Highly Selective, Red Emitting BODIPY-Based Fluorescent Indicators for Intracellular Mg2+ Imaging

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Journal of Materials Chemistry B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>TB-ART-06-2018-001599.R1</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Paper</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>13-Jul-2018</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Lin, Qitian; New York University, Department of Chemistry
 | Buccella, Daniela; New York University, Department of Chemistry |
Highly Selective, Red Emitting BODIPY-Based Fluorescent Indicators for Intracellular Mg\(^{2+}\) Imaging

Qitian Lin\(^a\) and Daniela Buccella*\(^a\)

Most fluorescent indicators for Mg\(^{2+}\) suffer from poor selectivity against other divalent cations, especially Ca\(^{2+}\), thus do not provide reliable information on cellular Mg\(^{2+}\) concentrations in processes in which such metals are involved. We report a new set of highly selective fluorescent indicators based on alkoxyaryl-functionalized BODIPY fluorophores decorated with a 4-oxo-4H-quinoxaline-3-carboxylic acid metal binding moiety. The new sensors, MagQ1 and MagQ2, display absorption and emission maxima above 600 nm, with a 29-fold fluorescence enhancement and good quantum yields (Φ > 0.3) upon coordination of Mg\(^{2+}\) in aqueous buffer. Fluorescence response to Mg\(^{2+}\) is not affected by the presence of competing divalent cations typically present in the cellular milieu, and displays minimal pH dependence in the physiologically relevant range. The choice of alkoxy groups decorating the styryl BODIPY core does not influence the basic photophysical and metal binding properties of the compounds, but has a marked effect on their intracellular retention and thus in their applicability for detection of cellular Mg\(^{2+}\) by fluorescence imaging. In particular, we demonstrate the utility of a triethyleneglycol (TEG) functionalization tactic that endows MagQ2 with superior cellular retention in live cells by reducing active extrusion through organic anion transporters, which are thought to cause fast leakage of typical anionic dyes. With enhanced retention and excellent photophysical properties, MagQ2 can be applied in the detection of cellular Mg\(^{2+}\) influx without interference of high concentrations of Ca\(^{2+}\) akin to those involved in signaling.

Introduction

Tightly regulated levels of Mg\(^{2+}\) within mammalian cells are essential for maintaining numerous fundamental processes including enzyme activation,\(^1\) regulation of K\(^+\) and Ca\(^{2+}\) ion transport\(^2-4\) and stabilization of chromatin structure,\(^5\) among others. Recently, Mg\(^{2+}\) was shown to act as a second messenger coupled with T-cell receptors, activating a series of intracellular effectors in lymphocytes.\(^6-7\) To date, however, the involvement of Mg\(^{2+}\) in signaling and regulation of cellular activity remains mostly underexplored and somewhat controversial. This stands in contrast to the detailed knowledge on the role of Ca\(^{2+}\) in signaling, garnered over decades of research. The obvious disparity stems partly from the lack of sensors that can selectively detect transient changes of intracellular Mg\(^{2+}\) concentrations without interference from Ca\(^{2+}\).

Current commercially available fluorescent probes for cellular Mg\(^{2+}\) detection, including FURA-PTRA\(^6\) (a.k.a. Mag-Fura-2)\(^8\) and Mag-fluo-4,\(^9\) are based on the α-aminophenol-N,N,O-triacetic acid (APTRA) metal binding group. This pentadentate chelator has been shown to form complexes with Mg\(^{2+}\) with a dissociation constant in the low millimolar range,\(^10\) which is optimal for achieving maximum sensitivity in the detection of typical cellular concentrations of “free” or “ionized” Mg\(^{2+}\) (0.5 mM – 1.0 mM).\(^3\) A significant drawback of APTRA, however, is the formation of tight complexes with other cations also present in biological samples, such as Ca\(^{2+}\) and Zn\(^{2+}\),\(^9,11-15\) that may cause significant interference in Mg\(^{2+}\) detection in systems with high levels of these metals. In particular, despite being much less abundant than Mg\(^{2+}\) in the intracellular milieu, Ca\(^{2+}\) ions involved in cellular signaling can rise to concentration ranges that are orders of magnitude higher than the typical basal levels, and may fall in the detection range of the sensors.\(^16\) Under these circumstances, APTRA-based sensors are likely to yield ambiguous results that hinder the study of Mg\(^{2+}\) in the context of Ca\(^{2+}\)-mediated signaling processes.

