{0.0020}LiAIO_4$ and $Sr_{1.998-}y_{2}Eu_{0.0020}Ce_yLiAIO_4$ showed maximum emission intensities (Figure 2c), at concentrations of $0.0005 \le x \le 0.0050$ and $0.0005 \le y \le 0.0040$, they were selected to examine for improvement of the optical properties. For $Sr_{1.998-x}Eu_xCe_{0.0020}LiAIO_4$, the emission intensity of Ce^{3+} decreased when *x* increased, as shown in Figure 6a, which is attributed to the energy transfer from Ce^{3+} to Eu^{2+18} . Meanwhile, the emission intensity of Eu^{2+} increased up to x = 0.0020 owing to the Ce^{3+} → Eu²⁺ energy transfer, remained constant and then decreased to x = 0.0050, which was attributed to concentration quenching. Figure 6b shows the change in the emission intensity of Eu²⁺ and Ce³⁺ depending on the Eu²⁺ concentration. For Sr_{1.998-y}Eu_{0.0020}Ce_yLiAlO₄, the emission intensity of Eu²⁺ increased from y = 0.0005 to 0.0010 and then decreased (Figure 6c), also attributed to the energy transfer from Ce³⁺ to Eu²⁺ 18. Figure 6d shows the changes in the emission intensity for Eu²⁺ and Ce³⁺. Although *x* is constant (0.002) and *y* increased, the emission intensity from Ce³⁺ leveled off for $y \ge 0.001$ after increasing from y = 0.0005 to 0.001. The emission intensity from Eu²⁺ increased until y = 0.001, and then decreased, attributed to the concentration quenching ¹¹.

The energy transfer efficiency from Ce^{3+} to Eu^{2+} can be estimated by $\frac{54}{2}$:

$$\eta_T = 1 - \frac{I}{I_0}$$
(3)

where η_T is the energy transfer efficiency; *I* and *I*₀ are the emission intensities of the Ce³⁺ in the presence and absence of Eu²⁺, respectively. Figure 6e shows the plot of η_T as a function of *x* (0.0005 < *x* < 0.0050) demonstrating that η_T increased with increase in *x*. For the concentrations of x = y = 0.002, $\eta_T = 55\%$, meaning that the 55% of the excited photons from the 5*d* level of Ce³⁺ transferred to the 4*f*⁶5*d*¹ level of Eu²⁺ 8, 18, 55. For *x*, *y* = 0.005, 0.002, $\eta_T = 92\%$, which demonstrates that the energy transfer from Ce³⁺ to Eu²⁺ depends on the concentration of Eu²⁺, corroborating results of previous studies $\frac{18, 20-22}{2}$.

For evaluation of the energy transfer mechanism from Ce^{3+} to Eu^{2+} , the following equation can be applied, based on Dexter energy transfer expressions of multipolar interaction and Reisfeld approximation $\frac{56, 57}{2}$:

$$\log\left(\frac{l_0}{l}\right) \propto \frac{n}{3}\log(C_{Eu^{2+}+Ce^{3+}}) \tag{4}$$

where *C* is the total concentration of Ce³⁺ and Eu²⁺, and *n* is a function of electric multipolar character. Values of n = 6, 8, 10 correspond to dipole-dipole (*d*-*d*), dipole-quadrupole (*d*-*q*), and quadrupole-quadrupole (*q*-*q*) interactions, respectively. Figure 6f shows the plot of $log(I_0/I)$ as a function of $log(C_{Eu^{2+} + Ce^{3+}})$. The slope was found to be 2.21, resulting in $n \approx 6$, which corresponds to the *d*-*d* interaction. The energy transfer rate of *d*-*d* interaction is typically higher than that of *d*-*q* or *q*-*q* interactions ⁵⁸. In this case, the photons of the 5*d* level of Ce³⁺ are rapidly absorbed to the 4*f*⁶5*d*¹ level of Eu²⁺, leading to a shortened luminescent lifetime of Ce³⁺. Previous studies have also shown that the energy transfer mechanism from Ce³⁺ to Eu²⁺ as the *dd* interaction ^{58, 59}.

Furthermore, concentration quenching can potentially be present in these co-activated phosphors due to the higher total activator concentration. The maximum Φ values (Table 5) for Sr_{2-x-y}Eu_xCe_yLiAlO₄ were 43% for *x*, *y* = 0.0010, 0 and 38% for *x*, *y* = 0, 0.0010. The highest PL intensities of Sr_{1.997}Eu_{0.0010}Ce_{0.0020}LiAlO₄ and Sr_{1.997}Eu_{0.0020}Ce_{0.0010}LiAlO₄ corresponded to *x* + *y* = 0.0030 are shown on Figure 6a and 6c. We selected a lower total activator concentration *x* + *y* = 0.0015 to determine if further improvement in Φ is possible. Figure 7a shows the PL emission spectra for *x*, *y* = 0.0005, 0.0010 and *x*, *y* = 0.0010, 0.0005, exhibiting a maximum emission intensity for *x*, *y* = 0.0005, 0.0010.

