Hidden Symmetry-Broken Phase of MoS2 Revealed as A Superior Photovoltaic Material

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Journal of Materials Chemistry A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>TA-ART-06-2018-005459.R1</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Paper</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>16-Jul-2018</td>
</tr>
</tbody>
</table>

Complete List of Authors:

Xu, Meiling; Jilin University, State Key Lab of Superhard Materials
Chen, Yue; Department of Mechanical Engineering, The University of Hong Kong
Xiong, Fen; The University of Hong Kong
Wang, Jianyun; Jilin University
Liu, Yanhui; Yanbian University, physics
Lv, Jian; Beijing computational science research center,
Li, Yinwei; Jiangsu Normal University, School of Physics and Electronic Engineering
Wang, Yanchao; Jilin University, State Key Laboratory of Superhard Materials
Chen, Zhongfang; University of Puerto Rico, Department of Chemistry
Ma, Yanming; Jilin University
Hidden Symmetry-Broken Phase of MoS$_2$ Revealed as A Superior Photovoltaic Material
Meiling Xu†,‡, Yue Chen*,‡, Fen Xiong†, Jianyun Wang‡, Yanhui Liu‡, Jian Lv†, Yinwei Li‡, Yanchao Wang*,†,‡, Zhongfang Chen$^\&$, and Yanming Ma$^{*,\dagger,#}$

†State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
‡School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
†Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR
‡Department of Physics, College of Science, Yanbian University, Yanji 133002, China
$^\&$Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00931, USA
$^\#$International Center of Future Science, Jilin University, Changchun 130012, China

Corresponding Authors:
* E-mail: yuechen@hku.hk
* E-mail: wyc@calypso.cn
* E-mail: mym@calypso.cn
Abstract
Monolayer MoS\textsubscript{2} has long been considered as the most promising candidate for wearable photovoltaic devices. However, its photovoltaic efficiency is restricted by its large band gap (2.0 eV). Though the band gap can be reduced by increasing number of layers, the indirect band gap nature of the resulting multilayer MoS\textsubscript{2} is unfavorable. Herein, we report a theoretical discovery of the hitherto unknown symmetry-broken phase (denoted as 1T\textsubscript{d}) of monolayer MoS\textsubscript{2} through a swarm structure search. The 1T\textsubscript{d} phase has a distorted octahedral coordinated pattern of Mo, and its direct band gap of 1.27 eV approaches the optimal value of 1.34 eV that gives Shockley-Queisser limit for photovoltaic efficiency. Importantly, the direct band gap nature persists in thin films with multilayers owing to extremely weak vdW forces between adjacent 1T\textsubscript{d} layers. The theoretical photovoltaic efficiency at 30 nm thickness reaches \(~33.3\%\), which is the highest conversion efficiency among all the thin-film solar cell absorbers known thus far. Furthermore, several feasible strategies including appropriate electron injection and proper annealing methods were proposed to synthesize the 1T\textsubscript{d} phase. Once synthesized, the superior photovoltaic property of the 1T\textsubscript{d} phase may lead to the development of an entirely new line of research for transition metal dichalcogenides solar cells.

Keywords: nanomaterials, MoS\textsubscript{2}, energy harvesting, photovoltaics
Introduction

The efficient use of solar energy, one of the most important forms of renewable energy, provides a potential solution to solve the energy and environmental challenges facing the world. Various solar energy devices have been developed in the past decade, such as silicon-based, dye-sensitized, and perovskite solar cells. However, these devices often have bulky structures. Unique optoelectronic properties and chemical robustness of layered structures, two-dimensional (2D) transition metal dichalcogenides (TMDs) have many applications in optoelectronics\(^1\)–\(^3\), catalysis\(^4\)–\(^9\), spintronics, and valleytronics\(^10\),\(^11\). Especially for MoS\(_2\), it provides us new opportunities to develop portable, flexible, and wearable solar cells\(^12\) as 2D solar cell material due to its high absorption coefficient (10\(^7\) m\(^{-1}\))\(^13\)–\(^16\).

