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1 Introduction

Journal of Materials Chemistry A

Combining Landau-Zener Theory and Kinetic Monte
Carlo Sampling for Small Polaron Mobility of Doped
BiVO, from First-principles

Feng Wu“ and Yuan Ping*?

Transition metal oxides such as BiVO, are promising materials as photoelectrodes in solar-to-
fuel conversion applications. However, their performance is limited by the low carrier mobility
(especially electron mobility) due to the formation of small polarons. Recent experimental stud-
ies show improved carrier mobility and conductivity by atomic dopings; however the underlying
mechanism is not understood. A fundamental atomistic-level understanding of the effects on
small polaron transport is critical to future materials design with high conductivity. We studied the
small polaron hopping mobility in pristine and doped BiVO, by combining Landau-Zener theory
and kinetic Monte Carlo (kMC) simulation fully from first-principles, and investigated the effect of
dopant-polaron interactions on the mobility. We found polarons are spontaneously formed at V in
both pristine and Mo/W doped BiVO,, which can only be described correctly by density function
theory (DFT) with the Hubbard correction (DFT+U) or hybrid exchange-correlation functional but
not local or semi-local functionals. We found DFT+U and dielectric dependant hybrid functional
(DDH) give similar electron hopping barriers, which are also similar between the room tempera-
ture monoclinic phase and the tetragonal phase. The calculated electron mobility agrees well with
experimental values, which is around 10~* cm2V~1s~!. We found the electron polaron transport
in BiVO, is neither fully adiabatic nor nonadiabatic, and the first and second nearest neighbor
hoppings have significantly different electronic couplings between two hopping centers that lead
to different adiabaticity and prefactors in the charge transfer rate, although they have similar hop-
ping barriers. Without considering the detailed adiabaticity through Landau-Zener theory, one
may get qualitatively wrong carrier mobility. We further computed polaron mobility in the pres-
ence of different dopants and showed that Cr substitution of V is an electron trap while Mo and W
are "repulsive” centers, mainly due to the minimization of local lattice expansion by dopants and
electron polarons. The dopants with "repulsive" interactions to polarons are promising for mo-
bility improvement due to larger wavefunction overlap and delocalization of locally concentrated
polarons.

0.01em?V~!s~! hole mobility for BiVO, 12l compared to 1350

Transition metal oxides (TMO) such as BiVO,, Fe,05, CuO are
promising candidates as photoelectrode materials in energy con-
version applications, such as photoelectrochemical cells™™1L, due
to their high stability under electrochemical conditions compared
to III-V semiconductors and desired optical properties for visi-
ble light absorption. However, in general, these oxides have
extremely low intrinsic carrier mobility (e.g. on the order of
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em?V~1s~! for silicon'!®), which fundamentally limits their effi-
ciency from the theoretical value, and constitutes the main bottle-
neck of these materials for practical applications. The extremely
low carrier mobility is characterized by the thermally activated
hopping conductionM, instead of band conduction in III-V semi-
conductors.

The carriers in the hopping conduction of TMOs are called
"small polarons", which are quasiparticles of electron plus local
lattice distortion as a whole. Its formation is due to the ex-
tremely strong electron-phonon interactions, whereby the elec-
trons or holes are trapped by local lattice distortions, and they
hop from one lattice site to another. A spin density plot of an
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electron small polaron in pristine BiVO, is shown in Fig. Ex-
perimentally, a distinct signature of polaron hopping conduction
is that with increasing temperature the carrier mobility increases
exponentially, while in band conduction it decreases. A linear de-
pendence between the logarithmic conductivity and temperature
is often observed experimentally in polaronic materials, where
the slope of linear dependence is the hopping activation energy.

Interestingly, it has been observed that certain dopants in TMOs
can improve their carrier mobility by lowering the polaron hop-
ping barriers (activation energies). For example, in the case of
N-doped BiVO, with excessive oxygen vacancies, both the car-
rier concentration and mobility can be enhanced®. In particular,
formation of N-V bonds decreased the static dielectric constant
and lowered the hopping barriers of polaron transport. Similarly,
the hopping barrier can be significantly lowered by Li doping in
CuO14-18l j o the hopping barriers in CuO decreased an order
of magnitude after 16% Li doping, due to a combined effect of
lowering electron-phonon interaction and magnetic coupling af-
ter doping. Note that the carrier conductivities depend on the
hopping barrier exponentially ¢ « exp(—E,/kpT) e.g. decreas-
ing the hopping barrier by 25 meV can lead to three times im-
provement on carrier mobility. Furthermore, recent experimen-
tal work shows Mo/W doping can increase the photocurrent of
BivO, 1217523 The photocurrent is proportional to the product
of carrier concentration and carrier mobility (the optical absorp-
tion could also affect photocurrents but it has been shown un-
changed after W and Mo doping?%). The carrier concentration
has been shown to increase due to the shallow nature of Mo/W
dopants in BiVO,%42°; however, whether the electron mobility
of BiVO, increases after Mo/W doping is undetermined. Some
studies showed a lowered mobility in Mo/W doped BiVO, 18123
while others suggested a lowered activation energy of conduction
and improved carrier mobility'lZ. Overall, these studies suggest
the possibility of overcoming slow electronic conduction in these
TMOs by appropriate atomic doping.

However, to date, although there are several important related
discussions2, there is still an incomplete understanding of the
doping effect on small polaron formation and mobility in TMOs,
both theoretically and experimentally. Further improvements of
conductivities in these TMOs require rationale design of effective
dopants, which need reliable ab-initio tools to make predictions
for small polaron mobility.

Previous computational methods of small polaron mobility
have relied on applying the Marcus theory in the context of pola-
ronic systems or Emin-Holstein-Sustin-Mott theory (EHAM) 2722,
Despite the significant progress that has been made in the calcu-
lations of small polaron mobility3%3¢ several major limitations
still remain: a) most studies for solid systems computed the hop-
ping rates at the adiabatic limit3%3137138 which may not always
be valid, especially for magnetic TMOs14; b) the prefactor for po-
laron hopping rates was rarely computed®%3?, and an estimated
value was often used without detailed justification®#49; ¢) a sim-
ple analytic formula based on the assumption of isotropic hopping
in solids with the same hopping rates for each hop was mostly
used, which is fundamentally not applicable to doped solids or
systems with low symmetry.
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Fig. 1 Small polaron hopping in BiVO,. The yellow isosurface is the spin
density of the polaron. The isosurface is 0.0045 e/Bohr3. Silver ball:V
atoms, red ball:O, purple ball: Bi.