Table 5 lists Φ for the compositions studied. Figure 7b shows Φ as a function of *x* and *y*. For *x*, *y* = 0, 0.002, Φ = 40%, which is higher than that for solid-state reacted powders (32% for *x*, *y* = 0, 0.005 optimal concentration for solid-state reacted powders) ³¹. With an increase in *x* and at constant *y* = 0.002, Φ increased from 40% for *x* = 0 to 43% for *x* = 0.0010. For *x* ≥ 0.0010, the Φ value decreased due to the concentration quenching effect. For constant *x* = 0.002 and increasing *y*, Φ at *y* = 0 of the combustion reacted powders is 25%, same as the solid-state reacted powders ³¹. The Φ increased from 25% at y = 0 to 38% for y = 0.0010 and then decreased. The maximum $\Phi = 55\%$ was found for x, y = 0.0005, 0.0010 and a slightly lower value of $\Phi = 51\%$ for x, y = 0.0010, 0.0005; both showing at least a 40% increase over those for $x + y \ge 0.0020$. This is due to a lower total activator concentration that suppressed concentration quenching and improved Φ_{-44}^{-44} .

To analyze the effect of the energy transfer from Ce^{3+} to Eu^{2+} , the normalized (x = 0.002) emission intensity of Ce^{3+} for $Sr_{1.998-x}Eu_xCe_{0.002}LiAlO_4$ (0.0005 $\leq x \leq 0.0050$) is shown in Figure 8a. With an increase in x and at constant y = 0.002, the emission peak of Ce³⁺ was red-shifted from 427 nm to 433 nm as shown in Figure 8a,b. Piquette *et al.* ⁶⁰ investigated on the radiative reabsorption and the red shift of the Ce^{3+} emission in $(Lu_{1-x}Ce_x)_3Al_5O_{12}$. Radiative reabsorption is when the emission photons are reabsorbed, which occurs when the emission and absorption bands overlap $\frac{60-62}{1}$. (Lu_{1-x}Ce_x)₃Al₅O₁₂ exhibits the partially overlap between the excitation and the emission of Ce^{3+} . The photons emitted in the lower wavenegth range were reabsorbed by Ce^{3+} in the higher wavelength range, causing emission wavelength red-shift. Although the radiative reabsorption was demonstrated in a single activator, this can be also applied to the coactivators in the case where the emission and the absorption of the co-activators overlap $\frac{63}{2}$. For example, in Eu^{2+}/Ce^{3+} co-activated $SrSc_2O_4$ it was reported that the red-shift of the Ce^{3+} emission was observed with an increase in $Eu^{2+}\frac{63}{2}$. For $Sr_{1.998-x}Eu_xCe_{0.002}LiAlO_4$, the excitation spectrum of Eu^{2+} and emission spectrum of Ce^{3+} partially overlap (Figure 5) resulting in radiative reabsorption of the Ce^{3+} emission by Eu^{2+} thereby red-shifting the Ce^{3+} emission.

3.5 Color coordinates and emission colors of Eu^{2+} and Ce^{3+} co-activated Sr_2LiAlO_4

Since $Sr_{2-y}Ce_yLiAlO_4$ and $Sr_{2-x}Eu_xLiAlO_4$ emit blue and green, respectively, the combination of Eu^{2+} and Ce^{3+} in Sr_2LiAlO_4 showed color tunable ability from blue to cool-white

and green emission. The color coordinates on the CIE diagram are listed in Table 5. The CIE chromaticity diagram and images of the powders under 365 nm UV light are shown in Figure 9. $Sr_{1.997}Eu_{0.002}Ce_{0.001}LiAlO_4$ ($\Phi = 38\%$) was in the cool-white region in the CIE diagram, having a CCT = 23450K, CRI = 60 and (0.2149, 0.2900) coordinates. The (*x*, *y*) coordinates changed linearly from (0.1472, 0.0972) for $Sr_{1.998}Ce_{0.002}LiAlO_4$ to (0.3324, 0.5732) for $Sr_{1.998}Eu_{0.002}LiAlO_4$, which is from blue to green emission. The phosphor powder photographs are also well matched with the color coordinate results, as presented in Figure 9. This indicates that the Eu²⁺ and Ce³⁺ co-activated Sr_2LiAlO_4 demonstrates good color tunable ability.

4. CONCLUSIONS

 $Sr_{2-x}Eu_xLiAlO_4$ (green-emitting ~515 nm) and $Sr_{2-y}Ce_yLiAlO_4$ (blue-emitting ~430 nm) phosphors with 94% purity were prepared by the combustion synthesis method. The maximum quantum efficiencies were found for $Sr_{1.998}Eu_{0.002}LiAlO_4$ and $Sr_{1.998}Ce_{0.002}LiAlO_4$, (25% and 40%, respectively), which are higher then for solid state reacted powders. The emission intensities at 150°C of these compositions were 90% and 88% of the room temperature values, respectively, showing good thermal quenching resistance. For the first time, Eu^{2+} and Ce^{3+} coactivated Sr_2LiAlO_4 ($Sr_{2-x-y}Eu_xCe_yLiAlO_4$) were prepared to investigate the properties of color tunable single-phase phosphors. The emission color changed from blue, to cool-white, to green, depending on *x* and *y*. When *y* was constant and *x* increased, the emission intensity of Ce^{3+} decreased and that of Eu^{2+} increased, indicating that there was an energy transfer from Ce^{3+} to Eu^{2+} . With *x*, *y* = 0.005, 0.001, the maximum value of the quantum efficiency was 55%, an increase of 40% over those of the singlely activated powders. An increase in *x* at constant *y* = 0.002 exhibited a red shift of the emission spectra of Ce^{3+} , implying that radiative reabsorption occurred through the energy transfer from Ce^{3+} to Eu^{2+} . Eu^{2+} and Ce^{3+} co-activated Sr_2LiAlO_4 was found to be a promising color-tunable single-phase phosphor able to change color from blue, to cool-white and green for potential applications in phosphor converted white-emitting LEDs.