Monolayer MoS\(_2\) has three experimentally known polymorphs characterized by different coordination modes between Mo and S atoms, namely 1H, 1T and 1T'.\(^17\) The 1H phase is most stable under normal conditions and is semiconducting, in which Mo adopts a trigonal prismatic coordination with S atoms. The 1T phase is characterized by the distorted layers and the octahedral coordination of Mo atoms, this metastable layer can made via intercalation of 1H-MoS\(_2\) lattice with alkali metals. The distortion of 1T phase with the formation of Mo–Mo metal bonds gives rise to the 1T' phase. Encouragingly, Zhang and coworkers just realized large-scale preparation of micrometre-sized metallic-phase 1T'-MoS\(_2\)-layered bulk crystals in high purity.\(^18\) 1T and 1T' phases are either metallic or large-gap quantum spin Hall insulator\(^19\), thus are hardly useful in terms of photovoltaic applications. Very recently, Du and coworkers theoretically predicted the not-yet-synthesized T'' phase of MoS\(_2\), which shows an intrinsic quantum spin Hall effect with a nontrivial gap and exhibits a topological phase transition driven by a small tensile strain.\(^20\)

Monolayer MoS\(_2\) in 1H phase (denoted as 1H-MoS\(_2\)) with only ~0.65 nm shows a large absorption coefficient of 10\(^7\) m\(^{-1}\) comparable to that of commercialized 50-nm-thick Si\(^12\), which makes it useful for wearable photovoltaic applications. However, the band gap (~2.0 eV) of monolayer 1H-MoS\(_2\) is too large to give an ideal Shockley-Queisser absorption efficiency (33.7%) that requires an optimal band gap value of ~1.34 eV. As a result, monolayer 1H-MoS\(_2\) can only absorb incident sunlight up to 5–10% in the visible wavelength region\(^21\). The fabrication demands and the physics of the absorption efficiency suggest that multilayer MoS\(_2\) may be more attractive than single layer MoS\(_2\) for photovoltaic applications since thin film has a much-reduced band gap. It has been reported that 300-nm film of MoS\(_2\) can absorb up to 95% of the light\(^22\). Unfortunately, the major drawback of the MoS\(_2\) thin film is the indirect nature of its band gap\(^3\) where phonons are required to mediate electron excitations from light. Then, a question raises naturally: is there a new phase of MoS\(_2\) monolayer with high experimental feasibility and a direct and smaller band gap in the range of 1-1.5 eV?

We here report a theoretical discovery of the hitherto unknown monolayer phase of MoS\(_2\) (donated
as 1T_d) by carrying out the swarm-intelligence based CALYPSO structure searches. This 1T_d monolayer is semiconducting with a direct band gap of 1.27 eV. More importantly, the direct band gap nature persists in the thin film due to the extremely weak vdW interactions in the multilayer structures of 1T_d phase. The theoretical photovoltaic efficiency of 1T_d phase reaches ~33.3% at only 30 nm thickness, which is even higher than that of ~200-nm-thick GaAs (~32.0%) and far beyond that of the conventional 1H phase (19.0%). Our results also demonstrate that 1T_d phase could be synthesized by a proper electron injection method. Once synthesized, the superior photovoltaic property of 1T_d-MoS₂ may open up an entirely new line of research for enhancing the efficiency of transition metal dichalcogenides (TMDCs) solar cell.

