Journal of Materials Chemistry A

Journal of Materials Chemistry A

Multi-funcational Ni3C Cocatalyst/g-C3N4 nanoheterojunctions for robust photocatalytic H2 evolution under Visible Light

Journal:	Journal of Materials Chemistry A
Manuscript ID	TA-ART-04-2018-003048.R1
Article Type:	Paper
Date Submitted by the Author:	12-May-2018
Complete List of Authors:	He, Kelin; College of Materials and Energy, South China Agricultural University Xie, Jun; South China Agricultural University, College of Materials and Energy Liu, Zhao-Qing; Guangzhou University, School of Chemistry and Chemical Engineering Li, Neng; Wuhan University of Technology, State key laboratory of silicate materials for architectures Chen, Xiaobo; University of Missouri - Kansas City, Chemistry Hu, Jun; Northwest University, Li, Xin; South China Agricultural University, College of Science;

SCHOLARONE[™] Manuscripts Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Multi-funcational Ni₃C Cocatalyst/g-C₃N₄ nanoheterojunctions for robust photocatalytic H₂ evolution under Visible Light

Kelin He,^{a,b} Jun Xie,^{a,b} Zhao-qing Liu,^c Neng Li,^{d*} Xiaobo Chen,^e Jun Hu,^f Xin Li,^{a,b*}

s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Developing highly active, non-noble-metal H₂ evolution co-catalysts is appealing yet still remains a great challenge in the promising fields of visible-light-driven photocatalytic solar fuel H₂ production. In this work, high quality hexagonal Ni₃C nanoparticles were facilely fabricated through the low-temperature

- ¹⁰ thermolysis of nickel acetylacetonate in oleylamine under a nitrogen atmosphere, which were then coupled with g-C₃N₄ by the simple grinding method. The photocatalytic performances of g-C₃N₄/Ni₃C nanoheterojunctions were tested under visible light irradiation using triethanolamine (TEOA) as a hole scavenger. The optimal H₂-production rate of 15.18 µmol h⁻¹ over 15 wt % Ni₃C nanoparticles decorated g-C₃N₄, corresponding to an apparent quantum yield (AQY) of 0.40% at 420 nm, is approximately 116.7
- ¹⁵ times higher than that of pure g-C₃N₄, which is even larger than that of the 0.5 wt% Pt/g-C₃N₄ sample. The well resolved density functional theory (DFT) calculation reveals that the "TOP" site of Ni₃C(113) with the H adsorption energy of -0.97 eV is likely the dominant reaction sites for H₂ evolution, rather than the Hollow and Bridge sites. It was also demonstrated by the polarization curves that the Ni₃C nanoparticles could act as multi-funcational electrocatalysts for improve the kinetics for water oxidation,
- ²⁰ the oxidation of TEOA, and hydrogen evolution in both acidic and basic media. Therefore, the loading of multi-funcational Ni₃C cocatalyst nanoparticles onto g-C₃N₄ can fundamentally promote the rapid transportation/separation of charge carriers, enhance oxidation kinetics of TEOA, and decrease the overpotential of H₂-evolution, thus favoring the significantly enhanced photocatalytic activity. It is highly expected that this work will provide new ideas to develop robust metal carbides as noble-metal-free

25 cocatalysts for high-efficiency and low-cost g-C₃N₄-based photocatalytic water splitting.

1. Introduction

To address the serious environmental pollution and the increasingly intense energy crisis, hydrogen, as a renewable energy resource, has attracted wide international attention.^{1, 2} ³⁰ Since Fujishima and Honda first demonstrated the concept of photoelectrochemical water splitting in 1972,³ various semiconductor photocatalysts, such as oxides,^{4, 5} nitrides,⁶ oxynitrides,⁷ sulfides,⁸⁻¹² carbides¹³ and their composites, have been developed and applied in the photocatalytic hydrogen ³⁵ production during the past 40 years.¹⁴ Particularly, in 2009, Wang's group first reported the photocatlytic H₂ evolution over the metal-free graphic carbon nitride (g-C₃N₄), a fascinating

polymer semiconductor.¹⁵ Since then, the g-C₃N₄ has become a shining star semiconductor and attracted tremendous attention in ⁴⁰ photocatalysis, due to its easy fabrication, high chemical and

thermal stability, excellent absorption properties, low cost, environmental harmlessness, a suitable band gap and position.¹⁶⁻¹⁸ However, several grand challenges, such as insufficient surface area and active sites, moderate oxidation ability, sluggish surface

⁴⁵ reaction kinetics and the rapid recombination of the electron-hole

pairs, significantly lead to the low quantum efficiency of g-C₃N₄.^{16, 17} Consequently, over the past eight years, a great deal of effort has been made to improve the photocatalytic performance of g-C₃N₄ by various modification approaches,¹⁶ such as fabricating micro-/nano-structures,¹⁹⁻²² improving crystalline/defect engineering,^{23, 24} element doping/copolymer,^{25-²⁹ constructing heterojunctions/Z-Scheme,³⁰⁻³³ coupling with nanocarbons,³⁴⁻³⁶ dye sensitization,³⁷ loading cocatalysts³⁸⁻⁴² and their combinations⁴³.}