In this paper, we will first introduce our recent development
on first-principles calculations of small polaron hopping mobility
by combining Landau-Zener theory including both adiabatic and
non-adiabatic electron transfer with a kinetic Monte Carlo (kMC)
sampling or specifically random walk sampling (RWS) method;
next we will discuss how we apply this method to compute hop-
ping mobility in pristine BiVO, and discuss its dependence on the
level of theory and the hopping range; at the end, we will show
how the dopants affect the polaron energies and hopping mobil-
ity through our kMC sampling, and suggest the design principles
of "good dopants" that can boost small polaron mobility of TMOs.

2 Theory and Computational Methods on
Small Polaron Hopping Mobility

The theory for small polaron rates fundamentally relies on the
fact that there is a non-zero barrier for electron/hole hopping
from the initial site to the final site, where the “site” is defined
by the charge localization volume in solids with a few angstrom
radius. The small polaron hopping transport is analogous to the
charge transfer in a molecular crystal where the charge is highly
localized on a few atoms or one molecule at each hop. Our dis-
cussion of the theoretical methodology will start with the defini-
tion of carrier mobility, then its relationship to the diffusion co-
efficient (D) by the Einstein-Smoluchowski equation at the weak
electric field limit and D’s relation to hopping transfer rates kgr
by kMC samplings, and afterward computing kg7 by the gener-
alized Landau-Zener theory, where first-principles approaches to
compute each part in the formulation will be introduced.

The carrier mobility is defined as the velocity response of a
charge carrier to an external electric field:

)
pij = )
where (v); denotes the i-th component of the time-averaged
velocity (v) of the carrier and E; is a component of the electric
field vector E. In the regime of weak electric field (the regime

we usually study), the carrier mobility can be expressed by the
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Einstein-Smoluchowski (ES) equation:

Dijq

iaT 2

ES _
T

where D;; is the diffusion coefficient tensor and q is the carrier
charge. The diffusion coefficient tensor D;; follows a generaliza-
tion of Fick’s law to velocity v at time ¢. D;; is related to the
electron transfer rate kgt at each hopping process (D o< kgt). For
isotropic systems, a geometric factor could be used to relate D
and kgr. For non-isotropic systems this needs to be sampled sta-
tistically which we will discuss later, 3231137

With the harmonic approximation, the electron transfer rate in
the Landau-Zener (LZ) theory*"43 extended with nuclear quan-
tum effects is: 444>

kET = Ke]Veffrexp(fEa/kBT) (3)

where k) and I' are the thermally averaged electronic transmis-
sion coefficient and nuclear tunneling factor respectively (taking
into account the quantum effects of nuclear degree of freedom;
but we will approximate I" ~1 in this study, since it’s only impor-
tant for low temperature or light elements). v is the effective
frequency along the reaction coordinate of electron transfer, E,
is the hopping activation energy, regardless of adiabatic or non-
adiabatic processes.

The electronic transmission coefficient k. represents the prob-
ability of electron transfer when the nuclear configuration ap-
proaches the intersection region where the transfer may hap-
pen.#2 i that corresponds to the situation when the crossing
point is between the two potential wells follows

Ke1 =2Rz/(1+PAz) 4

where P,z is the Landau-Zener transition probability for a single
potential energy surface crossing event (see Fig. [2),

Pz =1—exp(—2my) (©)]
And 7 is the adiabaticity parameter defined as

2wy = ”% ‘Hab|2 (6)
hveff\/m

where h is Planck constant and Hyp, = (W4|H|¥}) g is the Hamil-
tonian transition matrix element or electronic coupling between
initial a and final b electronic states at the transition state equi-
librium geometry (TS), and A is the reorganization energy as
shown in Fig. The deviation of k, or Pz from unity is gen-
erally interpreted as a non-adiabatic behavior. Note that when
R z(Ke) — 1, the Landau-Zener theory is reduced to the classical
transition state theory; and when Pz — 0, it is reduced to the
Marcus theory*4©,

In principles, once one obtained E,, Ve, Hap, A (if we assume
nuclear tunneling factor I' = 1), the small polaron hopping rates
can be computed based on Eq[3} In practice, these calculations
have rarely been carried out for extended solid state systems up
to now. Most calculations have been performed with finite cluster
models213334138 - or hopping transfer rates have been obtained

This journal is © The Royal Society of Chemistry [year]

Journal of Materials Chemistry A

»
’

Initial (G,) Final (G,)

Free Energy (G)
>

AGO ]

\

Ra Rb
Reaction Coordinate

Fig. 2 Electron hopping diagram along one dimensional configuration
coordinate. The polaron spin densities with the yellow isosurface for the
initial a and final b structures are shown (only local structures of the solid
are shown here).

at either adiabatic or nonadiabatic hopping limit2#4% or H, has
been estimated from the energy difference between bonding and
anti-bonding polaron states computed by DFT=%3? which may
suffer from the DFT band gap problems. Next, we will introduce
how we compute each part in Eq[3] to Eq[f] and then how we
obtain the charge transfer rates in Eq[3] and carrier mobility in
solids.

Activation Energy E, - it can be obtained through several the-
oretical methods depending on adiabatic or non-adiabatic pro-
cesses. A general form independent on the adiabaticity is E, =
AE¥ — Af (Eq. E]), where AE¥ is the activation energy on the dia-
batic potential energy surface and A* is a correction factor relat-
ing AE? to the activation energy on the adiabatic potential energy
surface (including the electronic coupling between initial and fi-
nal states, as shown in Fig[2)35. The reaction coordinate R in
Fig. [2| represents a collective variable describing relaxation of the
surrounding medium to changes in a local charge state. Previous
studies have shown that this one-dimensional configuration coor-
dinate can successfully describe the small polaron hopping and
hopping activation energies of TMOs=%37, AE* and A* can be
obtained by:

:  (A+AG%)?
AE* = —a 7)
. A+G A +AGY)2
AT = |Hab| —+ ) o_ \/( 1 ) + ‘Hab|2 (8)
E, = AET —A* )

where AG? is the energy difference between the minima of the
two diabatic potential energy surfaces ¢ and » (which can also
be called “driving force" for the electron transfer), and A is the
reorganization energy as shown in Fig.