Seeking to alleviate the interference from Ca\(^{2+}\) in the detection of cellular Mg\(^{2+}\), fluorescent indicators based on binding motifs with enhanced selectivity profiles have been long pursued. Farruggia et al. reported the application of DCHQ series of fluorescent sensors, based on a diaza-18-crown-6 hydroxyquinoline motif, for the selective imaging of intracellular Mg\(^{2+}\). These sensors display a fluorescence enhancement upon Mg\(^{2+}\) binding, whereas other metal ions such as Ca\(^{2+}\) and Zn\(^{2+}\) only induce a minor response in concentration ranges that are well above biologically relevant levels.\(^17\) The affinity for Mg\(^{2+}\) of these sensors is quite high (K\(_d\) values of 44 and 73 μM for DCHQ1 and 2, respectively), hence they are thought to report total magnesium concentration...
based on their ability to outcompete natural intracellular chelators of the cation. The groups of Oka and Suzuki adopted the 4-oxo-4H-quinoline-3-carboxylic acid Mg$^{2+}$ binding motif and appended it to fluorophores such as fluorescein and rhodamine. The resulting Mg$^{2+}$-selective turn-on fluorescent probes, i.e., the KMG series, have been shown to report Mg$^{2+}$ dynamics in living cells successfully. Unfortunately, the fluorescein-based KMG 104 only shows emitting alkoxystyryl-functionalized boron-dipyrromethene the binding event into a fluorescence output (fluorescein and rhodamine, thus have become increasingly brightness, photostability, and low sensitivity to pH 1). Fluorophores of the BODIPY family are remarkable for their indicators with high turn-on ratio and low-energy excitation, general applicability. In this context, bright fluorescent turn-on fluorescent probes, i.e., the KMG series, have been shown to report Mg$^{2+}$ dynamics in living cells successfully.

Our basic indicator design is comprised of two main components, namely a 4-oxo-4H-quinoline-3-carboxylic acid serving as a Mg$^{2+}$-selective recognition motif, and a red-emitting alkoxystyryl-functionalized boron-dipyrromethene (BODIPY) fluorophore that serves as reporter and translates the binding event into a fluorescence output (MagQ1, Figure 1). Fluorophores of the BODIPY family are remarkable for their brightness, photostability, and low sensitivity to pH fluctuations compared to common charged dyes such as fluorescein and rhodamine, thus have become increasingly popular in the design of sensors and tags for bioimaging applications. One other notable aspect of some BODIPY derivatives, however, is their limited water solubility and tendency to form aggregates that affect their optical properties. To ensure sufficient water solubility of our indicator and avoid potential accumulation in cellular lipophilic compartments, charged carboxypropionyl groups were incorporated onto the 2 and 6 position of the BODIPY core.

Photoinduced electron transfer (PeT) between the metal binding group and the BODIPY fluorophore is exploited here for modulation of the fluorescent output of the indicator, endowing it with metal-sensing capabilities. Specifically, Nagano and coworkers have shown that anil substituents at the 8 position of 1,3,5,7-tetramethyl-BODIPY fluorophores have a marked influence on the fluorescence quantum yield of the dye, acting as either oxidants or reductants of the excited BODIPY and leading to quenching of the fluorescence emission. For our system, we anticipated that photoinduced reduction of the BODIPY by the quinoline moiety would lead to formation of a non-emissive charge separated state resulting in low fluorescence output. Upon coordination of Mg$^{2+}$, the driving force for PeT should decrease due to the electron-withdrawing effect of the metal ion on the Mg$^{2+}$-recognition moiety, thus suppressing the quenching effect and leading to fluorescence enhancement of the indicator.

![Figure 1. Red-emitting BODIPY-based fluorescent sensors for Mg$^{2+}$, MagQ1 and MagQ2](image)

Synthesis of MagQ1 was achieved in two stages, as shown in Scheme 1. First, synthesis of BODIPY 3 was achieved via one-pot reaction starting from acid-catalyzed condensation of ethyl 1-formyl-4-oxo-4H-quinoline-3-carboxylate (1) and pyrrole 2. The resulting intermediate was immediately oxidized by 1,3-dichloro-5,6-dicyano-benzoquinone (DDQ), and the fluorophore core was completed via treatment of BF$_3$·OEt$_2$ in the presence of Hünig’s base. The ester moieties in compound 3 can be hydrolyzed under basic conditions followed by neutralization to yield green-emitting BODIPY 3a, which displays Mg$^{2+}$ sensing capabilities of its own. Nevertheless, the limited fluorescence enhancement and very low quantum yield displayed by this compound in aqueous solution (results not shown), discouraged us from pursuing it further in the context of imaging applications. During the course of our studies, Vendrell and coworkers reported a related BODIPY compound, devoid of the water-solubilizing carboxypropionyl groups, and demonstrated similar Mg$^{2+}$ sensing properties but only in aqueous/organic solvent mixtures.

In the second stage of the synthesis, the fluorophore core of BODIPY 3 was extended via Knoevenagel condensation with aldehyde 4, endowed with a glycol substituent to aid the water solubility of the resulting alkoxystyryl BODIPY 6. Final sensor
MagQ1 was obtained by hydrolysis of the ester substituents under basic conditions. Similar protocol was employed for the synthesis of triethylene glycol (TEG) substituted analogue MagQ2 (vide infra).

Photophysical and metal binding properties of Mg$^{2+}$ indicators

Indicator MagQ1, with its styryl-functionalized BODIPY core, displays an absorption maximum at 600 nm (Figure S1) and fluorescence emission maximum at 635 nm in aqueous buffer at pH 7.0, 25 °C (Figure 2 and Table 1). The sensor is weakly fluorescent in the absence of Mg$^{2+}$, with a quantum yield of Φ = 0.01. Addition of Mg$^{2+}$, on the other hand, induces a significant increase of the fluorescence intensity (29-fold increase, Φ = 0.35 in the Mg$^{2+}$ saturated form) with negligible spectral shift. These observations are consistent with a sensing mechanism involving modulation of PeT, which is expected to result in a fluorescence emission enhancement with little or no effect on the absorption profile. The photophysical properties of MagQ1, particularly the long wavelength excitation and emission maxima, combined with high brightness and good fluorescence enhancement for Mg$^{2+}$ detection (summarized in Table 1), are very appealing for bioimaging applications in which reduced photodamage to the sample and minimal interference from autofluorescence are sought.