Among them, one of the most effective strategies is the loading of H₂-evolution cocatalysts over g-C₃N₄, which could improve both the H₂-evolution kinetics and the separation of charges. Commonly, the noble metals, such as Pt, Ag and Au, have been extensively demonstrated to be the excellent cocatalysts for significantly improving the H₂ evolution over g-C₃N₄. However, the high cost of these noble metals, seriously restrict their commercial development and application for the g-C₃N₄-based photocatalytic H₂ generation, various noble metal-free H₂- evolution electrocatalysts (e.g., Ni,^{44, 45} $Ni_{12}P5$,⁴⁶ $Ni_{2}P$,⁴⁷ CoP_x ,^{48, 49} Cu_3P ,⁵⁰ $Ni(OH)_x$,^{33, 39, 51} NiS_x ,⁵²⁻⁵⁴ CoS_x ,⁵⁵ MoS_x ,^{56, 57} WS_2 ⁵⁸ and NiO_x ⁵⁹) have been used as cocatalysts to enhance the charge-carrier separation and the H₂-evolution kinetics on the surface of

- ⁵ g-C₃N₄. Compared with the most widely used earth-abundant transition metals, sulfides and oxides, the nonprecious mono- and bimetallic carbides with high electronic conductivity, coverageinduced weak hydrogen adsorption and hydrophilic nature, including WC,⁶⁰⁻⁶² Ti₃C₂ MXene⁶³ and Mo₂C^{64, 65}, have been
- ¹⁰ relatively seldom applied as the cocatalysts for photocatalytic H₂ evolution, despite these low-cost metal carbides⁶⁶⁻⁶⁸ and their hybrids with nanocabons⁶⁹⁻⁷¹ have been employed as promising electrocatalysts for scalable electrocatalytic H₂ production. The complicated synthetic procedures of these metal carbide ¹⁵ nanomaterials might be the possible main reasons limiting their wide applications as cocatalysts for enhancing the photocatalytic
- H₂ evolution over various semiconductors.

Notably, among the metal carbides, the cost effective nickel carbides have also been demonstrated experimentally to be the 20 excellent H₂-evolution electrocatalysts.⁷²⁻⁷⁴ For instance, Yang et

- al. reported that high-index faceted dendritic NiC_{0.2} nanosheets have been found to be high performance bifunctional electrocatalysts for both the HER and OER in basic media.⁷⁴ Recently, Fan et al. fabricated Ni₃C nanocrystals encased in
- ²⁵ graphene nanoribbons,⁷³ and found that the resulting hybrids exhibit excellent electrocatalytic activity for the HER in acidic media and ORR in alkaline electrolytes. Similarly, it was also demonstrated that the Ni₃C nanoparticles embedded in a porous carbon network exhibited superior catalytic activity for
- ³⁰ electrocatalytic H₂ production in acidic media.⁷² Clearly, the Ni₃C and Ni₃C/C hybrids could be utilized as superior electrocatalysts for the HER in both acidic and basic media, as well as for OER and ORR in alkaline electrolytes. More importantly, it was recently found that the high quality Ni₃C nanoparticles could be
- ³⁵ readily fabricated through the low-temperature thermolysis of a nickel precursor (i.e., nickel acetylacetonate) in the presence of organic surfactants (i.e., oleylamine) under inert atmosphere,⁷⁵⁻⁷⁷ which offered a large number of new opportunities for their magnetic and catalytic applications. However, to the best of our
- ⁴⁰ knowledge, there is no report on exploring metallic Ni₃C as a cocatalyst for improving photocatalytic H₂-evolution activity over g-C₃N₄. Thus, these considerations have strongly motivated us to thoroughly investigate the multi-functional roles of Ni₃C cocatalysts over g-C₃N₄ in improving the photocatalytic H₂ ⁴⁵ evolution and deeply reveal their H₂-evolution mechanism.

Herein, we present the first study on the application of nickel carbide as an earth-abundant cocatalyst to significantly improve the photocatalytic H_2 evolution over g-C₃N₄. The high quality Ni₃C nanoparticles were first fabricated through the low-

⁵⁰ temperature thermolysis of nickel acetylacetonate in oleylamine under a nitrogen atmosphere. Then, the novel Ni₃C/g-C₃N₄ nanoheterojunctions were successfully synthesized by the simple grinding method. The fabrication process of the Ni₃C/g-C₃N₄ composites is shown in Scheme 1. Their photocatalytic

⁵⁵ performance was tested under visible light irradiation using TEOA as a hole scavenger. The maximum H₂-production rate of

15.18 μmol h⁻¹, corresponding to an apparent quantum yield (AQY) of 0.40% at 420 nm, is achieved by loading 15 wt% Ni₃C nanoparticles on g-C₃N₄, which is about 116.7 times higher than ⁶⁰ that of pure g-C₃N₄. The results also show that Ni₃C is better in enhancing the H₂-evolution rate than the famous noble Pt cocatalysts. The excellent catalytic activity of Ni₃C/g-C₃N₄ for both HER and OER has been investigated by the polarization curves. It is expected that this work will provide new ideas to ⁶⁵ exploit metal carbides as noble-metal-free cocatalysts for high-efficiency and low-cost g-C₃N₄-based photocatalytic water splitting.