In this paper we compared the barriers E, obtained with sev-
eral approaches: Climbing Image-Nudged Elastic Band (NEB)
approach*Z through which the barrier is defined as the differ-
ence between the initial state and the transition state (saddle
point) with both electronic and ionic relaxation where the re-
laxed configurations of the images satisfy the perpendicular com-
ponent of the force equal to zero and the transition state has only
one large imaginary frequency along the minimum energy path-
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way obtained by NEB, the commonly used linear interpolation
(LERP) of configurations between the initial and final polaron
states with linearly interpolated atomic positions and only elec-
tronic relaxation® and the barrier is defined between the high-
est energy along the pathway and the energy of initial state, and
Constrained Density Functional Theory (CDFT) method to obtain
barriers based on Eq. [7] and [9 with a new implementation for
solids*?. This method has been recently applied to calculating
polaron hopping barriers of metal oxides.">?

Effective Frequencies Veg - we obtained it through transi-
tion state theory with harmonic approximations, when a tran-
sition state can be well-defined. We note that for cases with-
out a well-defined transition state (which means a non-adiabatic
charge transfer process), the Marcui Gtoheflz*y formula is used in-
stead: k= 27” ﬁ |Hyp|? Fexp(&T:T)), where an effective
frequency is not necessary. The former case obtained through
transition state theory assumes that a hopping process proceeds
over a transition state, which is in thermodynamic equilibrium
with its surroundings. The vibrational degrees of freedom at the
transition state and the initial state determine the partition func-
tion. Ab initio phonon calculations provide all vibrational terms,
i.e. the zero-point energy, temperature dependent part of the in-
ternal energy and vibrational entropy, taking into account the full
coupling of the vibrational modes between the polarons and the
host lattice. The effective frequency entering the rate equation
Eq. |3|and Eq. E] is given by=0>L:

kT Zts

Veff = T 7%

TS [ ()]
== H?NJ {2 sinh (;ZI;T;)]

where Zrg and Zgg are partition functions for the transition
state and the ground state, respectively; v; are vibrational eigen-
modes of the corresponding geometry. The details of geometry
optimization and phonon calculations can be found in SI.

Kinetic Monte Carlo simulation for D - in order to accurately
take into account of the anisotropic polaron hopping in pristine
and doped systems, we implemented the kMC sampling to sim-
ulate the diffusion coefficients and hopping mobility in doped

(103

TMOs. The diffusion coefficient can be expressed as=052/53
L 2
D= tim L) (11)
t—oo 2Nt

where N is the dimensionality of the kMC process, (L(t)?) is
the mean squared displacement (MSD) and ¢ is the time. The
MSD is determined by the hopping rate kgt and the distance be-
tween two lattice sites for each hop included in the kMC sim-
ulation. (Details of the algorithm and numerical tests can be
found in SI.) Afterward we can obtain hopping mobility through
Einstein-Smoluchowski(ES) equation in Eq[2] The main advan-
tage of the statistical sampling approach above over the analytic
solution used in the past work is that it takes into account dif-
ferent hopping rates statistically and, most importantly, can also
be applied to disordered and defective systems, which have sig-

4| Journal Name, [year], [vol.], 1

nificant value for practical applications. The electronic structure
and geometry relaxation calculations are performed in the open
source plane wave code Quantum-ESPRESSO®# by using norm-
conserving pseudopotentials=> with several exchange correlation
functionals, as will be discussed later. More computational details
can be found in SI.

3 Results and Discussions

3.1 Small Polaron Hopping Conduction of Pristine BiVO,

3.1.1 Activation barriers E, with different theoretical meth-
ods

The most important quantity for small polaron hopping rates kgr
and mobility is the hopping activation barrier (E,) in Eq[3] due
to its exponential relationship to kgy. We will examine E, of
BiVO, with various computational methods in this section. The
stable room temperature phase of BiVO, is monoclinic, which has
a very similar atomic structure with its high temperature tetrag-
onal phase®®. The tetragonal phase consists of VO, and BiOg
polyhedra, with only one set of V-O bond length and two sets of
Bi-O bond lengths. Each oxygen atom is three coordinated with
one V and two Bi atoms. The monoclinic phase structure can be
viewed as a slightly distorted tetragonal phase structure, and the
V-0 bond lengths are split into two groups at the two sides of V
(bond length splitting, BLS). Consistent with the past work2758
we found at both the DFT+U and PBE levels of theory, all V-O
bond lengths become very close and the BLS at the monoclinic
phase cannot be correctly described; instead, by increasing the ex-
act exchange ratio above 10%, the experimental monoclinic BLS
can be reproduced®8. The previous first-principles calculation of
BiVO, band structure shows that the effect of BLS (or the dif-
ference between tetragonal and monoclinic phase structures) is
mainly important at the valence band maximum (VBM), but the
conduction band minimum is weakly affected®8, which indicates
the BLS may have minimum effects on the electron conduction
compared to the hole conduction, as discussed below.

To understand the difference of electron transport between
tetragonal and monoclinic phases, we further investigated how
the hopping barriers depend on the tetragonal and monoclinic
structures, along with the comparison between different DFT
functionals and theoretical methods for activation barriers (i.e.
NEB, LERP, CDFT), as shown in Table [1| and summarized be-
low. Firstly, we found the hopping barriers increase with the
fraction of Fock exchange o in hybrid functionals (253 meV at
0=0.1449; 357 meV at o.=0.25) based on Constrained DFT42.
This is a general physical effect independent of the specific sys-
tem we study: increasing o in hybrid functionals will increase
the electronic wavefunction localization and lower the electronic
coupling between two hopping sites (lower Hy,), and therefore
increase the hopping barriers. At the limit of o = 0 (at the PBE
level), we cannot obtain a positive hopping barrier or localized
small polaron state, due to the charge delocalization error in DFT
semi-local functionals. Therefore, PBE does not describe the con-
duction of BiVO, as an activated polaron hopping which is funda-
mentally contradictory to the experimental conductivity measure-
ments, and should not be used to describe the electronic structure

This journal is © The Royal Society of Chemistry [year]
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Fig. 3 Spin density plots of polaronic ground state (left) and hopping tran-
sition state (right). We showed that the spin density of the excess electron
is well localized inside the VO, tetrahedral at the ground state, and the

transition state is simply a combination of two localized half-electron on
two sites. The isosurface is 0.0045 e/Bohr3.

and carrier transport in BiVO,.