COMPUTATIONAL METHODS

Structure searches of monolayer MoS₂ were carried out with simulation cells of up to 18 atoms using the swarm-intelligence based CALYPSO method^{23–27}, which has been benchmarked on various known systems, ranging from elements to binary and ternary compounds^{28–33}. The population size was set to 20 and the structure search was terminated after the generation of up to 1,000 structures for each run. Structural optimizations, electronic structures, phonons, and molecular dynamics were performed in the framework of density functional theory (DFT). The generalized gradient approximation (GGA) expressed by PBE functional³⁴ as implemented in the Vienna Ab initio Simulation Package (VASP)³⁵ was adopted unless otherwise stated. The electron-ion interaction was described by the projector augmented-wave potentials³⁶, with 4p⁶4d⁵5s¹ and 3s²3p⁴ configurations treated as the valence electrons of Mo and S, respectively. A kinetic cutoff energy of 500 eV and Monkhorst-Pack k-mesh sampling of 12×12×1 were adopted to ensure well converged total energies (~1 meV/atom). The ionic positions were fully relaxed until the residual force acting on each ion was less than 0.01 eV/Å. Sufficient vacuum was used along z direction i.e. perpendicular to the 2D sheet, to avoid spurious interaction among the periodic images. The dynamic stability of the predicted new phases was verified from phonon calculation using the direct supercell method as implemented in the PHONOPY code^{37,38}. To confirm the thermal stability, ab initio molecular dynamic (AIMD) simulations were carried out with a time step of 1 fs, and the total simulation time was 5 ps. The temperature was controlled at 600 K using the Nosé-Hoover chain thermostat with 4×4 supercells that contain 144 atoms. To evaluate the photovoltaic performance, we calculated the theoretical photovoltaic efficiency³⁹, which captures the band gap, shape of absorption spectrum and material-dependent non-radiative recombination loss. Note that the standard GGA tends to underestimate the band gaps, thus for MoS₂ monolayers, we also employed Heyd–Scuseria–Ernzerhof (HSE) hybrid functional⁴⁰, which was proven to be a reliable method for the calculation of electronic structures, to evaluate the band gap values. However, for multilayer
MoS$_2$ systems, both structural optimizations and band structure computations were carried out by standard PBE functional.

RESULTS AND DISCUSSION

Through CALYPSO structure searching simulations, the known phases including 1H, 1T, 1T’ and 1T”-MoS$_2$ have been successfully reproduced, demonstrating the reliability of our methodology in application to MoS$_2$. Importantly, our structural searches identified two unknown low-lying phases with $P31m$ and $P2/c$ symmetries (Fig. 1a and Table S1), denoted as 1T$_d$-MoS$_2$ and 1H’-MoS$_2$, respectively. 1T$_d$ structure can be obtained by distorting the octahedral coordination patterns of Mo atoms in 1T phase, while 1H’ phase can be viewed as re-organization of the unit cells of 1H phase (see the red dotted rectangle frame in Fig. 1). 1H’ phase is slightly lower in energy than 1T phase (by 38 meV/f.u.). Remarkably, 1T$_d$ phase is energetically more favorable than the known 1T and 1T’ phases by ~300 and 12 meV/f.u. (Fig. 1b), respectively. Moreover, no imaginary phonons have been found in the Brillouin zone of the newly discovered 1T$_d$ and 1H’ phases (Fig. S1), providing direct evidence for their dynamical stability. Furthermore, our AIMD simulations showed that the 1T$_d$ phase does not suffer obvious structural destruction at 600 K (see Fig. S2). The decent thermal stability also ensures its potential application in photovoltaics. Considering the relative high energy of the 1H’ phase and its narrow band gap of 0.34 eV (by HSE functional, Fig. S1c), we will only focus on 1T$_d$ phase in this work.

Interestingly, 1T$_d$ phase has a direct band gap of 1.27 eV at the HSE level of theory (Fig. 2a). The dominant contributions to the highest occupied and the lowest unoccupied states are mainly from the d orbitals of Mo atoms. Comparing the geometric and electronic structures of 1T$_d$ and 1T phases, we can find that a subtle change in crystal structure leads to a dramatic difference in the electronic properties: 1T phase, in which the S atoms are in octahedral coordination with Mo atoms, is metallic, whereas 1T$_d$ phase, in which the S octahedral coordination is only slightly distorted, becomes semiconducting.

The electronic structures of TMDCs strongly depend on the coordination environments of the transition metals and its d-electron count, which gives rise to different electronic properties\cite{42}. For MoS$_2$, Mo is a divalent ion and has a d^6 electron count. In both 1T and 1T$_d$ phases, the non-bonding d states are located within the gap between the bonding (σ) and antibonding (σ^*) states (Fig. 2b, Fig. S3)\cite{42}. Distorted octahedral coordination of Mo atoms in 1T$_d$ phase leads to its lower symmetry (C_{3v}) compared with that of 1T phase (O_h). According to the ligand field theory\cite{43}, there are two degenerated e_g and t_{2g} orbitals in octahedrally coordinated structures with O_h symmetry: the doubly degenerated e_g orbitals contain d_{x^2} and $d_{x^2-y^2}$ orbitals, and the triply degenerated t_{2g} orbitals contain d_{xy}, d_{xz}, and d_{yz} orbitals. Since the energy level of t_{2g} is lower than that of e_g, the occupancy of two d electrons of Mo in the three-fold degenerated t_{2g} orbitals lead to partially filled d orbitals, resulting in the metallic character of 1T phase. On the other hand, the d orbitals of Mo with C_{3v} symmetry in 1T$_d$
phase splits into one-fold a_I orbital corresponding to $d_{x^2-y^2}$ orbital and two doubly degenerated e orbitals corresponding to d_{x^2}, d_{y^2}, d_{xz}, and d_{yz} orbitals. Full occupation of one-fold a_I orbitals by two Mo electrons defines the semiconducting behavior of $1T_d$ phase.