ACKNOWLEDGMENTS

This work is supported by the United States National Science Foundation, Ceramics Program Grant DMR-1411192. This work was performed in part at the San Diego Nanotechnology Infrastructure (SDNI) of UCSD, a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the National Science Foundation (Grant ECCS-1542148).

REFERENCES

- 1. Y. H. Kim, P. Arunkumar, B. Y. Kim, S. Unithrattil, E. Kim, S.-H. Moon, J. Y. Hyun, K. H. Kim, D. Lee, J.-S. Lee and W. B. Im, *Nature Materials*, 2017, **16**, 543.
- 2. P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt and W. Schnick, *Nature Materials*, 2014, **13**, 891.
- 3. S. Nakamura and G. Fasol, *The Blue Laser Diode*, Springer, Berlin, 1996.
- 4. V. V. Atuchin, N. F. Beisel, E. N. Galashov, E. M. Mandrik, M. S. Molokeev, A. P. Yelisseyev, A. A. Yusuf and Z. Xia, *ACS applied materials & interfaces*, 2015, **7**, 26235-26243.
- 5. H. Ji, L. Wang, M. S. Molokeev, N. Hirosaki, R. Xie, Z. Huang, Z. Xia, M. Otmar, L. Liu and V. V. Atuchin, *Journal of Materials Chemistry C*, 2016, **4**, 6855-6863.
- 6. E. Galashov, V. Atuchin, T. Gavrilova, I. Korolkov, Y. Mandrik, A. Yelisseyev and Z. Xia, *Journal of Materials Science*, 2017, **52**, 13033-13039.
- 7. S. Pimputkar, J. S. Speck, S. P. DenBaars and S. Nakamura, *Nature Photonics*, 2009, **3**, 180.
- 8. J. Hou, W. Jiang, Y. Fang and F. Huang, *Journal of Materials Chemistry C*, 2013, **1**, 5892-5898.
- 9. X. Piao, T. Horikawa, H. Hanzawa and K.-i. Machida, *Applied Physics Letters*, 2006, **88**, 161908.
- 10. M. Shang, C. Li and J. Lin, *Chemical Society Reviews*, 2014, **43**, 1372-1386.
- 11. J. Ha, Z. Wang, E. Novitskaya, G. A. Hirata, O. A. Graeve, S. P. Ong and J. McKittrick, *Journal of Luminescence*, 2016, **179**, 297-305.
- 12. C.-H. Huang, P.-J. Wu, J.-F. Lee and T.-M. Chen, *Journal of Materials Chemistry*, 2011, **21**, 10489-10495.
- 13. Z.-C. Wu, J. Liu, W.-G. Hou, J. Xu and M.-L. Gong, *Journal of Alloys and Compounds*, 2010, **498**, 139-142.
- 14. G. Li, Z. Hou, C. Peng, W. Wang, Z. Cheng, C. Li, H. Lian and J. Lin, *Advanced Functional Materials*, 2010, **20**, 3446-3456.
- 15. Z. Jia and M. Xia, *Scientific Reports*, 2016, **6**, 33283.
- 16. F. Ruan, D. Deng, M. Wu, C. Wu and S. Xu, Journal of Luminescence, 2018, 198, 1-9.
- D. Geng, M. Shang, D. Yang, Y. Zhang, Z. Cheng and J. Lin, *Dalton Transactions*, 2012, 41, 14042-14045.
- 18. C. Xu, H. Guan, Y. Song, Z. An, X. Zhang, X. Zhou, Z. Shi, Y. Sheng and H. Zou, *Physical Chemistry Chemical Physics*, 2018.
- 19. Z. Wang, S. Lou, P. Li and Z. Lian, *Applied Optics*, 2017, **56**, 1167-1172.
- 20. M. Shang, G. Li, D. Geng, D. Yang, X. Kang, Y. Zhang, H. Lian and J. Lin, *The Journal* of *Physical Chemistry C*, 2012, **116**, 10222-10231.
- 21. H. He, R. Fu, Y. Cao, X. Song, Z. Pan, X. Zhao, Q. Xiao and R. Li, *Optical Materials*, 2010, **32**, 632-636.
- 22. C. Guo, L. Luan, F. G. Shi and X. Ding, *Journal of the Electrochemical Society*, 2009, **156**, J125-J128.
- 23. W.-Y. Huang, F. Yoshimura, K. Ueda, Y. Shimomura, H.-S. Sheu, T.-S. Chan, C.-Y. Chiang, W. Zhou and R.-S. Liu, *Chemistry of Materials*, 2014, **26**, 2075-2085.
- 24. L. Chen, A. Luo, Y. Zhang, F. Liu, Y. Jiang, Q. Xu, X. Chen, Q. Hu, S.-F. Chen and K.-J. Chen, *ACS Combinatorial Science*, 2012, **14**, 636-644.