Secondly, the hopping barriers are very similar between tetrag-
onal and monoclinic phases by CDFT at the same level of theory,
specifically dielectric dependent hybrid functional (DDH) where
o depends on the inverse of high frequency dielectric constant €.,
with o = 0.1449 (computed &.. = 6.9) for BiVO,>.

Thirdly, DFT+U and DDH give similar barriers within 40 meV
(computed with CDFT). As DDH generally provides reliable elec-
tronic structure and polaronic properties for bulk systems=2¢0,
the similar results between DDH and DFT+U (V(U)=2.7 €V based
on past work®27) show the reliability of DFT+U calculations for
the hopping barriers of BiVO,, which is also more computation-
ally affordable. Therefore, we used DFT+U for barrier calcula-
tions with other methods as well, such as Climbing Image-Nudged
Elastic Bands (NEB) and Linear Interpolation (LERP). Note that
both NEB and LERP assume the adiabaticity of the charge trans-
fer process; namely a well-defined transition state is necessary to
define the barrier height. Indeed, we found a well-defined tran-
sition state of the nearest neighbor hopping in BiVO,, where the
spin density is distributed equally on two hopping sites (see Fig.
, which proves the validity of NEB and LERP methods. Indeed,
CDFT, NEB and LERP give similar barriers (217, 247, 257 meV
respectively) for the monoclinic phase at DFT+U level of theory.
Therefore, we mostly used the NEB method with DFT+U for the
barrier calculations in the rest of this paper for a good balance
between accuracy and computational cost. On the other hand,
the parabola fitting which neglects the electron coupling between
two diabatic states will significantly overestimate the barrier of
this adiabatic process (546 meV by this work, and 460 meV by
Ref [37, strongly overestimated compared with 357 meV in CDFT
with the same functional PBEO).

3.1.2 Effective frequencies vqg and charge transfer rates kgt

All parameters used in Landau-Zener theory for charge transfer
rates kgt are computed and summarized in Table[2] We examined
both the first (INN) and second nearest neighbor (2NN) hop-
pings as we found their hopping barriers are comparable (see Ta-
ble ; and a recent work2!' claimed a second nearest neighbor
hopping may have significant contribution to the hopping mobil-
ity in BiVO,. Hy, and A are computed from CDFT in a supercell

This journal is © The Royal Society of Chemistry [year]
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Table 1 Polaron hopping activation barriers of nearest neighbor hopping
in pristine tetragonal and monoclinic BiVO,, computed with four differ-
ent methods, including Constrained DFT (CDFT), Nudged Elastic Bands
(NEB), Linear Interpolation (LERP) and Parabola Fitting (Parabola Fit),
at DFT+U (U(V)=2.7 eV), dielectric dependent hybrid functional (DDH,
o = 0.1449) and PBEO (a = 0.25). Note that all the geometries are op-
timized at the corresponding level of theory; at DFT+U, the monoclinic
phase does not have a bond length splitting (BLS), unlike at hybrid func-
tionals.

Method DFT method Phase Barrier (meV)
CDFT Hybrid-DDH  Tetragonal 253
CDFT Hybrid-DDH  Monoclinic 249
CDFT Hybrid-PBEO  Monoclinic 357
CDFT DFT+U Monoclinic 217

NEB DFT+U Monoclinic 247

LERP DFT+U Monoclinic 257
Parabola Fit Hybrid-PBEO  Monoclinic 546
Parabola Fit Hybrid-PBEO  Monoclinic 46028

of 192 atoms with DFT+U. Due to the high computational cost,
the effective frequencies were computed from I'-point phonons of
the ground state and transition state in a supercell of 96 atoms by
Eq[I0] Details of phonon frequency calculations and the effective
frequency from classical high-temperature limit are provided in
SI. The effective frequency depends on the temperature, but in
Table [2| we show values for 300K only in order to be consistent
with the temperature we simulate the polaron mobility later.

From Table. [2] we can see the transfer probability Pz is 0.6 for
the first nearest neighbor (INN) hopping, which is on the bor-
derline of adiabatic hopping Pz — 1 and nonadiabatic hopping
Bz — 0, and closer to the adiabatic one. Meanwhile, the sec-
ond nearest (2NN) hopping has Az = 0.1, which is small and we
could state that this process is closer to nonadiabatic. The small
Pz for the INN compared to the 2NN is because the adiabatic-
ity parameter in Eq.6 is proportional to the square of electronic
coupling H,;, which is in turn proportional to the overlap of elec-
tronic wavefunctions between two hopping sites. For both 1NN
and 2NN hoppings, the electron is localized on VO4. However,
the hopping distances are different (i.e. 3.9 A for 1NN and 5.2
A for 2NN), and the wavefunction overlap decreases exponen-
tially with distances that lead to small Hab and low P;z for 2NN.
Interestingly, for the 2NN hopping, we still found a well-defined
transition state and a barrier of 269 meV obtained by NEB, similar
to the barrier obtained by CDFT (294 meV) where adiabaticity is
not assumed in Eq.[9] Note the transition from adiabatic to non-
adiabatic does not have a clear boundary, so the B 7 at which the
transition state cannot be defined is undetermined. Neither INN
nor 2NN P 7 is very close to 0 or 1, which means the polaron hop-
ping in BiVO, is neither completely adiabatic nor nonadiabatic,
and demonstrates the importance of applying the Landau-Zener
theory here instead of classical transition state theory (which is
only valid for an adiabatic process) or Marcus theory (which is
only applicable to a nonadiabatic process).