The affinity of MagQ1 for Mg$^{2+}$ was determined from nonlinear fit of the integrated fluorescence emission of the indicator as a function of Mg$^{2+}$ concentration (Figure 2, inset and Figure S2), using a 1:1 metal-to-indicator binding model. The K_d of the complex was found to be 1.50 ± 0.02 mM, a desirable dissociation constant to ensure optimal sensitivity for the detection of typical intracellular concentrations of this metal.

Studies by Levy and coworkers have revealed that the 4-oxo-4H-quinolizine-3-carboxylic acid motif, which on its own is somewhat fluorescent, is insensitive to chelatable Ca$^{2+}$ even in millimolar concentrations that far exceed typical biological levels of this cation (~100 mM). We anticipated that MagQ1 would share similar features and display good metal selectivity profile. Indeed, as shown in Figure 3A, whereas significant fluorescence enhancement is observed in the presence of a physiologically relevant concentration of Mg$^{2+}$ (1 mM), almost no fluorescence turn-on is observed upon treatment with other divalent metal ions, including Ca$^{2+}$ and the first row transition metal ions from Mn$^{2+}$ to Zn$^{2+}$ (10 μM). It should be noted that the exchangeable or chelatable pools of transition metal ions in the cellular milieu typically fall in concentration ranges that are much lower than those tested here, thus they are unlikely to induce a false fluorescence response in cellular imaging experiments. Furthermore, none of the tested metal ions, with the exception of Cu$^{2+}$ in high concentrations, appears to interfere with the detection of Mg$^{2+}$ in competition.

<table>
<thead>
<tr>
<th>Compound</th>
<th>λ_{exc} (nm)</th>
<th>λ_{em} (nm)</th>
<th>Φ^b</th>
<th>K_d (mM)</th>
<th>$F_{\text{Max}}/F_{\text{Min}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MagQ1</td>
<td>600</td>
<td>635</td>
<td>$0.0108(3)$</td>
<td>$1.50(2)$ mM</td>
<td>29</td>
</tr>
<tr>
<td>MagQ1 + Mg$^{2+}$</td>
<td>602</td>
<td>636</td>
<td>0.35(1)</td>
<td>1.50(2) mM</td>
<td>29</td>
</tr>
<tr>
<td>MagQ2</td>
<td>600</td>
<td>634</td>
<td>0.0099(8)</td>
<td>$1.51(5)$ mM</td>
<td>29</td>
</tr>
<tr>
<td>MagQ2 + Mg$^{2+}$</td>
<td>601</td>
<td>635</td>
<td>0.34(2)</td>
<td>$1.51(5)$ mM</td>
<td>29</td>
</tr>
</tbody>
</table>

aData collected at a probe concentration of 1 μM in aqueous buffer (50 mM PIPES, 100 mM KCl, pH 7.0, 25 °C). Excitation wavelength $\lambda_{\text{exc}} = 600$ nm. Number in parenthesis correspond to uncertainty in the last significant figure. bRelative quantum yield of fluorescence was determined using a cresyl violet solution in methanol as fluorescence standard ($\Phi = 0.66$). cSolution treated with 10 μM EDTA to remove adventitious metal. dSolution containing 200 mM Mg$^{2+}$. eMolar absorptivity $\varepsilon = 84000 \pm 1000$ M$^{-1}$ cm$^{-1}$. f
Figure 2. Fluorescence emission spectra of a 1.0 μM solution of MagQ1 treated with increasing concentrations of Mg^{2+}. Titrations conducted in 50 mM aqueous PIPES buffer, 100 mM KCl, pH 7.0, 25 °C. Excitation wavelength λex = 600 nm. Inset: non-linear fit (red line) of the integrated fluorescence emission (black circles) as a function of total magnesium concentration, [Mg^{2+}], using a 1:1 metal-to-indicator binding model.

experiments (Figure 3B). These results indicate that MagQ1 should be suitable for detection of the target Mg^{2+} in the complex mixture of the cellular environment, where a variety of competing metal ions coexist.

Taking into consideration that intracellular pH varies among different subcellular compartments, ranging from ~5.0 in lysosomes to ~8.0 in mitochondria, the effect of pH on the performance of MagQ1 for the detection of Mg^{2+} was investigated as well. As shown in Figure 3C, in the absence of Mg^{2+}, the sensor remains weakly fluorescent over the whole pH range investigated. Treatment with the metal ion, on the other hand, leads to consistent turn on of the fluorescence emission, thus suggesting that natural pH variations among various cellular compartments will not affect the detection of Mg^{2+} with the new sensor.