- 25. A. M. Jakob and T. A. Schmedake, *Chemistry of Materials*, 2006, **18**, 3173-3175.
- 26. L. Ma, Z. Xia, V. Atuchin, M. Molokeev, S. Auluck, A. Reshak and Q. Liu, *Physical Chemistry Chemical Physics*, 2015, **17**, 31188-31194.
- 27. S. A. Khan, Z. Hao, H. Wei-Wei, L.-Y. Hao, X. Xu, N. Z. Khan and S. Agathopoulos, *Journal of Materials Science*, 2017, **52**, 10927-10937.
- 28. Z. Xia and R.-S. Liu, *The Journal of Physical Chemistry C*, 2012, **116**, 15604-15609.
- 29. N. Guo, Y. Song, H. You, G. Jia, M. Yang, K. Liu, Y. Zheng, Y. Huang and H. Zhang, *European Journal of Inorganic Chemistry*, 2010, **2010**, 4636-4642.
- 30. H. Y. Chung, C. H. Lu and C. H. Hsu, *Journal of the American Ceramic Society*, 2010, **93**, 1838-1841.
- 31. Z. Wang, J. Ha, Y. H. Kim, W. B. Im, J. McKittrick and S. P. Ong, *Joule*, 2018, **2**, 914-926.
- 32. V. Dotsenko, S. Levshov, I. Berezovskaya, G. Stryganyuk, A. Voloshinovskii and N. Efryushina, *Journal of Luminescence*, 2011, **131**, 310-315.
- 33. M. De Graef and M. E. McHenry, *Structure of Materials: An Introduction to Crystallography, Diffraction and Symmetry*, Cambridge University Press, 2012.
- 34. J. Makinson, J. Lee, S. Magner, R. De Angelis, W. Weins and A. Hieronymus, *Adv. X-Ray Anal*, 2000, **42**, 407-411.
- 35. J. Ha, E. Novitskaya, G. Hirata, C. Zhou, R. Ridley, O. Graeve and J. McKittrick, *Ceramics*, 2018, **1**, 5.
- 36. B. H. Toby, *Powder Diffraction*, 2006, **21**, 67-70.
- 37. H. Ji, Z. Huang, Z. Xia, M. S. Molokeev, V. V. Atuchin, M. Fang and S. Huang, *Inorganic chemistry*, 2014, **53**, 5129-5135.
- 38. H. Ji, Z. Huang, Z. Xia, Y. Xie, M. S. Molokeev and V. V. Atuchin, *Materials Research Bulletin*, 2016, **75**, 233-238.
- 39. J. K. Han, M. E. Hannah, A. Piquette, J. Micone, G. A. Hirata, J. B. Talbot, K. C. Mishra and J. McKittrick, *Journal of Luminescence*, 2013, **133**, 184-187.
- 40. J. Brgoch, S. P. DenBaars and R. Seshadri, *The Journal of Physical Chemistry C*, 2013, **117**, 17955-17959.
- 41. Y. Liu, C. Zhang, Z. Cheng, Z. Zhou, J. Jiang and H. Jiang, *Inorganic chemistry*, 2016, **55**, 8628-8635.
- 42. Y. Liu, J. Zhang, C. Zhang, J. Xu, G. Liu, J. Jiang and H. Jiang, *Advanced Optical Materials*, 2015, **3**, 1096-1101.
- 43. J. K. Han, M. E. Hannah, A. Piquette, G. A. Hirata, J. B. Talbot, K. C. Mishra and J. McKittrick, *Journal of Luminescence*, 2012, **132**, 106-109.
- 44. D. Dexter and J. H. Schulman, *The Journal of Chemical Physics*, 1954, **22**, 1063-1070.
- 45. G. Blasse, Journal of Solid State Chemistry, 1986, 62, 207-211.
- 46. F. Lucas, S. Jaulmes, M. Quarton, T. Le Mercier, F. Guillen and C. Fouassier, *Journal of Solid State Chemistry*, 2000, **150**, 404-409.
- 47. A. Meijerink and G. Blasse, *Journal of Luminescence*, 1989, **43**, 283-289.
- 48. M. P. Saradhi and U. Varadaraju, *Chemistry of materials*, 2006, **18**, 5267-5272.
- 49. L. Van Uitert, *Journal of Luminescence*, 1984, **29**, 1-9.
- 50. J. Fan, J. Gou, Y. Chen, B. Yu and S. F. Liu, *Journal of Alloys and Compounds*, 2018, **731**, 796-804.
- 51. W. Geng, X. Zhou and Y. Wang, *RSC Advances*, 2016, **6**, 108964-108968.
- 52. G. Blasse, *The Journal of Chemical Physics*, 1969, **51**, 3529-3530.

- 53. C. R. Ronda, *Luminescence: From theory to applications*, 2008, 1-34.
- 54. J. Zhou and Z. Xia, *Journal of Materials Chemistry C*, 2015, **3**, 7552-7560.
- 55. K. Li, M. Shang, H. Lian and J. Lin, *Journal of Materials Chemistry C*, 2016, **4**, 5507-5530.
- 56. G. Blasse, *Physics Letters A*, 1968, **28**, 444-445.
- 57. H. Guan, Y. Song, K. Zheng, Y. Sheng and H. Zou, *Physical Chemistry Chemical Physics*, 2016, **18**, 13861-13873.
- 58. G. Caldino, Journal of Physics-Condensed Matter, 2003, 15, 7127-7138.
- 59. L. Zhou, H. Liang, P. A. Tanner, S. Zhang, D. Hou, C. Liu, Y. Tao, Y. Huang and L. Li, *Journal of Materials Chemistry C*, 2013, **1**, 7155-7165.
- 60. A. P. Piquette, M. E. Hannah and K. C. Mishra, *ECS Transactions*, 2012, **41**, 1-9.
- 61. H. A. Höppe, H. Lutz, P. Morys, W. Schnick and A. Seilmeier, *Journal of Physics and Chemistry of Solids*, 2000, **61**, 2001-2006.
- 62. K. Sakuma, N. Hirosaki and R.-J. Xie, Journal of Luminescence, 2007, 126, 843-852.
- 63. J. Zhao, X. Sun and Z. Wang, *Chemical Physics Letters*, 2018, 691, 68-72.