The main difference between the first and second nearest
neighbor hopping is the electron coupling matrix H,,, for which
1NN hopping is 4 times larger than that of 2NN hopping. This
is a direct consequence of a longer hopping distance (i.e. 5.0

Journal Name, [year], [vol.],

1412] |5



Journal of Materials Chemistry A

Table 2 Key parameters computed fully from first-principles for the charge
transfer rate at 300K of the first (1INN) and second nearest neighbor
(2NN) hopping studied in this work: electron coupling matrix Hy,, elec-
tron transmission coefficient ), transfer probability Az, reorganization
energy A and hopping barrier E,.

Hopping INN 2NN
Distance A 3.9 5.0
H,;, (meV) 91 24
hVesr (meV) 276 297

A (eV) 1.20 1.27

Bz 0.60 0.057

Kel 0.75 0.11

E, (meV) (NEB) 250 269
ket (s71) 4%10° 3x108

A in 2NN compared to 3.9 A in 1NN): as the polaron localiza-
tion length stays the same, the wavefunction overlap between two
hopping sites is strongly reduced due to the exponential decay of
wavefunctions, so does a strong reduction of H,p,. This results in
the adiabaticity parameter y 16 times smaller in 2NN than 1NN
due to the |H,|? term in Eq@ The difference of adiabaticity be-
tween different hoppings in the same system can also be found
in other materials, like the intralayer hopping and interlayer hop-

ping in FePO,, which has a layered structure. 39

3.1.3 Small polaron mobility u for pristine BiVO,

Computing the polaron hopping mobility from kMC simulations
can easily take into account the anisotropicity and 2NN hopping,
instead of using an analytic formula where only one barrier can
be included as with most of the past work2l2237539 We always
included the 1NN hopping that has 3.9 A distance between two
hopping centers and has the smallest barrier. Meanwhile, we
also considered the 2NN hopping which has 5 A distance and a
comparable hopping barrier to 1NN as shown in Table [2| Inter-
estingly, from Landau-Zener theory we found the 2NN hopping
charge transfer rate kg7 is less than 1/10 of 1NN in Table[2] so the
2NN hopping has an insignificant effect on the mobility by kMC
simulations as shown in Table Therefore, 2NN hopping can
be safely neglected in the mobility simulation of BiVO4. With the
computational techniques and numerical inputs discussed above,
we obtained the mobility of pristine BiVO, in reasonably good
agreement with the experimental results of lightly doped BiVO,
shown in Table[Bl Previous studies with kinetic Monte Carlo sim-
ulation# significantly overestimated the barrier with the linear
interpolation method and thus likely underestimated the carrier
mobility. In addition, the polaron transport process was assumed
to be fully adiabatic in previous studies of BiVO421, where k) is
approximated as 1. We note that this assumption is not reliable
in BiVO,, which could lead to qualitatively wrong results, such
as the mobility ratio along a and c lattice directions p,/u. as dis-
cussed below.

It has been experimentally observed that hopping conductiv-
ity of monoclinic BiVO, is anisotropic2l. Anisotropicity of carrier
conduction has been found in other metal oxides as well, mainly
due to specific geometric characteristics such as a layered struc-
ture®Y, The anisotropicity is also observed in our kMC simula-

6
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Table 3 Electron drift mobility of pristine and doped BiVO, from
experiments and first-principle calculations at room tempera-
ture 300 K.

System Method Electron Drift Mobility
(cm2v—!s—1)
0.3% W!  Experiment2l 5% 107>
1% W2 Experiment18 22x107*
Pristine This work 1.38 x 107*
3%Mo(W) This work 1.07x10~*
6%Mo (W) This work 0.91 x 10~*

! Deduced from DC conductivity and Seebeck coefficient
2 Measured combined electron and hole mobility from
time-resolved microwave conductivity

Table 4 Drift mobility along different axes with and without second
nearest-neighbor hopping in the ab-plane at 300K. 1NN denotes the first
nearest neighbor hopping and 2NN denotes the second nearest neighbor
hopping. Note that with k.; = 1, the u, /. ratio including 2NN (1NN+2NN)
is significantly overestimated compared with full Landau-Zener theory
(with computed xg).

Neighbor Kel Mobility (10~*cm?/V/s)
Avg. ab-plane c-axis  Ug/Ue
Only 1NN 0.75 1.38 0.90 2.35 0.38
INN+2NN 0.75/0.11 1.55 1.15 2.34 0.49
INN+2NN 1/1 3.06 3.19 2.82 1.13

tion as shown in Table @ However, in BiVO,, there is no such
prominent geometry feature, thus this anisotropic mobility must
be related to more subtle structural differences among three lat-
tice directions in BiVO,. Based on a simple geometric relation
(details can be found in SI), when only the nearest neighbor hop-
ping is considered, the square of displacement L? along a- or b-
axis on average is only 0.38 times of that along c-axis in BiVO,.
Since the diffusion coefficient D is proportional to L? (Eq. ,
D or the mobility u (linearly proportional to D in Eq. |2) along
a- or b- axis is only 0.38 of ¢- axis, which agrees with our kMC
simulation in Table [4]

The 2NN hopping is in the ab-plane, so the faster the 2NN
hopping is, the larger u,/u. mobility ratio will be. If both 1NN
and 2NN hoppings are assumed to be fully adiabatic with &, ~ I,
the kMC simulation will give u,/u. = 1.13, which is qualitatively
wrong. This is because the 2NN hopping has a k 7 times smaller
than 1NN, which will give a smaller charge transfer rate (see Ta-
ble [2) and a small contribution to carrier mobility. With correct
Ko for both 1NN and 2NN hopping rates, the carrier mobility did
not change much after we added 2NN hopping; therefore we will
neglect 2NN hopping in the next sections.