Imaging of intracellular Mg^{2+} with MagQ1 in living cells

Encouraged by the optimal affinity and selectivity for Mg^{2+}, combined with excellent tolerance to intracellular pH fluctuations and high turn-on ratio of the new sensor, we proceeded to evaluate MagQ1 for imaging Mg^{2+} in living cells. MagQ1 is negatively charged at pH 7 due to deprotonation of the carboxylic acid groups, thus has limited ability to diffuse across the cell membrane and enter the cells (results not shown). Hence, to enable cellular loading of the sensor, the free acid was converted into the neutral acetoxy methyl (AM) ester derivative, MagQ1-AM (Scheme S1), which is membrane permeable. Once internalized, intracellular esterases will cleave off the ester moieties, thus activating the pro-sensor for Mg^{2+} imaging. This non-invasive loading strategy has been widely used to deliver carboxylate-based fluorescent indicators into living cells, including various examples of Mg^{2+} indicators.

As shown in Figure 4, MagQ1 enables imaging of endogenous Mg^{2+} in living HeLa cells, evidenced by the strong red fluorescence emission captured with a standard Texas Red filter set in a widefield fluorescence microscope. To verify the responsiveness of the new sensor to changes in intracellular Mg^{2+} levels, we artificially induced an influx of the cation into the cells by treatment with high concentration of exogenous MgCl2 and ionophore 4-bromo A23187 (Thermo Fisher Scientific). This ionophore is a non-fluorescent derivative of mobile ion-carrier A23187 (Calcimycin), which equilibrates Mg^{2+} with the new sensor.

Figure 3. (A) Fluorescence response of 1.0 μM MagQ1 to physiological concentration of Mg^{2+} (1 mM) or to other divalent metal ions (10 μM) in aqueous buffer at 25 °C. (B) Fluorescence response of 1.0 μM MagQ1 to 1 mM or 100 mM of Mg^{2+} in the presence of competing divalent cations, showing the selectivity of the detection in 50 mM PIPES, 100 mM KCl, pH 7.0 buffer. (C) Fluorescence emission of a 1 μM solution of MagQ1 in aqueous buffer at pH ranging from 5.5 to 8.0 at 25 °C, in the absence (black squares) or presence (red circles) of 100 mM Mg^{2+}. Excitation wavelength λex = 600 nm; emission wavelength λem = 635 nm. Error bars correspond to standard deviations on measurements conducted in triplicate.

Figure 4. (A) Representative widefield fluorescence microscopy imaging of endogenous Mg^{2+} with MagQ1 in live HeLa cells. Scale bar = 50 μm. (B) Normalized average fluorescence per cell in samples imaged in normal growth medium (black triangles), in medium depleted from Ca^{2+} and Mg^{2+} (blue circles), and under supplementation with exogenous Mg^{2+} and ionophore (red squares). Error bars represent the SD, N = 20. (C) Net fluorescence enhancement caused by Mg^{2+} influx to cells treated with exogenous Mg^{2+} and ionophore. Error bars represent the SD, N = 20 cells.
Mg$^{2+}$ and Ca$^{2+}$ across the cell membrane driven by a concentration gradient of the cation. Under these cation influx conditions, the average fluorescence signal per cell originating from MagQ1 was significantly higher than that observed in control cells incubated either without the ionophore or in medium depleted of exogenous divalent ions (Figures 4B,C). These results confirm that the sensor is indeed responsive and able to report on changes in cellular Mg$^{2+}$ (Figure 4C). Furthermore, the sensor is not toxic under the conditions typically employed for imaging, as demonstrated by cell viability studies conducted at concentrations up to ten-fold higher than those employed in our own imaging experiments (Figure S3).

To evaluate the potential for interference in Mg$^{2+}$ detection caused by Ca$^{2+}$ surges typically involved in cellular signaling, we also measured the fluorescence intensity of MagQ1 in cells treated with a high concentration of exogenous Ca$^{2+}$ accompanied by the 4-bromo A23187 ionophore. The average fluorescence signal per cell obtained under these conditions showed no obvious enhancement with respect to control cells (Figure S4). These results are consistent with the metal selectivity profile displayed by the sensor in vitro, and clearly demonstrate the ability of MagQ1 to sense intracellular Mg$^{2+}$ without interference from Ca$^{2+}$ at elevated concentrations that are most relevant to signaling processes.

Despite the outstanding photophysical properties of MagQ1 and the encouraging results in Mg$^{2+}$ detection in cellulo, an overall decrease in absolute fluorescence intensity over time was observed in all microscopy imaging experiments conducted, suggesting poor intracellular retention of the sensor under typical imaging conditions. This drawback is common for negatively charged small molecule sensors employed in cation detection, which are thought to be rapidly excreted through organic anion transporters (OAT, Figure 5A). For MagQ1, incubation at 25 °C (in the absence of a cation influx) led to loss of ~60% of the original signal over 30 min (Figures 4B and S5). Similar loss was observed upon incubation in media either supplemented with or depleted of Mg$^{2+}$, indicating that the decrease in signal corresponds to dye leakage and not to a turn-off due to decrease in intracellular cation concentration. In contrast, treatment of the cells with 2.5 mM probenecid (p-[dipropylsulfamoyl]benzoic acid), an inhibitor of OAT, leads to full retention of the signal over the period of observation (Figure 5B). In combination, these results imply that the loss of signal does not correspond to photobleaching of the fluorophore but instead to its extrusion from the cell, and support the notion that the main mechanism of extrusion is some form of probenecid-sensitive active transport, and not simple diffusion.