TABLE AND FIGURE CAPTIONS

Tables

- 1. R_{wp} , R_p , and GOF values after Reitveld refinement for 1.00, 1.10, 1.20, 1.25, 1.30 mole fractions of Li ions in the starting material. R_{exp} : expected residual factor; R_{wp} : weighted profile residual factor; R_p : profile residual factor; GOF: goodness of fit.
- 2. Calculated ³¹ and experimental parameters of Sr₂LiAlO₄ prepared with 1.25 mole fraction of Li annealed at 800°C for 5 h. The experimental values were obtained from X-ray diffraction Rietveld refinement of the combustion reaction samples. Values in parentheses are the estimated standard deviations of the last significant figure.
- 3. Experimental parameters after Rietveld refinement and calculated parameters $\frac{31}{5}$ of Sr₂LiAlO₄ synthesized by the combustion reaction. Values in parentheses are the estimated standard deviations of the last significant figure.
- 4. Calculated and experimental emission wavelength of Eu^{2+} and Ce^{3+} in Sr₂LiAlO₄. *E* is the position of the emission peaks from Eu^{2+} or Ce^{3+} , *Q* is the energy from the lower *d*-band edge of Eu^{2+} or Ce^{3+} ions, *V* is the valence of Eu^{2+} and Ce^{3+} , *n* is the coordination number for Eu^{2+} or Ce^{3+} , *E_a* is the electron affinity of the atoms that form anions, and *r* is the radius of the cation replaced by Eu^{2+} or Ce^{3+} .
- **5.** The color coordinates (*x*, *y*) and quantum efficiency (Φ) of Sr_{2-*x*-*y*}Eu_{*x*}Ce_{*y*}LiAlO₄. (a)-(m) are the points shown on the CIE diagram in Figure 9.

Figures

X-ray diffraction patterns of Sr₂LiAlO₄ with (a) different post annealing conditions and (b) different concentration of Li ions. The simulation pattern was taken from ³¹. (c) The ratio of Sr₂LiAlO₄ and impurities (SrAl₄O₇ and Sr₂Al₆O₁₁) with excess Li ions. (d) Calculated 0 K

SrO-Li₂O-Al₂O₃ phase diagram taken from $\frac{31}{2}$. (e) X-ray diffraction patterns of Sr₂LiAlO₄, Sr_{2-x}Eu_xLiAlO₄, and Sr_{2-y}Ce_yLiAlO₄.

- 2. Photoluminescence excitation (dashed line) and emission (solid line) of (a) $Sr_{2-x}Eu_xLiAlO_4$ and (b) $Sr_{2-y}Ce_yLiAlO_4$ (c) The normalized (to *x* or *y* = 0.002) emission intensities of Sr_2LiAlO_4 :Eu²⁺ (green line) and $Sr_{2-y}Ce_yLiAlO_4$ (blue line) as a function of activator concentration.
- 3. Emission intensities as a function of temperature: (a) $Sr_{2-x}\underline{Eu_x}LiAlO_4$ ($\lambda_{ex} = 390$ nm) and (b) $Sr_{2-y}Ce_yLiAlO_4$ ($\lambda_{ex} = 380$ nm). (c) Normalized (to room temperature) emission intensities of $Sr_{2-x}\underline{Eu_x}LiAlO_4$ (green line) and $Sr_{2-y}Ce_yLiAlO_4$ (blue line).
- 4. Scanning electron microscope images of (a) $Sr_{2-x}Eu_xLiAlO_4$ and (b) $Sr_{2-y}Ce_yLiAlO_4$.
- 5. (a) Overlapped photoluminescence emission (solid line) and excitation (dashed line) of Sr₂₋ $_x \underline{Eu_x}$ LiAlO₄ and Sr_{2-y}Ce_yLiAlO₄, respectively. (b) Scheme of energy transfer between Ce³⁺ and Eu²⁺ in Sr₂LiAlO₄, redrawn from ⁸.
- 6. (a) Photoluminescence emission spectra of Sr_{1.998-x}Eu_xCe_{0.002}LiAlO₄ and (b) plot of emission intensities of Eu²⁺ and Ce³⁺. (c) Photoluminescence spectra of Sr_{1.998-y}Eu_{0.002}Ce_yLiAlO₄ and (d) plot of emission intensities of Eu²⁺ and Ce³⁺. (e) Plot of the energy transfer efficiency as a function of Eu²⁺ concentration (*x*) in Sr_{1.998-x}Eu_xCe_{0.002}LiAlO₄. (f) Plot of log(I₀/I) as a function of log(C_{Eu²⁺⁺Ce³⁺}).
- 7. (a) Photoluminescence spectra of $Sr_{1.9985-x-y}Eu_xCe_yLiAlO_4$ and (b) quantum efficiency as a function of activator concentration ($x + y \ge 0.0020$). Red circle and brown square are the efficiencies for a lower total activator concentration of x + y = 0.0015.
- 8. (a) Normalized (to x = 0.002) emission spectra from Ce³⁺ for Sr_{1.998-x}Eu_xCe_{0.002}LiAlO₄ (0.0005 $\leq x \leq 00050$). (b) Plot of the emission wavelength as a function *x*.