Scheme 1. Schematic illustration for the formation of Ni₃C/g-⁷⁰ C₃N₄ photocatalysts.

2. Experimental section

2.1. Preparation of photocatalysts

2.1.1 Synthesis of g-C₃N₄ nanosheets

The pure g-C₃N₄ photocatalyst was prepared by directly heating urea without any additives. In a typical synthesis, 8 g of urea was put in a crucible with a cover, and then it was heated at 550 °C for 2 h in a muffle furnace at a heating rate of 4 °C min⁻¹.

2.1.2 Synthesis of Ni₃C nanoparticles

⁰ 300 mg of nickel acetate anhydrous and 10 ml of oleylamine were put in a three-neck round-bottom flask and then stirred magnetically under a continuous flow of nitrogen. The mixture was heated and maintained at 250 °C for 2 h. The sample is then cooled down to room temperature. 50 mL of acetone was put in

85 three necks round bottom flask and the Ni₃C nanoparticles were precipitated by centrifugation.

2.1.3 Synthesis of Ni₃C/g-C₃N₄

In a typical synthesis procedure, g-C₃N₄ and Ni₃C nanopowder were ground together in an agate for 2 h and then the as-prepared ⁹⁰ powder was calcined at 200 °C under nitrogen flow for 1 h in a tubular furnace. The weight ratios of Ni₃C (5 wt%, 10 wt%, 15 wt% and 20 wt%) in the binary Ni₃C/g-C₃N₄ composite photocatalysts were designated as CNi5, CNi10, CNi15 and CNi20, respectively.

95 2.2. Characterization

The X-ray (XRD) patterns were recorded on a MSAL-XD2 diffractometer with Cu Kα radiation. X-ray photoelectron spectroscopy (XPS) data were measured with a VG ESCALAB250 surface analysis system. The transmission electron microscopy (TEM) images were recorded using a JEOL JEM-2010 electron microscope. The photoluminescence (PL) spectra were recorded using a TSC Solutions F96PRO with an excitation wavelength of 385 nm. The UV–Vis diffuse reflection spectra (UV–Vis DRS) were performed with a VARIAN Cary-5000 UV–vis–NIR spectrophotometer. Fourier transform infrared (FTIR) spectra were recorded on a Bruker VERTEX 70 FTIR apparatus. Raman spectra were recorded at room temperature s using a Renishaw InVia micro-Raman spectrometer with laser excitation at 785 nm. The Brunauer–Emmett–Teller (BET) method was used to determine the specific surface area. The pore-

- size distributions were derived from the desorption branches of the isotherms using the Barrett–Joyner–Halenda (BJH) ¹⁰ method.The time-resolved decay curves of the as-fabricated samples were recorded with a FLS920 fluorescence lifetime spectrophotometer (Edinburgh Instruments, UK) under the
- spectrophotometer (Edinburgh Instruments, UK) under the excitation of a hydrogen flash lamp with the wavelength at 325 nm (nF900;Edinburgh Instruments).

15 2.3. Photocatalytic reaction procedures

Photocatalytic water splitting took place in 100 mL three-neck flask. A Xe arc lamp (350 W) with a UV cutoff filter (> 420 nm) was utilized as light source. In a typical experiment, 0.05 g of the catalyst powder was dispersed in the above reactor containing a

- ²⁰ mixed solution of 68 mL distilled water and 12 mL triethanolamine (TEOA) under ultrasound for 30 min. Before photocatalytic experiments, the above reactor was bubbled with N₂ for 30 min in order to ensure that the reaction system is under anaerobic conditions. 0.4 mL evolved gases was analyzed by a
- ²⁵ gas chromatograph (GC-7900, TCD, with Ar as carrier gas) after 1 h of illumination.

2.4 Photoelectrochemical measurement experiments

The working electrodes: 10 mg photocatalyst powder was dispersed in 4 mL ethanol containing 40 μ L 0.25% Nafion ³⁰ solution under ultrasound for 1 h. Then, 0.5 mL of the solution dropped homogeneously on a 3 cm × 6 cm FTO glass. The asprepared electrodes were calcined at 150 °C for 1 h (N₂ carrier gas). Transient photocurrent experiments and electrochemical impedance spectra (EIS) were measured with IM6e

- ³⁵ electrochemical workstation (Zahner Elektrik, Germany) in a standard three-electrode system using Ag/AgCl (saturated KCl) as a reference electrode, the as-prepared electrodes as the working electrodes, and a Pt plate as the counter electrode. A Xe arc lamp (350 W) with a UV-cutoff filter ($\lambda > 420$ nm) was
- $_{40}$ utilized as the light source. Na₂SO₄ (0.1 mol/L) aqueous solution was utilized as the electrolyte. The bias for the photocurrent tests was 0.05 V.