Enhancing cellular retention: development of sensor MagQ2

To address the limited intracellular retention of MagQ1 while maintaining its attractive properties for Mg$^{2+}$ sensing, we sought to investigate possible chemical modifications on the structure of the sensor that would possibly change the membrane permeability and interaction with biomolecules while imposing minimal electronic influence on either the metal-recognition moiety or the fluorophore. We concentrated on replacing the alkoxy substituents of the alkoxyaryl BODIPY and chose trethylene glycol (TEG) substituents, which would impart some of the attractive features of polyethylene glycol (PEG) conjugation seen in biomolecules and pharmaceuticals, such as reduction of interactions with (other) biomolecules, while maintaining the sensor in the small molecule regime suitable for passive cellular uptake.

TEG-functionalized analogue MagQ2 (Figure 1) was obtained by similar protocol to that developed for the synthesis of MagQ1 (Scheme 1), replacing aldehyde 4 by TEG-substituted benzaldehyde 5 in the Knoevenagel condensation step. Compared to its predecessor MagQ1, the new sensor MagQ2 inherited all the attractive photophysical properties, including low excitation energy, large turn-on ratio and high quantum yield. The compounds also display virtually identical Mg$^{2+}$ binding and selectivity (Figures S6-9 and Table 1). In contrast, MagQ2 (loaded as the membrane-permeable acetoxymethyl ester derivative MagQ2-AM) displays a significantly improved cellular retention profile compared to MagQ1, with 75-80% of the average fluorescence signal maintained in living HeLa cells over 30 min of incubation in normal imaging medium (Figures 6 and S10). Such difference suggests that the TEG modification on the styryl-BODIPY core offers an effective tactic for enhancing the cellular retention of the sensor by reducing the interaction with the transporters responsible for the extrusion of organic anionic dyes. Moreover, the increased retention does not have an effect on
cell viability (Figure S11), thus has an overall positive impact on the applicability of the sensor for live cell imaging purposes.

We then evaluated the fluorescence response of MagQ2 to intracellular changes in Mg^{2+} concentration in live HeLa cells by fluorescence microscopy. An influx of Mg^{2+} was generated by the same protocols applied for the evaluation of sensor MagQ1, treating with exogenous MgCl₂ and an ionophore. As shown in Figures 6B and 6C, a clear fluorescence enhancement of the sensor was captured within 5 min after the treatment, and the average fluorescence intensity per cell remained elevated compared to control samples during the 30 min period of observation. The results confirm that, like its non-TEGylated predecessor, MagQ2 is also able to report on changes in Mg^{2+} concentration in live cells. Yet with enhanced cellular retention, this sensor offers a new, valuable tool for fluorescence microscopy applications that may help address pressing questions in magnesium biology.

Conclusions

In summary, we have developed a new set of BODIPY-based fluorescent indicators, MagQ1 and MagQ2, for the detection of Mg^{2+} in live cells by fluorescence microscopy. The styryl-functionalized BODIPY core endows the new sensors with low energy excitation and emission, whereas the 4-oxo-4H-quinolizine-3-carboxylic acid metal binding moiety provides the molecules with strong fluorescence enhancement in response to Mg^{2+} both in vitro and in cellulo, with no interference from typical competing metal ions present in biological samples such as Ca^{2+} and Zn^{2+}.

Despite their identical photophysical and metal-binding properties, MagQ1 and MagQ2 present very distinct cellular retention profiles that define their applicability in microscopy imaging experiments. Specifically, we demonstrated that functionalization of the BODIPY fluorophore with triethylene glycol groups in MagQ2 has no significant impact on the basic photophysical and Mg^{2+} sensing properties of the compound compared to MagQ1, but endows it with superior retention in live cells by decreasing active extrusion that likely involves organic anion transporters. These results are significant in that they provide a first demonstration of a simple molecular functionalization strategy that alleviates a common mechanism of extrusion affecting not only many fluorescent sensors for cations, but also anionic organic dyes and drugs in general.

With low energy excitation, good Mg^{2+}-induced fluorescence enhancement and excellent metal selectivity profile, the reported sensors offer new alternatives for the study of cellular magnesium biology by fluorescence techniques, and are particularly suited for the study of this cation in systems with elevated concentrations of competing metals such as in the context of calcium signaling.