We further examined the band structures of $1T_d$ phase of MoS$_2$ with different thickness. At HSE level of theory, both the bilayer and the bulk MoS$_2$ keep the direct band-gap nature of the monolayer. The bulk has a gap of 1.36 eV, very close to the monolayer (1.27 eV) and bilayer (1.25 eV). The same trend persists when more multilayers are examined by PBE functional. At the PBE level of theory, the multilayers (with layer numbers of 2, 4, and 6) and the bulk of $1T_d$ structure remain the direct band-gap nature with their band gap values ranging from 0.68 eV to 0.83 eV (Fig. 2c). These computations indicate that thinning the bulk $1T_d$ phase of MoS$_2$ down to the monolayer does not enhance the quantum confinement of electrons. This is in stark contrast to $1H$ phase of MoS$_2$, where a transition from direct to indirect band structure occurs as the number of layers increases. This difference might result from the much weaker vdW interactions in the multilayer structures of $1T_d$ phase. As shown in Fig. 2d, the adjacent layers in $1T_d$ phase only have a coupling energy of 8.67 meV/f.u., much smaller than ~112 meV/f.u. in $1H$ phase, which consists with previous reports. We also chosen the tri-layer $1T_d$ phase to examine the effect of the different stacking configurations, and found that the total energies and band structures for different stacking patterns are rather similar (Fig. S4). Thus, it is the extremely weak vdW forces between adjacent $1T_d$ layers that lead to the layer number independent geometric and electronic properties of $1T_d$ phase.

For a practical solar cell, the theoretical photovoltaic efficiency relies on the thickness of the absorber layer. Thus, we calculated the photovoltaic efficiencies of $1T_d$ MoS$_2$ absorber layers as a function of the thickness (Fig. 3) by taking the absorption coefficient and the thickness of absorber layer into consideration. The same computations were performed for $1H$ MoS$_2$ layers and GaAs layers for comparison. Evidently, the $1T_d$ MoS$_2$ exhibits much higher photovoltaic efficiencies than $1H$ MoS$_2$ and GaAs for any given thickness. More importantly, $1T_d$ MoS$_2$ layers achieve high efficiencies with very thin absorber layers. For example, 30-nm-thick $1T_d$ MoS$_2$-based cells can have a photovoltaic efficiency up to 33.3%, in stark contrast, only when the thickness of absorbers is about 200 nm can the high efficiency of ~30.0% in GaAs be achieved.

It was recently reported that metastable monolayer TMDCs can be obtained by chemical lithium intercalation and electrostatic-doping. Therefore electron injection may be a practical route to synthesize the newly predicted metastable phases. To evaluate the effects of electron filling on phase stability, we constructed a model system, in which all Mo atoms are replaced by electron richer Tc or Ru atoms. It is found that the $1T_d$ phases of TcS$_2$ and RuS$_2$ are energetically more favorable than the corresponding $1H$ phases (see Fig. 4a), suggesting that the $1T_d$ phase of MoS$_2$ may be obtained by adding one extra electron per unit cell. For comparison, two extra electrons per unit cell are required to obtain the $1T$ phase of MoS$_2$ since only the $1T$ phase of RuS$_2$ is energetically favorable.
than the 1H phase. Therefore, the experimental synthesis of 1T\textsubscript{d} phase should be more accessible in view of the fewer extra electrons needed. In fact, distorted 1T superstructures have already been observed in experiments51; these superstructures may be closely related to our predicted 1T\textsubscript{d} phase. In addition, we found that there is a large energy barrier of \(~0.29\) eV/atom (equivalent to \(~3360\) K) between the metastable 1T\textsubscript{d} phase and the energetically most favorable 1H phase (see Fig. 4b). Therefore, the 1T\textsubscript{d} phase will be kinetically protected once synthesized. The conversion from 1T\textsubscript{d} to 1T, and then to 1H would have a lower barrier of \(~0.18\) eV from Fig 4c, indicating other minimum energy reaction paths may exist. Thus, two reaction paths: 1H\(\rightarrow\)1T and 1T\(\rightarrow\)1T\textsubscript{d} have been calculated. As illustrated in Figure S5, the energy barrier from 1H to 1T is 0.08 eV/atom and no energy barrier is found from 1T to 1T\textsubscript{d}. If going from right to left, indeed, there is an energy barrier of 0.18 eV/atom (equivalent to \(~2089\) K) from 1T\textsubscript{d} to 1H.