2.5 Electrocatalytic hydrogen evolution.

- The electrocatalytic hydrogen evolution was performed with a ⁴⁵ three-electrode cell. Linear sweep voltammetry with a 5 mV/s scan rate was performed in a 0.5 M H₂SO₄ electrolyte solution using Ag/AgCl (saturated KCl) as a reference electrode and a Pt plate as the counter electrode. The working electrodes were fabricated as follows: 6 mg of photocatalyst power was ⁵⁰ ultrasonically dispersed in 2 mL of deionized water (for >2 h),
- and then 3 μ L of the as-prepared solution dropped homogeneously on a glassy carbon electrode. After drying, 3 μ L of 0.5% Nafion solution (contain 10 vol % ethanol) was then deposited on top of the catalyst layer.

55 2.6 Computational Methods

The CASTEP module of the Materials Studio software

(Accelrys Inc.) was employed for the quantum chemistry calculations. During the calculations, self-consistent periodic DFT was adopted to explore the electronic structure and catalytic ⁶⁰ activities on the facets. Ionic cores were represented by an ultrasoft pseudopotential. Perdew-Burke-Ernzerhof (PBE) approximation was selected as the Generalized Gradient Approximation (GGA) method to calculate the exchange-correlation energy. The Broyden-Fletcher-Goldfarb-Shanno

 $_{65}$ (BFGS) scheme was selected as the minimization algorithm. DFT-D correction was used for dispersion corrections. The energy cutoff is 380 eV and the SCF tolerance is $1.0 \times 10{\text{-}6}$ eV/atom. The optimization is completed when the energy, maximum force, maximum stress and maximum displacement are

⁷⁰ smaller than $5.0 \times 10-6$ eV/atom, 0.01 eV/Å, 0.02 GPa and $5.0 \times 10-4$ Å, respectively. The Gamma point only were set as k-points samplings during the calculations because there are no significant change in the calculated energies for larger k-point mesh such as $2 \times 2 \times 1$, $3 \times 3 \times 1$. Furthermore, at least four Ni layers

75 were selected for reduce dispersive error. The (113) surfaces with C-terminations was built from the optimized Ni3C (space group 167, a=b=4.553 Å, c=12.920 Å) with a vacuum region of 15 Å.

3 Results and discussion

80

3.1 The structures and compositions of photocatalysts

X-ray diffraction (XRD) measurements were used to confirm the phase structures of the as-prepared photocatalysts. Figure 2 shows the XRD patterns of g-C₃N₄, Ni₃C, CNi5, CNi10, CNi15 and CNi20, respectively. It can be seen from Figure 1A that g-85 C₃N₄ exhibited two main characteristic diffraction peaks at 27.5° and 13.1°, which is correspondent with the hexagonal phase of polymeric g-C₃N₄ (JCPDS #87-1526). The strong peak of g-C₃N₄ at around 27.5° can be indexed as (002) diffraction planes of g-C₃N₄, which reflect the interlayer stacking of the aromatic 90 system. The weak peak of g-C3N4 at around 13.1° can be indexed as (110) diffraction planes of g-C₃N₄, which reflect the in-planars-triazine structural packing motif composed of the tris-s-triazine units (ca. 0.73 nm). For the pure Ni₃C (Figure 1B), six main peaks centered at 39.5°, 41.9°, 44.9°, 58.6°, 71.2° and 78.2° can 95 be observed, respectively, corresponding to the (110), (006), (113), (116), (300) and (119) diffraction peaks of hexagonal Ni₃C (JCPDS PDF #06-0697).75 Notably, with increasing the loading amount of Ni₃C in the binary Ni₃C/g-C₃N₄ samples, the intensity in the diffraction (110), (006), (113) peak of Ni₃C slightly ¹⁰⁰ increases, while the relative diffraction peak intensity of g-C₃N₄ decreases, further confirming that the crystallinity of g-C₃N₄ in its crystal structure is markedly inhibited by the loading of Ni₃C on its surface. Figure 1C shows the Raman spectra of Ni₃C, g-C₃N₄ and CNi15. The peaks at 726 and 995 cm⁻¹ are associated with the 105 breathing modes of triazine rings. Notably, their Raman intensity of CNi15 is smaller than that of bare g-C₃N₄, which may originate from a charge transfer occurring between Ni₃C and g-C₃N₄. In addition, the peaks at 598, 1113 and 1565 cm⁻¹ of CNi15 are correspondent with the Raman characteristic peaks of Ni₃C. 110 All above results demonstrate that the Ni₃C nanoparticles are successfully loaded on the surface of g-C₃N₄, instead of the lattice doping of Ni₃C into g-C₃N₄. The FTIR spectra of CNi15