9. The CIE diagram showing coordinates of the phosphors and photographs of the powders $Sr_{2-x-y}Eu_xCe_yLiAlO_4$. The *x* and *y* values are shown in Table 5.

excess Li ions (mole fraction)	$R_{ m wp}$	$R_{ m p}$	GOF
1.00	13.22	9.17	2.55
1.10	13.79	9.76	2.45
1.20	11.75	8.02	2.12
1.25	12.14	8.81	1.83
1.30	17.81	13.07	2.93

Table 1. R_{wp} , R_p , and GOF values after Reitveld refinement for 1.00, 1.10, 1.20, 1.25, 1.30 mole fractions of Li ions in the starting material. R_{exp} : expected residual factor; R_{wp} : weighted profile residual factor; R_p : profile residual factor; GOF: goodness of fit.

site	calculated			experimental			occupancy	Wyckoff position
	x	у	Z	x	у	Z.		
Sr1	0.22801	0.25000	0.43191	0.25226 (78)	0.25000	0.43390 (91)	1	2 <i>e</i>
Sr2	0.27038	0.25000	0.94227	0.23642 (82)	0.25000	0.93358 (87)	1	2 <i>e</i>
Li3	0.30224	0.75000	0.69253	0.2599 (50)	0.75000	0.6796 (60)	1	2 <i>e</i>
Al4	0.27851	0.75000	0.19918	0.3016 (33)	0.75000	0.2027 (40)	1	2e
05	0.47754	0.50758	0.25164	0.4998 (29)	0.5063 (33)	0.1906 (24)	1	4 <i>f</i>
06	0.09917	0.75000	0.37670	0.1082 (31)	0.75000	0.4291 (29)	1	2 <i>e</i>
07	0.11359	0.75000	0.92812	0.1579 (58)	0.75000	0.9050 (58)	1	2 <i>e</i>

Table 2. Calculated ³¹ and experimental parameters of Sr_2LiAlO_4 prepared with 1.25 mole fraction of Li annealed at 800°C for 5 h. The experimental values were obtained from X-ray diffraction Rietveld refinement of the combustion reaction samples. Values in parentheses are the estimated standard deviations of the last significant figure.

Experimenta	Experimental parameters		
crystal system	monoclinic	monoclinic	
space group	$P2_1/m$	$P2_1/m$	
<i>a</i> /nm	0.581565 (14)	0.58308	
<i>b</i> /nm	0.563141 (16)	0.56386	
<i>c</i> /nm	0.665946 (16)	0.66545	
$eta/^{\circ}$	106.4558 (17)	106.70	
volume/nm ³	0.2091658 (95)	0.20956	
R_{exp} (%)	6.65	-	
R_{wp} (%)	12.14	-	
$\mathbf{R}_{p}(\%)$	8.81	-	
GOF	1.83	-	

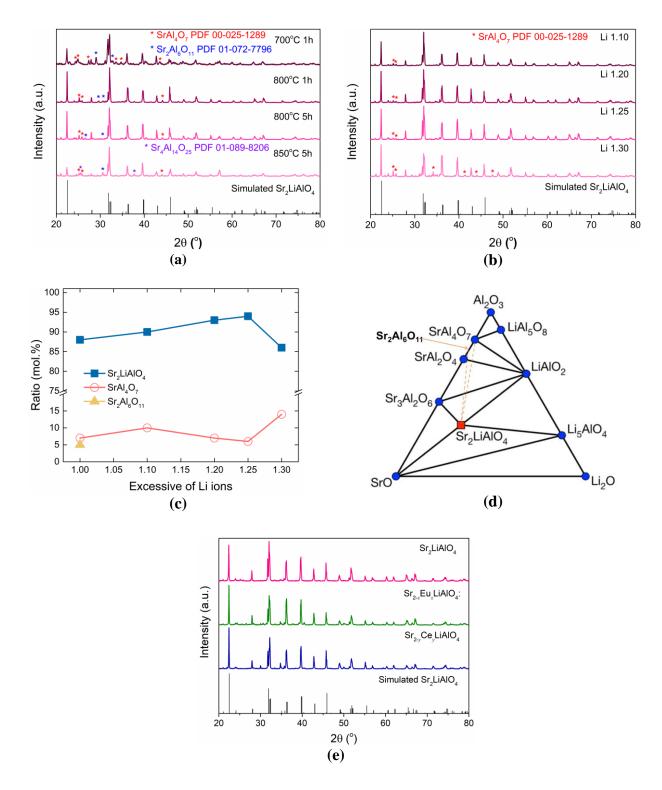
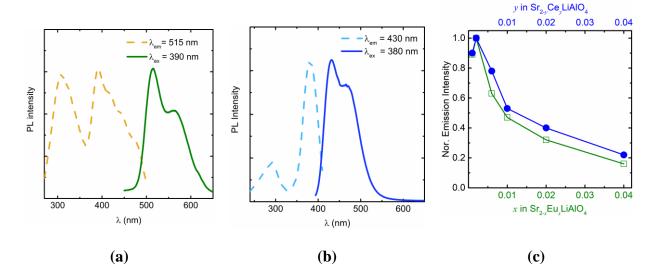

Table 3. Experimental parameters after Rietveld refinement and calculated parameters $\frac{31}{5}$ of Sr₂LiAlO₄ synthesized by the combustion reaction. Values in parentheses are the estimated standard deviations of the last significant figure.