Experimental Section

General materials and Synthetic Methods

Compounds 1-3, 2-32 and 5 and methyl 2-bromoacetate were synthesized using reported procedures. All other reagents were purchased from commercial sources and used as received. Solvents were purified and degassed by standard procedures. Analytical thin layer chromatography (TLC) was conducted on SorbTech polyester-backed 200 μm silica gel sheets. NMR spectra were acquired on Bruker Avance 400 and Avance III 600 MHz with triple resonance CTPC-cryoprobehead spectrometers. ¹H NMR chemical shifts are reported in ppm relative to SiMe₄ (δ = 0) and were referenced internally with respect to residual proton impurity in the solvent (δ 7.26 for CDCl₃, 2.05 for acetone-d₆ and 2.50 for DMSO-d₆). ¹³C NMR chemical shifts are reported in ppm relative to SiMe₄ (δ = 0) and were referenced internally with respect to the solvent signal (δ 77.16 for CDCl₃, 29.84 for acetone-d₆). ¹⁹F NMR chemical shifts are reported relative to CFCl₃ (δ = 0) and were referenced using C₆H₅CF₃ in CDCl₃ as external standard (δ = -63.72). Coupling constants are reported in Hz. High-resolution mass spectra (HRMS) were acquired on an Agilent 6224 Accurate-Mass TOF LC/MS using APCI or ESI ionization. Reverse-phased HPLC analyses were conducted on an Agilent 1260 system with UV-Vis detection, using a ZORBAX Eclipse Plus C18 reversed phase column (4.6×50 mm, 1.8 μm particle size) and a gradient of 10% to 100% acetonitrile/water (+ 0.1% trifluoroacetic acid) over 7 min. Purification of MagQ1, MagQ2, MagQ1-AM and MagQ2-AM was conducted on an Agilent 1260 system with UV-Vis detection, using a GRACE Vision HT C18 HL reverse phase column (10×150 mm, 5 μm particle size) and a gradient of 10% to 100% acetonitrile/water (+ 0.1% trifluoroacetic acid) over 22 min with a flow rate of 5 mL/min.

Synthesis of 3
A solution of 1 (0.10 g, 0.41 mmol) in a mixture of anhydrous dichloromethane (28 mL) and absolute ethanol (2 mL) was treated with N2 atmosphere and stirred vigorously at R.T. overnight. DDQ (0.11 g, 0.49 mmol) was added to the resulting mixture and stirring was continued for 1 h. The solvent was evaporated under reduced pressure and the residue was dissolved in 30 mL of dichloromethane, treated with diisopropylethylamine (DIPEA, 1 mL) and stirred at R.T. for 30 min. BF3·OEt2 (1 mL) was then added and the solution was stirred for another 2 h. The resulting mixture was washed with water, followed by brine. All aqueous washes were combined and re-dissolved with dichloromethane. The combined organic fractions were dried over Na2SO4 and evaporated under reduced pressure. The crude was purified by column chromatography (silica gel, 5:1 dichloromethane/aceton).

Synthesis of 4
A mixture of 4-hydroxy-2-methoxybenzaldehyde (0.30 g, 2 mmol) and K2CO3 (0.83 g, 6 mmol) was suspended in 10 mL of DMF. 2-Bromoethanol (0.21 mL, 3 mmol) was added to the suspension and the mixture was stirred at 80 °C overnight. The resulting mixture was cooled to R.T. and filtered. The filtrate was diluted with dichloromethane and washed with water, followed by brine. The organic fraction was dried over Na2SO4 and evaporated. The residue was purified by column chromatography (silica gel, 4:1 dichloromethane/ethyl acetate) to afford compound 4 as a pale pink solid (0.28 g, yield 72%). 1H NMR (600 MHz, CDCl3, δ): 10.28 (s, 1H), 7.80 (d, J = 8.6 Hz, 1H), 6.55 (dd, J = 6.6 Hz, J = 1.7 Hz, 1H), 6.48 (d, J = 2.2 Hz, 1H), 4.16 (t, J = 4.3 Hz, 2H), 4.01-3.98 (m, 2H), 3.89 (s, 3H), 2.15 (t, J = 6.1 Hz, 3H). 13C{1H} NMR (150 MHz, CDCl3, δ): 188.5, 165.3, 163.7, 130.9, 119.5, 106.3, 98.7, 69.7, 61.3, 55.8. HR-TOF-MS (m/z): [M+H]+ calcd for C10H12O4, 197.0813; found 197.0808.

Synthesis of 7
A mixture of 3 (50 mg, 79 μmol) and 5 (41 mg, 94 μmol) was suspended in toluene (25 mL) and treated with piperidine (0.5 mL). A few crystals of p-toluenesulfonic acid monohydrate were added and the suspension was refluxed overnight. The resulting mixture was cooled to R.T. and evaporated under reduced pressure. The crude was purified by column chromatography (silica gel, 2:1 to 1:1 dichloromethane/aceton) to afford 7 as a purple solid (11 mg, yield 13%). 1H NMR (600 MHz, acetone-d6, δ): 9.48-9.47 (m, 1H), 8.27 (s, 1H), 7.97-7.94 (m, 1H), 7.76-7.67 (m, 3H), 7.64-7.54 (m, 2H), 7.56-7.53 (m, 1H), 6.72-6.70 (m, 2H), 4.31 (q, J = 7.1 Hz, 2H), 4.26 (t, J = 4.7 Hz, 2H), 4.23 (t, J = 4.7 Hz, 2H), 3.92 (t, J = 5.0 Hz, 2H), 3.86-3.84 (m, 2H), 3.69-3.66 (m, 4H), 3.62-3.57 (m, 12H), 3.54-3.53 (m, 2H), 3.49-3.47 (m, 2H), 3.42-3.41 (m, 2H), 3.29 (s, 3H), 3.23 (s, 3H), 2.98 (t, J = 7.9 Hz, 2H), 2.69-2.67 (m, 2H), 2.62-2.59 (m, 5H), 2.42-2.39 (m, 2H), 1.51 (s, 3H), 1.48 (s, 3H), 1.33 (t, J = 7.1 Hz, 3H). 13C{1H} NMR (150 MHz, acetone-d6, δ): 173.3, 173.2, 165.7, 162.5, 159.3, 156.2, 155.2, 153.3, 152.6, 145.7, 141.9, 140.1, 139.1, 137.3, 134.1, 133.1, 132.3, 131.9, 130.4, 130.25, 130.1, 128.0, 123.4, 119.7, 117.3, 117.2, 107.8, 107.5, 106.2, 99.0, 69.5, 61.5, 61.3, 55.8, 51.9, 51.8, 34.3, 33.4, 20.9, 19.4, 14.6, 13.0, 12.5, 12.3. 19F NMR (376 MHz, CDCl3, δ): -143.02, δFB = -143.32, 2JFB = 32.1 Hz, HR-TOF-MS (m/z): [M+H]+ calcd for C10H8BF2N2O5, 814.3317; found 814.3314.
HR-TOF-MS (m/z): [M-H]\(^+\) calcd for C\(_{95}\)H\(_{90}\)BF\(_2\)N\(_3\)O\(_{14}\), 756.2546; found 756.2547.