and $g-C_3N_4$ in the range of 500 to 3500 cm⁻¹ were recorded, as shown in Figure 1D. It could be observed that the peaks at 1245, 1320, 1403 and 1452 cm⁻¹ could be related to the aromatic C-N stretching, while the peaks at 1572 and 1639 cm⁻¹ may be s assigned to the presence of C=N bonds. In addition, the peak appeared at 808 cm⁻¹ originating from condensed CN heterocycles is observed. The broad peak at 3166 cm⁻¹ corresponds to the stretching vibration modes of the -NH and the adsorbed H₂O molecules. The results suggest that the intensity of ¹⁰ g-C₃N₄ gradually decreased with the increase of Ni₃C, but the crystalline of g-C₃N₄ is unchanged.

Figure 1. (**A**)The power XRD patterns of g-C₃N₄, CNi5, CNi10,CNi15 and CNi20, (B) The power XRD patterns of Ni₃C. (C) Raman spectra of Ni₃C, CNi15 and g-C₃N₄. (D) The FTIR spectra of CNi15 and g-C₃N₄.

Figure 2. N₂ adsorption-desorption isotherms at 77 K and the

corresponding pore size distribution curves (inset) of CNi15 and g-C₃N₄

Figure 2 displays the N₂ adsorption–desorption isotherms of the CNi15 and g-C₃N₄ samples and the corresponding pore size distributions. As shown in Figure 2, these two adsorption–desorption isotherms exhibit typical type III profiles with distinct hysteresis loops of Type H3 according to the International Union ²⁵ of Pure and Applied Chemistry (IUPAC) classification, indicating the predominant mesoporous character of these two photocatalysts. In addition, the pore size distributions of the CNi15 and g-C₃N₄ samples (inset in Figure 2) display a wide range of pore diameter from 3 to 180 nm, suggesting the ³⁰ existence of macropores and mesopores. As shown in Table 1,† the obtained BET specific surface area, average pore diameter, and pore volume of g-C₃N₄ are 80.62 m² g⁻¹, 34.31 nm, and 0.8007 cm³ g⁻¹, whereas those of CNi15 are 53.85 m² g⁻¹, 28.21

15

nm, and 0.4754 cm³ g⁻¹, respectively. It can be seen that the significantly decrease in surface area, pore size, and cumulative pore volume of CNi15 might be attributed to Ni₃C nanoparticles embedded in the pores. The results suggest that the surface area ⁵ should not be the determining factor for improving the over photocatalytic H₂ evolution.

Table 1. Pore structure parameters of the CNi15 and g-C₃N₄ samples.

Samples	Sbet(m ² /g)	Mean pore diameter (nm)	Pore volume $(cm^3 g^{-1})$
g-C ₃ N ₄	80.62	34.31	0.8007
CNi15	53.85	28.21	0.4754

Figure 3. TEM images(A-C), HRTEM image of CNi15(D) and the corresponding EDX elemental mapping of CNi15(E-H) at the region shown in (E).

15

The morphology and nanostructures of CNi15 were observed by TEM and HRTEM measurements, as shown in Figure 3. The TEM images of CNi15 are displayed in Figure 3A-C, confirming that the g-C₃N₄ sample exhibits a 2D nanosheet morphology.

20 Meanwhile, it can be clearly observed that some Ni₃C nanoparticles with diameters about 10-30 nm are uniformly distributed on the surface of g-C₃N₄, indicating the successful

fabrication of g-C3N4/Ni3C nanoheterojunctions. The high resolution TEM (HRTEM) images of CNi15 are shown in Figure 25 2D. Clearly, the obvious interplanard spacings of 0.206 nm could be observed, which is ascribed to the (113) crystallographic plane of hexagonal Ni₃C nanoparticles.⁷⁸ Moreover, the TEM and HRTEM results clearly reveal the intimate interface contacts between Ni₃C and g-C₃N₄, which is advantageous for promoting 30 the charge transfer and increasing the active sites of catalyst, thus improving the photocatalytic activity. As shown in Figure 3E-H, the composition of surface layer is observed by the energydispersive X-ray spectroscopy (EDX). The EDX elemental mapping images of the CNi15 sample further demonstrate the 35 existence of Ni, C and N elements in the CNi15 sample, which also suggest that the Ni₃C nanoparticles are uniformly loaded on the surface of g-C₃N₄. The above results confirm the successful formation of Ni₃C/g-C₃N₄ binary nanoheterojunctions.