3.2 Small Polaron Mobility of Doped BiVO,
3.2.1 Polaron energies as a function of dopant-polaron dis-
tances

In this section we will discuss the polaron-dopant interaction and
understand its effect on the mobility and underlying mechanism,
which is critical to further design of materials with improved car-
rier mobility. Here we chose three n-type representative dopants
Cr, Mo and W substitution of V atoms as examples to compare

This journal is © The Royal Society of Chemistry [year]
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Fig. 4 Total energies of polaronic states as a function of dopant-polaron
distances in Mo (3%, 6%) and W (3%) doped supercells. 3% doping cor-
responds to one dopant per 192 atom supercell (32 BiVO, units). All val-
ues are referenced to the most stable site with dopant-polaron distance
around 7 A (with the lowest total energies).

their effects on polaron hopping transport properties. The struc-
tural models are constructed on the basis of the chemical formula
BiV, ,M,0,, where x is the dopant concentration and M can be
Cr, Mo or W. We chose 3% and 6% doping concentrations as two
examples in order to study the effect of doping concentration on
polaron transport. The models are a 96-atom (6%) or a 192-atom
(8%) supercell with a V atom substituted by a dopant atom. We
note that at 6%, we expect significant dopant-dopant interaction,
different from a dilute limit.

To understand the nature of polaron-dopant interaction, we
first compared the total energies/stability when the extra elec-
tron from n-type dopants localizes at different V or dopant sites.
In particular, for the case of Cr, we found that the excess electron
from Cr can only be stabilized at the Cr atom and form a filled
gap state that is mainly composed of Cr d orbitals just below the
conduction band (as shown in Projected Density of State and gap
state wavefunction in SI). In other words, the electron from Cr
cannot be ionized easily and form a stable electron polaron at V,
similar to the findings in Ref. 57, This is due to the highly local-
ized 3d orbitals of Cr atom. Therefore, Cr has an oxidation state
of 5+ and is a donor (that potentially forms 6+ state) with a very
high ionization energy as discussed in Ref. [61l As a result, Cr acts
as an electron trap and electron-hole recombination center.

In contrast, for the case of Mo and W doping, one electron
is spontaneously ionized from Mo/W, localizes at the V site and
forms a small polaron accompanied by local lattice distortions. In
another word, the extra electron from Mo/W (as n-type dopants)
is thermodynamically more stable (i.e. having a lower energy) to
localize around a V site to form small polarons than to localize
around the dopant sites. The interaction between Mo/W dopants
and electron polaron can be understood from the change of to-
tal energies as a function of distances between the dopant and
polaron in Fig. We can identify two shells of neighbor sites
around one MoO, or WO, tetrahedral with different trends. In
the first shell (with Mo/W-V distances between 3-7 f\), the total
energy decreases as a function of the dopant-polaron distances;

This journal is © The Royal Society of Chemistry [year]
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therefore, the interaction between the two is repulsive and the po-
laron prefers to move away from the Mo/W dopant. In the second
shell (with Mo/W-V distances between 7-11 f\), the total energy
increases slightly as a function of dopant-polaron distances which
indicates a weak attractive interaction. Outside the second shell,
the interaction between a polaron and a dopant is negligible, so
the formation energy recovers the bulk limit. The boundary be-
tween the two shells is approximately 7 A (where the minimum
total energy in Fig. E}] is used as the reference zero), which is al-
ready the largest dopant-polaron distance in 6% Mo doping su-
percell so the second shell exists only in lower concentration sys-
tems, e.g. the 3% doping case. We note that the total energies
as a function of dopant-polaron distances in 3% W doped BiVO,
have very similar values to the case of 3% Mo doping (reference
to the polaron energy minimum at 7 A) as shown in Fig.

In general, the ionized n-type dopants (which are positively
charged) and electron polarons have attractive electrostatic in-
teractions, which should not facilitate the polaron conduction in
the crystal. The effect that counters the electrostatic attraction
stems from the local lattice distortion of dopants and polarons.
Specifically, in pristine and doped BiVO,, when a polaron formed
at a VO, site, the V-O bond length is stretched by 0.1 A. Mean-
while, the Mo-O or W-O bond length (even after being ionized)
is 0.06 A longer than the V-O one without a polaron. Two larger
tetrahedra are energetically unfavorable to stay close, in order to
minimize the local lattice distortions. We would expect this effect
to decrease faster than electrostatic interactions as the bond en-
ergy scales as ~ 12 (where r is the bond length) near equilibrium
positions in the harmonic approximation. On the other hand, the
electrostatic attraction being a long-range interaction decreases
as r~!. As a combination of two counteracting effects, the lat-
tice distortion dominates at a short polaron-dopant distance and
electrostatic attraction dominates at a long polaron-dopant dis-
tance, which correspond to the two shells we showed in Fig. [4]
respectively; then the energy minimum appears at the boundary
between the first and the second shell. The energy required to
move a polaron from the energy minimum (7 A to the dopant) to
the bulk region is only approximately 30 meV, which indicates po-
larons can move away from this energy minimum easily at room
temperature. Overall, though all three dopants (Cr, Mo and W)
are n-type, the interaction between Mo/W and polarons is dom-
inated by a "repulsive" interaction, which is opposite to Cr being
an electron "trap"; the different types of interaction determine
whether dopants will facilitate or hinder the polaron transport.

3.2.2 Polaron mobility of doped BiVO, with kMC samplings

Through coupling charge transfer rates by Landau-Zener theory
(Eq.[3) and kMC sampling, we for the first time simulated the po-
laron mobility in the presence of dopants under this framework
fully from first-principles. We obtained optimized polaron struc-
tures at all non-equivalent sites and computed hopping rates be-
tween all first nearest neighbor (1NN) pairs, and then used them
as inputs for kMC simulations of hopping mobility. As discussed
earlier, only 1NN is necessary for mobility calculations and 2NN
has negligible contributions, therefore, all the 1NN hopping bar-
riers were computed by NEB at the DFT+U level, and v.¢ and A7
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Fig. 5V atoms in 3% Mo doped BiVO, supercell. Hopping paths listed
in Table [5] are marked as arrows. V1 to V8 are sorted in an ascending
order based on their distances to the nearest Mo atom (considering the
periodic boundary condition). Equivalent V atoms are marked with the
same color. For simplicity, only one of equivalent hopping paths is shown
in the figure.

were kept at the same values as the pristine systems.