Synthesis of MagQ2

A sample of 7 (4 mg, 3.8 μmol) was dissolved in a mixture of isopropanol (0.2 mL) and water (0.2 mL). The solution was treated with 0.2 mL of saturated aqueous Ba(OH)\(_2\) solution and stirred vigorously at R.T. The reaction was monitored to completion by HPLC (~3 h). The resulting mixture cooled in an ice bath, neutralized by addition of 1 M HCl solution, and purified by preparative reversed phase HPLC to afford the product as purple solid (1.0 mg, 26% yield).\(^1\)H NMR (600 MHz, DMSO-\(_d_6\), δ): 9.47 (d, \(J = 6.6\) Hz, 1H), 8.26 (s, 1H), 8.05 (br, 1H), 7.73-7.69 (m, 2H), 7.59-7.51 (m, 3H), 6.70-6.68 (m, 2H), 4.19-4.17 (m, 4H), 3.81 (t, \(J = 4.8\) Hz, 2H), 3.77 (t, \(J = 4.6\) Hz, 2H), 3.61-3.58 (m, 4H), 3.56-3.50 (m, 6H), 3.48-3.46 (m, 2H), 3.44-3.43 (m, 2H), 3.37-3.35 (m, 2H), 3.24 (s, 3H), 3.17 (s, 3H), 2.80 (t, \(J = 7.7\) Hz, 2H), 2.53-2.52 (m, 5H), 2.42-2.38 (m, 2H), 2.28-2.25 (m, 2H), 1.31 (s, 3H), 1.28 (s, 3H). HR-TOF-MS (m/z): [M-H\(^+\)] calcd for C\(_{59}\)H\(_{72}\)BF\(_2\)N\(_3\)O\(_{21}\), 1208.4792; found 1208.4793.

General Spectroscopic Methods

General procedure for the preparation of MagQ1-AM and MagQ2-AM

Following completion of the hydrolysis of compound 6 or 7, as described in the protocol for the preparation of MagQ1 and MagQ2, respectively; the reaction was neutralized by 1 M HCl aqueous solution and then lyophilized. The residue was suspended in a mixture of DMF/Acetonitrile (1:2, v/v, 120 μL/mg of suspended) and treated with K\(_2\)CO\(_3\) powder (10 equiv), followed by addition of methyl 2-bromoacetate (15 equiv). The mixture was stirred vigorously at R.T. for 1 h, after which the reaction was complete by HPLC analysis. The resulting suspension was filtered and the filtrate was purified by preparative HPLC to afford the desired product MagQ1-AM (11% yield in two steps) or MagQ2-AM (14% yield in two steps). The product was dissolved in acetonitrile (concentration of the solutions was quantified using the molar absorptivity of compound 6 at 600 nm, ε\(_{600}\) = 62900 ± 900 M\(^{-1}\)cm\(^{-1}\), measured in the same solvent at 25 °C) and the resulting solution was divided into aliquots of 20 nmol and evaporated in a centrifugal evaporator. The solid aliquots were stored at -20 °C until use.

MagQ1-AM: HR-TOF-MS (m/z): [M+H]\(^+\) calcd for C\(_{48}\)H\(_{50}\)BF\(_2\)N\(_3\)O\(_{16}\), 974.3325; found 974.3339.

MagQ2-AM: HR-TOF-MS (m/z): [M+H]\(^+\) calcd for C\(_{56}\)H\(_{72}\)BF\(_2\)N\(_3\)O\(_{12}\), 1208.4792; found 1208.4793.

General Cell Culture and Imaging Protocols

Metal selectivity studies

Metal selectivity studies were performed using 1 μM solution of sensor MagQ1 or MagQ2 in aqueous buffer at pH 7.0, treated with either CaCl\(_2\), MnCl\(_2\), Fe(SO\(_4\))\(_2\), CoCl\(_2\), NiCl\(_2\), CuCl\(_2\), or ZnCl\(_2\) in aqueous buffer for a final concentration of 10 μM M\(^{2+}\), or 10 μM M\(^{3+}\) and 1 mM MgCl\(_2\), or 10 μM M\(^{2+}\) and 100 mM MgCl\(_2\). Fluorescence emission of metal-free sensors was determined with solutions of MagQ1 or MagQ2 treated with 10 μM EDTA to sequester adventitious metal ions. All measurements were conducted in triplicate.