X-ray photoelectron spectroscopy (XPS) was performed to ⁴⁰ investigate the surface chemistry and binding status of the CNi15 composites. The bonding configuration and chemical composition of the CNi15 composites are further measured by XPS. Figure 4A shows the XPS survey spectrum of the CNi15 composites, which indicates the existence of Ni, C and N in CNi15 composites, in 45 good agreement with the above EDX elemental mapping and XRD measurement. It can be seen from Figure 4B that the symmetric peaks at 855.9 and 861.8 eV in the Ni 2p spectrum associated with Ni 2p3/2 and its satellite peak states of Ni atoms in Ni₃C, respectively, which is in keeping with the reported values 50 of Ni₃C.⁷⁹ It can be seen from Figure 4C that two peaks at around 288.1 and 284.8eV in the C 1s spectra are ascribed to sp²-bond carbon groups (N-C=N) in the s-triazine rings and the sp²-bond carbon groups (C-C) of graphitic carbon, respectively.^{80, 81} The peak of N 1s spectra in Figure 4D could be divided into four 55 peaks with the binding energies of 404.6, 401.2, 399.6 and 398.6 eV.^{24, 82} The main N 1s peak at 398.6 eV is ascribed to the sp²hybridized aromatic nitrogen groups bonded with two carbon atoms (C-N=C), demonstrating the existence of graphite-like g-C₃N₄. In addition, the peak at 399.6 eV is related to tertiary 60 nitrogen (N-(C)3). Furthermore, the peak at 401.2 eV is assigned to the sp³-hybridized terminal amino functional groups (C-N-H). The last one at 404.6 eV originates from the π -excitation.²⁴ All these results fully prove that the Ni₃C nanoparticles are coupled with the surface of g-C₃N₄.

Figure 4. XPS survey spectra (A), high-resolution XPS spectra of the Ni 2p (B) C 1s (C) and N 1s (D) of the CNi15 sample.

Figure 5. UV-vis absorption spectra (A) and Tauc plots of the UV-vis spectra (B) of the as-prepared photocatalysts.

5 3.2The optical properties of photocatalysts

The optical properties of the photocatalysts are investigated by UV-Vis diffuse reflection spectra (UV–Vis DRS). The UV–vis diffuse reflectance spectroscopy of photocatalysts is shown in Figure 5A. All composite photocatalysts show the absorption

- ¹⁰ edges at around 460 nm, which is in keeping with the intrinsic band gap of g-C₃N₄. The Ni₃C nanoparticles are loaded on the surface of g-C₃N₄, with no obvious red-shift of the absorption edge of g-C₃N₄ observed, indicating that Ni₃C is not incorporated into the lattice of g-C₃N₄. In addition, the band gap (Eg) of the g-
- $_{15}\ C_3N_4$ semiconductor can be calculated from the following equation:

 $a = A(hv - Eg)^{n/2}/hv$

where a, A, E_g , h and v are the absorption coefficient,

proportionality constant, band energy, Planck' s constant, 20 frequency of the incident light, respectively, and n is 1 for the direct transition. Therefore, the bandgap energy of g-C₃N₄ has been calculated by the intercept of the tangents on horizontal axis in the corresponding Tauc plots of the $(ahv)^{1/2}$ versus photon energy (hv) in Figure 5B, which shows the E_g value of 2.65 eV. 25 Notably, the introduction of Ni₃C cocatalysts has no influence on the value of E_g . However, the visible-light absorption intensity of the Ni₃C/g-C₃N₄ composites obviously increases compared with that of the pure g-C₃N₄, which is in keeping with the color changes of the composites, implying the evidently increased 30 amount of photogenerated electron-hole pairs in the CNi15 photocatalyst, which can therefore greatly improve the photocatalytic activity of the composite samples.

Figure 6. (A) Time courses of photocatalytic H₂ evolution: (a) $g-C_3N_4$, (b) CNi5, (c) CNi15, (d) CNi10, (e) CNi20 and (f)0.5 wt% Pt/g-C₃N₄. (B) The average rate of H₂-evolution of Ni₃C/g-C₃N₄ composites, $g-C_3N_4$ and 0.5 wt% Pt/g-C₃N₄. (C) Wavelength dependence of ⁵ the apparent quantum efficiencies for the CNi15 sample. (D) Cycling tests of photocatalytic H₂-production over CNi15.

3.3 The activities and stabilities of photocatalysts

- The photocatalytic H₂ production of Ni₃C/g-C₃N₄ composite photocatalyst was further measured under visible light irradiation ($\lambda > 400$ nm). From Figure 6A it appears that the H₂-evolution ¹⁰ amount of pure g-C₃N₄ is quite lower than that of g-C₃N₄ without loading the Ni₃C cocatalyst, indicating that the absence of effective active sites could led to the fast recombination of charge carriers. The total hydrogen production amounts of all photocatalysts increase linearly along with increase of time, ¹⁵ which indicate that all of the catalysts exhibit the stable photocatalytic activity.¹³ Meanwhile, the average photocatalytic
- H₂-production rate of CNi5, CNi10, CNi15, CNi20 and 0.5 wt% Pt/g-C₃N₄ under visible light irradiation are shown in Figure 6B. As observed in Figure 6B, the average H₂-production rates are
- 20 measured to be 0.13, 5.13, 10.05, 15.18, 9.81 and 13.78 μmol h⁻¹ for g-C₃N₄, CNi5, CNi10, CNi15, CNi20 and 0.5 wt% Pt/g-C₃N₄, respectively. Clearly, the highest H₂-production rate of 15.18 μmol h⁻¹ is achieved by loading 15% Ni₃C nanoparticles on g-C₃N₄, which is approximately 116.7 times higher than that of pure
- 25 g-C₃N₄. The excess of the Ni₃C nanoparticles can lead to the obviously decreased H₂-production rate, which can be ascribed to the inevitable mask effects. In addition, the H₂-evolution activity of CNi15 is also larger than that of 0.5 wt% Pt/g-C₃N₄ sample, further indicating that Ni₃C is a better cocatalyst than the
- 30 famous noble Pt in enhancing the H₂-evolution rate over g-C₃N₄. The H₂ generation activity for CNi15 seems to be much higher