Our phonon dispersion computations showed that the free-standing 1T phase has two imaginary phonon modes at A (\(-1/3\ 1/3\ 0\)) and M point (0 1/2 0) (see the inset of Fig. 4c), signifying its decisive role in characterizing phase transitions. To confirm this, we produced the distorted structures by freezing the amplitudes of the atomic displacements along the normal coordinates of the softening phonon, then calculated the total energies for a series of atomic displacements along the vibrations corresponding to the A and M points while maintaining the rest of the structural parameters at the referenced structure values (see Fig. 4c). As expected, the 1T\textsubscript{d} and 1T' phases were identified during our structural optimizations. Since the 1T\textsubscript{d} structure is energetically more favorable than 1T', there is a higher possibility that the freestanding 1T phase eventually transforms to the 1T\textsubscript{d} phase, which was confirmed by our AIMD simulations: the freestanding 1T-MoS\textsubscript{2} phase would undergo a spontaneous distortion, leading to the 1T\textsubscript{d} phase at low temperature (300 K); however, 1T\textsubscript{d} phase can only transform into 1T phase at 1000 K (Fig. S6). These findings demonstrate a feasible approach for active control of the experimental realization of 1T\textsubscript{d} phase from experimentally synthesized 1T phase. In addition, the weak vdW interactions in the multilayer structures of 1T\textsubscript{d} phase implies that freestanding monolayer can be also easily produced from bulk 1T\textsubscript{d} phase by exfoliation. To assist the future experimental characterization, we simulated the occupied state STM images at a bias of \(-0.5\) V for the 1H, 1T, 1T\textsubscript{d} and 1T' MoS\textsubscript{2} (Fig. S7). Note that our simulated STM images of 1H phase52 and 1T' phase18 well agree with experiments. Meanwhile, we also calculated the atomic vibrations for each mode of 1T\textsubscript{d} and 1H phase (Table S2). The good agreement between two computed and experimentally measured Raman peaks, labeled as \(E_{2g}^{1}\) and \(A_{1g}\), for 1H MoS\textsubscript{2} monolayer,53 supports the validity and accuracy of our computational procedure.

It is known that the first synthesized metastable 1T'-TMDCs phase is MoTe\textsubscript{2} instead of MoS\textsubscript{2}. It is of significant importance to study the stabilities and electronic properties of other five 1T\textsubscript{d}-TMDCs phases: MoSe\textsubscript{2}, MoTe\textsubscript{2}, WS\textsubscript{2}, WSe\textsubscript{2} and WTe\textsubscript{2}. By comparing the energies of the 1T\textsubscript{d}-, 1T-, 1T'- and 1H-phases (Fig. S8), we found that all 1T\textsubscript{d} phases are energetically more favorable than the 1T
phases. It is seen from Fig. S8 that all the 1T_d- TMDCs are semiconductors with direct band gaps of which the values range from 1.10 to 1.34 eV at the HSE06 level (Fig. S8). The suitable band gaps endow 1T_d phase with potential applications in solar cells.