Table 4. Calculated and experimental emission wavelength of Eu^{2+} and Ce^{3+} in Sr₂LiAlO₄. *E* is the position of the emission peaks from Eu^{2+} or Ce^{3+} , *Q* is the energy from the lower *d*-band edge of Eu^{2+} or Ce^{3+} ions, *V* is the valence of Eu^{2+} and Ce^{3+} , *n* is the coordination number for Eu^{2+} or Ce^{3+} , *E_a* is the electron affinity of the atoms that form anions, and *r* is the radius of the cation replaced by Eu^{2+} or Ce^{3+} .


activator	Q (cm ⁻¹)	V	n	<i>r</i> (nm)	E_a (eV)	E (nm)	Ecalc (nm)	Eexp (nm)
Eu ²⁺	34,000	2	8	0.126	1.6	1888.7	529	515, 565
Ce ³⁺	50,000	3	8	0.126	1.6	2144.2	466	430, 470

1	Sr _{2-x-y} Eu _x Ce _y	LiAlO ₄	CIE coordinates (<i>x</i> , <i>y</i>)	Φ (%)
	x	у		
(a)	0	0.0020	(0.1472, 0.0972)	40
(b)	0.0005	0.0020	(0.1636, 0.1849)	42
(c)	0.0010	0.0020	(0.1804, 0.1849)	43
(d)	0.0020	0.0040	(0.1907, 0.2221)	29
(e)	0.0020	0.0020	(0.2072, 0.2716)	32
(f)	0.0020	0.0010	(0.2149, 0.2900)	38
(g)	0.0020	0.0005	(0.2094, 0.2845)	36
(h)	0.0030	0.0020	(0.2302, 0.3382)	24
(i)	0.0040	0.0020	(0.2426, 0.4208)	18
(j)	0.0050	0.0020	(0.2503, 0.4344)	12
(k)	0.0020	0	(0.3324, 0.5732)	25
(l)	0.0005	0.0010	(0.1685, 0.1456)	55
(m)	0.0010	0.0005	(0.1846, 0.2100)	51

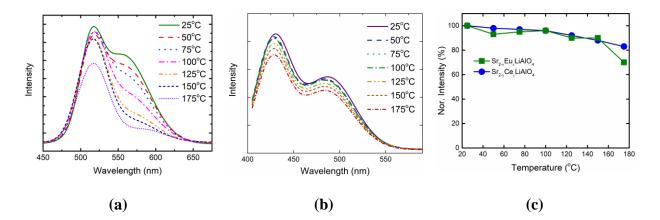
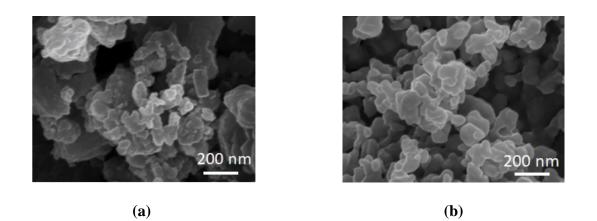
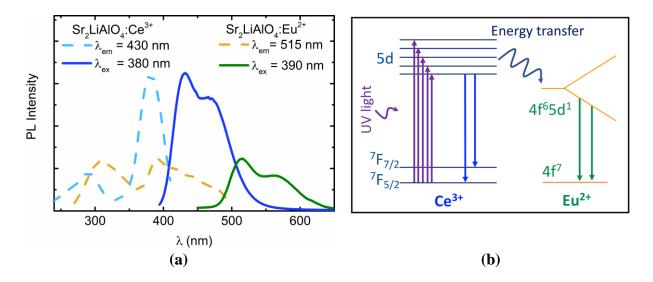
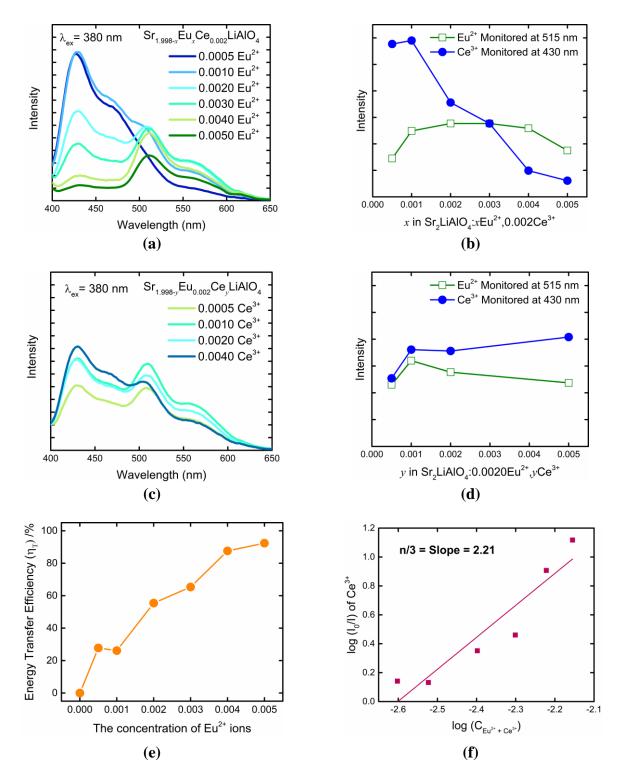
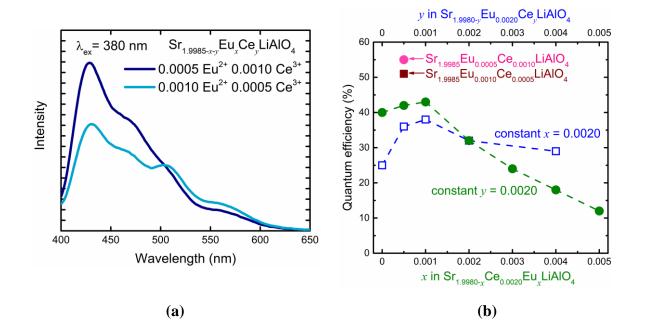

Table 5. The color coordinates (*x*, *y*) and quantum efficiency (Φ) of Sr_{2-*x*-*y*}Eu_{*x*}Ce_{*y*}LiAlO₄. (a)-(m) are the points shown on the CIE diagram in Figure 9.