than those of our previous works, such 15 wt% WC/g-C₃N₄ (7.31 μ molh⁻¹)⁶⁰, 1.0 wt% Ni(OH)₂/g-C₃N₄ (3.6 μ mol h⁻¹)⁵¹, 1.0 wt%NiS/g-C₃N₄ (9.25 μ molh⁻¹)⁵², wt 0.5%Ni/g-C₃N₄ (5.6 μ molh⁻³⁵)⁵² and 2.0 wt% Ni₁₂P₅/g-C₃N₄ (6.33 μ mol h⁻¹)⁴⁶, conducted under the same conditions, indicating that the Ni₃C nanoparticles are promising cocatalysts for photocatlytic H₂ evolution over g-C₃N₄.

To further investigate the activity of Ni₃C/g-C₃N₄, the ⁴⁰ wavelength-dependent apparent quantum yields (AQYs) of the CNi15 sample were measured by using various band-pass filters under different monochromatic light irradiation. The apparent quantum yields (AQYs) are displayed in Figure 6C. It can be seen that the AQY values of CNi15 are 0.48, 0.40, 0.17, 0.12 and 0.10% ⁴⁵ at 405, 420, 475, 520 and 550 nm, respectively. Additionally, the AQY decreases with an increase in the incident light wavelength, and suggests a closely coincident relationship with the UV-vis diffuse reflectance spectra (DRS) of pure g-C₃N₄. This result fully confirms that the H₂ evolution reaction is fundamentally ⁵⁰ achieved by the light absorption of g-C₃N₄, in which the Ni₃C nanoparticles only serve as a cocatalyst and electron transfer mediator to suppress the electron–hole recombination rate and boost the H₂-evolution activity.

Apart from the high H₂-evolution performance, the recycling ⁵⁵ performance and durability of a photocatalyst is another important factor influencing the practical and scalable application. To measure the stability of the CNi15 samples, the four consecutive photocatalytic reactions over CNi15 were carried out under the same conditions. Figure 6C shows the recycling tests of CNi15 samples under visible-light irradiation for 12 hours. After four repeat reaction cycles, the activity loss (almost 23%) of the s original photocatalytic H₂-production activity could be detected for the CNi15 composite, which is caused by the slow fall-off of the Ni₃C cocatalyst from g-C₃N₄, suggesting that the composite photocatalyst cannot be easily photocorroded and the relatively stable photocatalytic activity during the photocatalytic H₂-¹⁰ production process.

3.4. The charge-separation performances

¹⁵ **Figure 7** (A) Steady-state photoluminescence spectra of g-C₃N₄ and the composite photocatalysts. (B) Transient photocurrent responses of and CNi15 photocatalyst and g-C₃N₄. (C) Nyquist plots of CNi15 photocatalyst and g-C₃N₄. (D) The IPCE measurements of the asprepared photocatalysts.

The charge separation of composite photocatalysts had been ²⁰ investigated by the room-temperature steady-state photo luminance(PL) spectra analysis. It is universally acknowledged that the PL technique is used to reveal the separation and migration processes of the photogenerated charge carriers.²⁴ PL spectra of g-C₃N₄, CNi5, CNi10, CNi15 and CNi20 were shown

- ²⁵ in Figure 7A. It is observed that g-C₃N₄, CNi5, CNi10, CNi15 and CNi20 show a similar broad emission peak located at around 460 nm, corresponding to the band-band PL phenomenon of g-C₃N₄ under the incident light approximately equal to its band gap energy. The intensity of the composite photocatalysts are much
- ³⁰ lower than that of pure g-C₃N₄, which is favorable for the separation of photoexcited charge carriers, further suggesting that efficient separation of photoexcited charge carriers is beneficial to increasing the photoactivities and quantum yield.