Multiple nonequivalent hopping paths exist in the doped sys-
tem (3% Mo doping) when the periodic boundary condition is
applied, as shown in Fig. |5| The corresponding barriers obtained
by the NEB method are listed in Table 5| They are no longer sym-
metric as pristine BiVO,; instead, generally along one hopping
direction (e.g. left side(L) — right side(R)) the barrier is lower
than the one in pristine, and along the reversed hopping direc-
tion R — L, the barrier is higher. This is because the interaction
between the Mo/W dopants and small polarons is repulsive at a
short range as discussed in the previous section, which leads to a
lower barrier to hop away from the dopant and a higher barrier to
hop towards the dopant. We also found the barriers between two
directions (L — R and R — L) in Table |5/ become closer when the
distance between a dopant and a small polaron is larger, due to
a weaker dopant-polaron interaction. Eventually a value close to
the pristine bulk hopping barrier will be recovered when dopants
and polarons are far enough from each other.

Due to the broken symmetry in the presence of dopants, the
carrier mobility of doped systems requires statistical samplings of
hopping rates along all possible pathways with periodic boundary
conditions. The kinetic Monte Carlo simulation with the barriers
in Table[5]as inputs is performed to obtain the electron mobility in
pristine and doped system. The details of the kMC samplings can
be found in SI. An effective barrier can be defined from mobilities
at different temperatures as (7T) = Aexp(—Eeg/kpT). At room
temperature, the effective barrier is 250 meV for pristine system
and 267 meV for 3% Mo doped system with part of hopping paths
shown in Fig. [5] The computed mobilities are listed in Table
Our computed carrier mobility has reasonably good agreement

8
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Table 5 Hopping barriers computed by NEB along two directions at differ-
ent sites of 3% Mo doped BiVO,. L and R refer to the left and right sides
of L <» R in the first column. Site names Vi are shown in Fig. which are
defined by the distances to the Mo dopant.

Sites(L<»R) E,(L—R) (meV) E,(R— L) (meV)
Pristine 250 250
V1+V2 231 268
V1<V4 213 296
V2+V3 236 255
V2+V6 240 260
V3+V4 243 268
V3+V5 240 260
V3&V7 250 242
V8+V6 252 243
V7+V6 254 241

with experimental results!'®21] which validate our methodology

and numerical implementation. Overall the Mo or W doping (3
%) did not affect the mobility significantly from our calculations
(slightly decreased from the pristine systems), for which underly-
ing physics will be discussed in detail below.

In general, polaron transport pathways in a doped system can
be classified in two groups as shown in Fig.[6} (A) polarons which
do not cross regions that have interaction with dopants (repre-
sented by a red dashed circle in Fig. [6) and (B) polarons which
pass through those interaction regions. For (A), all hopping bar-
riers along the pathway are close to the pristine system so the
overall transport rate also recovers the pristine limit, which is re-
ferred to as “A-Pristine-like" in Fig. @

For the group (B), when the dopant-polaron interaction is at-
tractive (i.e. along the “B-Trap" pathway in Fig. [6), the polaron
will move closer to dopants with a lower barrier (E3 in Fig. [6)
compared with the barrier in pristine systems. The first step de-
termines if the polaron will prefer to move along pathway “B-
Trap" instead of “A-Pristine-like" due to a low barrier. Then the
second step with a higher barrier than pristine (E4 in Fig. [f) is
the rate-determining step and causes the hopping rate along this
pathway “B-Trap" to be slower than “A-Pristine-like", or polarons
could not even get out of the trap position 2 at room temperature.
So the overall mobility along “B-Trap" will be lower than pristine
system, and the dopants act as a "trap" of the polaron, such as the
case of Cr doping.

When the dopant-polaron interaction is repulsive (i.e. along
the “B-Repulsive" pathway in Fig. |§|), the polaron must overcome
a higher barrier (E1) to move closer to the dopant and then move
further with a lower barrier (E2) compared with the pristine bar-
rier. This high barrier step (E1) slows down the overall hopping
rate of this pathway, and also lowers the probability of choosing
this pathway “B-Repulsive". As a result, if the “A-Pristine-like"
pathway exists in the sample, it will dominate the transport pro-
cess, which means the mobility will recover that of the pristine
system. This is the case for Mo-doped BiVO, in our kMC simula-
tion .

Therefore for such simulations with only one polaron and one
dopant in a supercell, once all hopping paths in an infinitely large
system are considered, one can either get a smaller mobility when

This journal is © The Royal Society of Chemistry [year]
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Fig. 6 Schematic diagram of polaron transport processes in doped
BiVO, with periodic boundary conditions. The red dashed circle shows
the region where the dopant-polaron interaction is non-negligible. Po-
larons hopping along Pathway A are not affected by dopants while the
ones along pathway B are affected. The polaron-dopant interaction can
be repulsive or attractive (trap), so there are three kinds of pathways in
total: (A-Pristine-like), (B-Repulsive) and (B-Trap). E;,E3 are the barriers
to jump into the interaction region, E,,E4 are the barriers to jump out of
this region and E, is the hopping barrier in the pristine system. For the
dopant-polaron repulsive interaction (e.g. Mo and W doping) we have
E| > Ey > E, and for the attractive interaction (e.g. Cr doping as a trap)
we have E3 < Ey < E4. Therefore, to pass this interaction region, a po-
laron must overcome a larger barrier and a smaller barrier than Ej.

This journal is © The Royal Society of Chemistry [year]
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the dopant is a trap (“B-Trap" in Fig.[6]) or a mobility similar to the
pristine bulk when the dopant has a repulsive interaction with the
polaron (“B-Repulsive" in Fig. [6), if the bulk region is recovered
in the supercell, i.e. “A-Pristine-like" path exists.