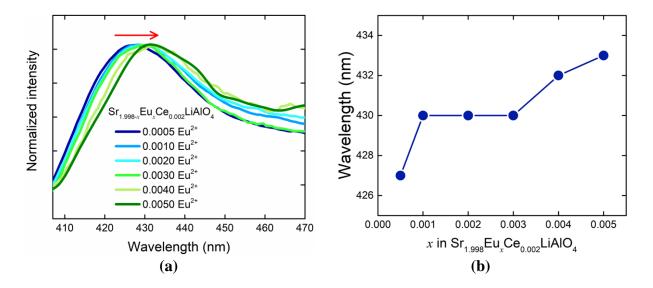
Figure 1. X-ray diffraction patterns of Sr₂LiAlO₄ with (**a**) different post annealing conditions and (**b**) different concentration of Li ions. The simulation pattern was taken from $\frac{31}{}$. (**c**) The ratio of Sr₂LiAlO₄ and impurities (SrAl₄O₇ and Sr₂Al₆O₁₁) with excess Li ions. (**d**) Calculated 0 K SrO-Li₂O-Al₂O₃ phase diagram taken from $\frac{31}{}$. (**e**) X-ray diffraction patterns of Sr₂LiAlO₄, Sr₂₋ _xEu_xLiAlO₄, and Sr_{2-y}Ce_yLiAlO₄.

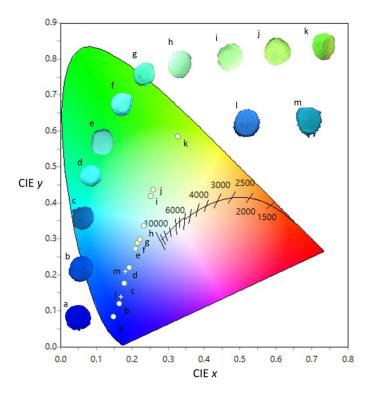
Figure 2. Photoluminescence excitation (dashed line) and emission (solid line) of (**a**) $Sr_{2-x}Eu_xLiAlO_4$ and (**b**) $Sr_{2-y}Ce_yLiAlO_4$. (**c**) The normalized (to *x* or *y* = 0.002) emission intensities of $Sr_{2-x}Eu_xLiAlO_4$ (green line) and $Sr_{2-y}Ce_yLiAlO_4$ (blue line) as a function of activator concentration.

Figure 3. Emission intensities as a function of temperature: (a) $Sr_{2-x}Eu_xLiAlO_4$ ($\lambda_{ex} = 390$ nm) and (b) $Sr_{2-y}Ce_yLiAlO_4$ ($\lambda_{ex} = 380$ nm). (c) Normalized (to room temperature) emission intensities of $Sr_{2-x}Eu_xLiAlO_4$ (green line) and $Sr_{2-y}Ce_yLiAlO_4$ (blue line).


Figure 4. Scanning electron microscope images of (a) Sr_{2-x}Eu_xLiAlO₄ and (b) Sr_{2-y}Ce_yLiAlO₄.


Figure 5. (a) Overlapped photoluminescence emission (solid line) and excitation (dashed line) of $Sr_{2-x}Eu_xLiAlO_4$ and $Sr_{2-y}Ce_yLiAlO_4$ respectively. (b) Scheme of energy transfer between Ce^{3+} and Eu^{2+} in Sr_2LiAlO_4 , redrawn from ⁸.


Figure 6. (a) Photoluminescence emission spectra of $Sr_{1.998-x}Eu_xCe_{0.002}LiAlO_4$ and (b) plot of emission intensities of Eu^{2+} and Ce^{3+} . (c) Photoluminescence spectra of $Sr_{1.998-y}Eu_{0.002}Ce_yLiAlO_4$ and (d) plot of emission intensities of Eu^{2+} and Ce^{3+} . (e) Plot of the energy transfer efficiency as a function of Eu^{2+} concentration (*x*) in $Sr_{1.998-x}Eu_xCe_{0.002}LiAlO_4$. (f) Plot of $log(I_0/I)$ as a function of $log(C_{Eu^{2+}+Ce^{3+}})$.

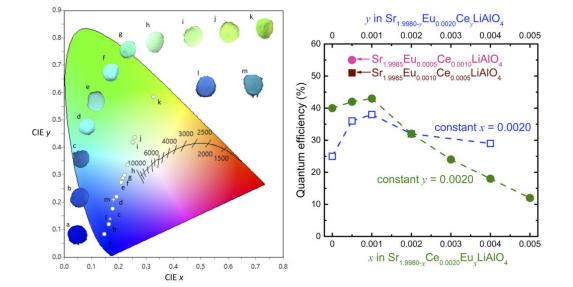

Figure 7. (a) Photoluminescence spectra of $Sr_{1.9985-x-y}Eu_xCe_yLiAlO_4$ and (b) quantum efficiency as a function of activator concentration ($x + y \ge 0.0020$). Red circle and brown square are the efficiencies for a lower total activator concentration of x + y = 0.0015.

Figure 8. (a) Normalized (to x = 0.002) emission spectra from Ce³⁺ for Sr_{1.998-x}Eu_xCe_{0.002}LiAlO₄ (0.0005 $\leq x \leq 0.0050$). (b) Plot of the emission wavelength as a function *x*.

Figure 9. The CIE diagram showing coordinates of the phosphors and photographs of the powders $Sr_{2-x-y}Eu_xCe_yLiAlO_4$. The *x* and *y* values are shown in Table 5.

A table of contents entry

Color tunable single-phase phosphors (blue- to green-emitting) were fabricated with coactivators that also improved the quantum efficiency.