Conclusion

In summary, a new semiconducting phase (1T_d) of monolayer MoS_2 with an optimal, direct optical band gap of 1.27 eV is discovered by the global optimization swarm intelligence algorithm. Thermodynamically this newly predicted monolayer is slightly more favorable than the recently synthesized 1T’ phase. Due to the rather weak interlayer interactions, the geometric and electronic properties of 1T_d phase is nearly independent of layer number, especially its direct band gap nature persists in multilayers, and the band gap values can be slightly tuned by controlling the layer number. The photovoltaic efficiency of the 1T_d phase reaches ~33.3%, which is close to the Shockley–Queisser limit, at only ~0.3 µm thickness. Our computations also suggest that it is highly promising to synthesize the 1T_d phase by electron injection, and it is also feasible to convert the experimentally synthesized 1T phase to 1T_d phase by proper annealing. Once synthesized, the superior photovoltaic property of the 1T_d phase may open a door to further exploring new high-performance TMD-based solar cells.

Supporting Information

Crystallographic Data of 1T_d and 1H’ phases; the Raman peaks of 1T_d and 1H phase; phonon dispersions and the band structures calculated from HSE06 functional of 1H’ phase; the AIMD simulations of 1T_d phase at 600 K; further analysis on the orbital levels of 1T_d-MoS_2; the optimized structures and band gaps of tri-layer 1T_d-MoS_2 with three stacking configurations; different images on minimum energy path from 1H to 1T and 1T to 1T_d phases; AIMD simulations of the temperature-induced phase transition between 1T_d phase and 1T phase; the simulated occupied state STM images for 1H, 1T_d, 1T’ and 1T phases; the total energies and band structures of the other five MX_2 monolayers in 1T_d phase; computational method for spectroscopic limited maximum efficiency (SLME).

AUTHOR INFORMATION

Corresponding Authors
yuechen@hku.hk
wyc@calypso.cn
mym@calypso.cn

Notes
The authors declare no competing financial interest.

ACKNOWLEDGEMENTS
The authors acknowledge funding support from the National Natural Science Foundation of China
under Grants No. 11774127, No. 11534003 and No. 11764043; the National Key Research and Development Program of China under Grant No. 2016YFB0201200, No. 2016YFB0201201, and No. 2017YFB0701503; the 2012 Changjiang Scholars Program of China supported by Program for JLU Science and Technology Innovative Research Team (JLUSTIRT); the Science Challenge Project, No. TZ2016001, the Research Grants Council of Hong Kong under Grant No. 27202516 and the NSF-CREST Center for Innovation, Research and Education in Environmental Nanotechnology (CIRE2N) (Grant Number HRD-1736093) and NASA (Grant 17-EPSCoRProp-0032). Part of the calculation was performed in the high performance computing center of Jilin University and at Tianhe2-JK in the Beijing Computational Science Research Center.
References

Figure 1. (a) Atomic structures of monolayer MoS$_2$ in 1H, 1T$_d$, 1T', 1H', and 1T phases. The unit cells are indicated by black solid lines. (b) The calculated total energies (per MoS$_2$ formula unit relative to 1H phase) and the basic building blocks.
Figure 2. (a) Band structure and density of states of 1T$_d$-MoS$_2$ phase at HSE level. (b) Schematic illustration showing the progressive filling of d orbitals that are located within the band gap of bonding (σ) and anti-bonding states (σ*) in MoS$_2$. (c) Calculated band gap (E_g) as a function of number of layers. (d) The coupling energy of the system as a function of interlayer separation. The different d-orbital splitting in crystal structures with octahedral (1T) and distorted octahedral (1T$_d$) geometries. O$_h$ and C$_{3v}$ refer to the point groups associated with the 1T and 1T$_d$ phases, respectively. The filled and unfilled states are shaded with green and light orange, respectively.
Figure 3. SLME as a function of slab thickness for 1T\textsubscript{d} phase compared with 1H-MoS\textsubscript{2} and GaAs. The inset shows their adsorption spectra.
Figure 4. (a) The calculated static energies for MoS$_2$, TeS$_2$, and RuS$_2$ in 1H, 1T$_d$, and 1T phases. (b) Relative energies to the 1H phase of different images on minimum energy path from 1T$_d$ (1T) to 1H phase. (c) The calculated energy as a function of the soft phonon mode amplitudes. On the basis of the eigenvector of the soft mode, we distorted the original 1T MoS$_2$ and then fully optimized the structure, which eventually leads to 1T$_d$ (red star) and 1T' (blue star). The inset shows the phonon dispersions of 1T phase.
We predict a novel 1T$_d$-MoS$_2$ with a direct band gap of 1.27 eV which reaches high photovoltaic efficiency of ~33.3%.