Journal Name

Journal of Materials Chemistry B

This journal is © The Royal Society of Chemistry 20xx

Page 8 of 11
seeded in 35 mm glass bottom cell culture dishes (MatTek) and allowed to grow to 50-70% confluence prior to fluorescence imaging. Fluorescence imaging experiments were performed on a Leica DMi6000B inverted fluorescence microscope equipped with a Hamamatsu ORCA-Flash 4.0 CCD camera, scanning stage, high-speed filter wheel for excitation filters and a mercury metal halide external light source. A Leica Texas Red filter cube was employed for the imaging. The microscope was operated with Leica LAS AF software. Image processing for fluorescence intensity determination was performed with Metamorph 7.7.0.0 software. Briefly, images were background subtracted and a threshold was applied to define cell boundaries. Results are presented as normalized average fluorescence intensities per cell. Error bars correspond to standard deviation (SD) on the normalized average fluorescence per cell, with N = total number of cells included in the analysis. All images were processed by the same protocol and are shown in the same scale. At least two biological replicas were conducted for each experiment.

Sensor loading and fluorescence imaging
Live HeLa cells were bathed in DMEM containing 1 μM of MagQ1-AM or MagQ2-AM in 0.01% Pluronic F-127 at R.T. for 30 min. The medium was then removed and the cells were rinsed with 2 mL of DMEM, followed by incubation in fresh DMEM at R.T. for 1 h to allow deesterification of the AM esters. The medium was then removed and cells were washed twice with HHBSS (20 mM HEPES-buffered HBSS containing 0.8 mM MgCl2, 1.8 mM CaCl2 and 2 g/L glucose) and bathed in 1 mL HHBSS for fluorescence imaging. After an initial image was collected, an additional 1 mL of HHBSS was added to the plate on the microscope stage and fluorescence images were captured over a period of 30 min.

To rule out the effect of dye leakage vs. possible signal loss due to metal depletion, a second set of experiments was performed as described above, using HHBSS without calcium and magnesium for the final washing and imaging.

Inhibition of extrusion by active transport
Live HeLa cells were bathed in DMEM containing 1 μM of MagQ1-AM or MagQ2-AM, 0.01% Pluronic F-127, and 2.5 mM probenecid at R.T. for 30 min. The medium was then removed and the cells were rinsed with 2 mL of DMEM, followed by incubation in fresh DMEM containing 2.5 mM probenecid at R.T. for 1 h to allow deesterification of the AM esters. The medium was then removed and cells were washed twice with HBSS (20 mM HEPES-buffered HBSS containing 0.8 mM MgCl2, 1.8 mM CaCl2 and 2 g/L glucose) and bathed in 2 mL HBSS with 2.5 mM probenecid for fluorescence imaging over a period of 1 h. Control experiments were performed using similar protocol, using media without probenecid for sensor loading and fluorescence imaging, as described in the general sensor loading and fluorescence imaging section.

Response to Mg2+ or Ca2+ influx
To verify that the sensors are responsive to Mg2+ influx, cells were loaded with 1 μM of MagQ1-AM or MagQ2-AM as described in the general sensor loading protocol, followed by washing and initial imaging in HHBSS without Ca2+ and Mg2+.

Subsequently, 1 mL of HHBSS solution containing 10 μM of 4-bromo A23187 ionophore and 30 mM MgCl2 was added to the plate while on the microscope stage, and additional fluorescence images were captured over a period of 30 min.

A similar experiment was performed using 3 mM CaCl2, instead of the 30 mM MgCl2, to induce a cellular influx of Ca2+ and study the possible interference of this ion in the detection of endogenous Mg2+.

Cell viability studies
CellTiter-Glo® Luminescent Cell Viability Assay (Promega) was performed to assess the cytotoxicity of MagQ1 and MagQ2. HeLa cells plated in a white opaque 96-well plate (20,000 cells per well) were bathed in DMEM (100 μL) containing various concentrations of MagQ1-AM or MagQ2-AM (1, 5, or 10 μM) with 0.01% Pluronic F-127 at R.T. for 30 min. The medium was then removed and the cells were incubated in fresh DMEM (100 μL) at R.T. for 1 h to allow deesterification of the AM esters, as described in the general cell loading procedure above. Cells were washed and treated with CellTiter-Glo® Reagent (Promega, 100 μL) according to the manufacturer’s protocol. Control experiments were performed in the same fashion, using DMEM as vehicle. Luminescence was read using a FlexStation 3 Multi-Mode Microplate Reader from Molecular Devices. Results shown are averages from eight replicas.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
The authors thank the National Institutes of Health (R01CA217817) for financial support. The Bruker Avance 400 NMR spectrometer was acquired with support of the National Science Foundation under award number CHE-0116222. The CPTc-cryoprobehead was acquired through the support of the National Institute of Health S10 grant under award number OD016343. The authors wish to thank Jessica J. Gruskos for valuable discussions.

References
Table of Contents Entry

New fluorescent sensors with excellent turn-on ratio and low energy excitation provide Mg$^{2+}$ detection in live cells with high selectivity

![Intracellular Mg$^{2+}$ imaging](image)