This conclusion holds only at lower doping concentration than
6% Mo or W, where the regions affected by dopants (“interaction
radius” in Fig@ is around 7-9 A based on calculations in Fig.
do not overlap with each other, assuming the dopants are ho-
mogeneously distributed in the material. This will allow for “A-
Pristine-like" pathway as there is no pristine-like sites in 6% su-
percell based on our calculations in Fig. In experiments the
dopants are not necessarily evenly distributed, where “A-Pristine-
like" pathways may be possible even at a higher concentration
than 6%.1218 The above discussions described the physical pic-
tures and explained underlying mechanism of our computed re-
sults in Table

In addition, the polarons may not be homogeneously dis-
tributed, even if the dopants are evenly distributed; instead, in
the presence of dopants similar to the case of W and Mo doping
(i.e. the polaron-dopant interaction is repulsive), polarons are
likely pushed away by dopants and concentrated in regions dis-
tant from most dopants, as shown in Fig. [7| This effect may play
an important role in the hopping mobility but has not been in-
cluded in our supercell calculations: polaron wavefunctions may
overlap and become more delocalized which can lower the po-
laron hopping barriersZ. At the highly concentrated polaron
limit, the band conduction with completely delocalized electrons
may be recovered. Therefore, the carrier mobility we obtained
for Mo and W doped samples represents the low limit (in the ab-
sence of other dopants or defects in the samples), which can be
higher in experiments due to inhomogenous polaron and dopant
distributions. As discussed in the introduction, experimentally
whether the electron mobility increased or decreased in the pres-
ence of Mo/W dopants is still controversial. Our results may ex-
plain the physical reason for this controversy: depending on the
doping concentration and distributions, one may get lower, simi-
lar or higher hopping mobility compared to the pristine systems.
Another complication is that the oxygen vacancy may also affect
the hopping mobility significantly (whose concentration may not
be the same at pristine and doped systems). But it is difficult to
quantify its concentration experimentally, which could also lead
to inconsistency between different experimental results.

4 Conclusion and Outlook

In conclusion, we established the theoretical framework of cou-
pling the Landau-Zener theory and kinetic Monte Carlo (kMC)
simulations to compute hopping mobility for anisotropic and
doped systems fully from first-principles. We used BiVO, as an
example where we obtained electron mobility in good agreement
with experimental measurements. We showed that the statisti-
cal samplings of hopping trajectories are critical for anisotropic
systems and especially important for doped systems, where the
symmetry of the bulk systems is broken.

The electron polaron transport in BiVO, is neither fully adia-
batic nor nonadiabatic, and the correct description of the polaron
hopping rate and anisotropicity demands the Landau-Zener the-
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Fig. 7 Schematic diagram showing how dopants having a repulsive inter-
action with polarons can boost the polaron transport through locally con-
centrated polarons. We considered the same number of polarons in the
pristine system (left) and the doped system with repulsive dopant-polaron
interactions (right). Because dopants like Mo/W push away polarons to
regions distant to all dopants, polarons have a higher local concentration
at such regions. Therefore polarons can have larger wavefunction over-
laps that may form more delocalized wavefunctions (shown as a larger
blue region in the figure) that may improve the hopping conduction.

10| Journal Name, [year], [vol.], 1

ory instead of classical transition state theory or the Marcus the-
ory in the corresponding adiabatic and nonadiabatic limit. From
the Landau-Zener theory, the 1NN hopping has a much larger
hopping rate than the 2NN one due to much smaller electronic
couplings and kg in the latter case, although their hopping barri-
ers are comparable. Without taking into account k,; explicitly in
the rates and assuming adiabatic transfer for both 1NN and 2NN
hoppings will result in qualitatively wrong mobility. In addition,
the electron mobility in pristine BiVO4 shows strong anistropicity,
which requires statistical samplings like kMC instead of an ana-
lytical formula with one effective barrier.

With this approach, we also studied the doping effect on the
polaron transport properties at the microscopic level, by using Cr,
Mo, W doped BiVO, as examples. We showed that in the case of
BiVO,, the Mo/W dopant acts as a "repulsive" center and polarons
will be pushed away from the dopant outside the dopant-polaron
repulsive region with a radius around 7 A. This is because both
Mo/W substitution of V atoms and electron polaron formation
locally expand the lattice, which create a short-ranged repulsive
interaction between the two in order to minimize the local strain,
despite the long-range Coulomb attraction between an ionized
Mo/W dopant (positively charged) and an electron polaron (neg-
atively charged). On the other hand, Cr acts as a strong trap of
electrons and will lower the hopping mobility and conductivity.
The nature of dopant-polaron interactions such as a repulsive in-
teraction, characterized by total energy changes as a function of
polaron-dopant distances can be used as an important descriptor
to screen the promising dopants that can potentially overcome
low hopping mobility in polaronic oxides.

For polaron mobility calculations of doped materials, we found
a mobility either less or equal to that in pristine systems will be
obtained, as long as the dopant and polaron concentration is rel-
atively low and homogeneously distributed, i.e. numerically, one
dopant and one polaron are considered in the simulated super-
cell with periodic boundary conditions. This represents a lower
bound of the hopping mobility, considering polarons may be con-
centrated in small regions distant from all dopants if dopants
and polarons have repulsive interactions. The overlap of polaron
wavefunctions and formation of delocalized states can lower the
hopping barriers, improve the hopping mobility and even change
the nature of conduction.

Therefore, to boost small polaron conduction in polaronic ox-
ides, "good dopants" should be able to increase the overall elec-
tronic conductivity following the criteria below: a) being a shal-
low dopant with low ionization energies such as W/Mo in BiVOy,
which can increase carrier concentration at room temperature; b)
having a "repulsive" interaction with the polarons instead of an at-
tractive interaction, which can easily hop away from the dopants,
and in that case the computed mobility should be similar to the
pristine systems at the homogeneous distribution of dopants and
polarons.

Future work requires simulations with multiple dopants and
polarons in a supercell and compute dynamical electronic cou-
plings and hopping rates depending on polaron-polaron distances
(taking into account polaron wavefunction overlaps quantum me-
chanically), which can provide a further understanding of the ef-

This journal is © The Royal Society of Chemistry [year]
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fect of inhomogeneous distribution of dopants/polarons on po-
laron transport in both pristine and doped materials. We note that
our framework by coupling the Landau-Zener theory and kMC is
an important forward step towards simulating hopping mobility
in anisotropic and doped systems from first-principles, and un-
derstand the doping effect on polaron mobility at the microscopic
level.
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We demonstrate how dopants affect the electron polaron mobility
in BiVO, fully from first-principles