The electrochemical impedance spectra (EIS) were used to 35 confirm the charge transfer resistance of the Ni₃C/g-C₃N₄

composites. Obviously, it is observed from Figure 7B that the arc radius in the Nyquist plot of the CNi15 photocatalyst is much smaller compared with that of g-C₃N₄, which indicates that photoexcited charge carriers are slowly recombined and 40 effectively separated. Therefore, it is clear that Ni₃C plays important role in accelerating charge transportion and separation, which can significantly improve photocatalytic H2-production activity. As indicated in Figure 7C, the photocurrent density of the CNi15 photocatalyst is markedly stronger under the same 45 condition than that of pure g-C₃N₄, in accord with the PL spectra, which is caused by the fact that photogenerated electrons are transferred from the conduction band of g-C3N4 to Ni3C nanoparticles. From the above results, it is demonstrated that CNi15 as cocatalysts could enhance charge mobility and suppress 50 the recombination of photogenerated carriers, thus favoring the improved photocatalytic H2 evolution activity.

In addition, an incident photon-to-current conversion efficiency (IPCE) of a given photocatalyst is generally employed to further reveal the charge separation and utilization during the photocatalysis. Fig. 7D shows the comparison of IPCE spectra of CNi15 and g-C₃N₄. Notably, the IPCE value of CNi15 is much higher than that of g-C₃N₄, especially in the range of 350-550 nm.

- $_5$ In addition, CNi15 shows a maximum efficiency of 65.8 %, while g-C₃N₄ possesses a maximum IPCE value of 26.2% at 380 nm. In addition, The IPCE values of CNi15 decrease with increasing the incident light wavelength in the range of 380-500 nm, in agreement with the wavelength-dependent AQY, clearly
- ¹⁰ indicating the excellent dependence relationship between the H₂ evolution and incident light wavelength.

The separation of photo-generated charge carriers is confirmed by the fluorescence lifetime measurements, as displayed in Figure 8. The intensity-average lifetimes was calculated by the following ¹⁵ equation: (t) = $(A_1t_1^2 + A_1t_1^2) / (A_1t_1 + A_1t_1)$. The results display that the value of g-C₃N₄ nanosheet, g-C₃N₄/0.5%Pt and CNi15 are 12.8756, 5.5446 and 3.2603 ns, respectively, which are in good agreement with the H₂-evolution activity. The above results show that the introduction of Ni₃C NPs can enhance the average ²⁰ fluorescence lifetime, which is beneficial for retarding the carrier recombination.

3.5 Discussion of mechanism

Figure 8. Time-resolved transient PL decay of CNi15, g-C₃N₄/0.5%Pt and g-C₃N₄.

Figure 9. (A)The HER (in a 0.5 M H₂SO₄ solution) and (B) OER (in a 0.1 M NaOH solution solution) polarization curves of Ni₃C, CNi15 photocatalyst and g-C₃N₄. (C) The HER and (D) TEOA-oxidation polarization curves of Ni₃C, CNi15 photocatalyst and g-C₃N₄ in a mixed solution of 15% (v/v) TEOA and 0.1 M Na₂SO₄.

- ⁵ To deeply analyze the underlying photocatalytic H₂-evolution mechanism, the H₂ evolution reaction (HER) and the O₂ evolution reaction (OER) polarization curves of different samples were also performed. Figure 9A shows the HER polarization curves of Ni₃C, g-C₃N₄ and CNi15 composite photocatalysts, ¹⁰ which could be employed to study the effects of the Ni₃C
- cocatalyst nnaoparticles on the H₂-evolution kinetics over g-C₃N₄. The cathodic current ranging from -0.3 to -1.8V vs Ag/AgCl is dominantly attributed to the electrocatalytic H₂ evolution. Obviously, the pure Ni₃C nanoparticles exhibit much
- ¹⁵ lower electrocatalytic H₂-evolution overpotentials compared with CNi15 and g-C₃N₄, which indicates that Ni₃C as a cocatalyst plays an important role in increasing active sites and decreasing the onset potential, thereby improving the kinetics for H₂ evolution.
- The OER polarization curves for CNi15, Ni₃C and C₃N₄ in 0.1 M NaOH solution are shown in Figure 9B, which provide information as to catalytic activity of water oxidation. The OER current density of CNi15, Ni₃C and C₃N₄ at 1.8 V was 0.194, 0.998 and 0.111 mA cm⁻², respectively. Obviously, Ni₃C
- 25 photoanode presents more excellent OER activity than the other two photoanodes, thereby reducing the interface barrier of

carriers such as photogenerated holes migration. Compared with the pure g-C₃N₄ photoanode, CNi15 photoanode shows a much lower anodic current density under the same conditions, ³⁰ indicating that Ni₃C can reduce the over potential of water oxidation. The Ni₃C/g-C₃N₄ is a potential electrocatalyst for overall water splitting.

To further prove the practical feasibility of Ni₃C/g-C₃N₄ catalysts with high efficiency for both HER and the oxidation of 35 TEOA, the polarization curves are carried out in mixed solution of 0.1 M Na₂SO₄ and 10% (v/v) TEOA. Figure 9C shows the HER polarization curves of Ni₃C, CNi15 and g-C₃N₄. Compared with that of g-C₃N₄, the onset potential of the CNi15 is significantly lowered, proving that Ni₃C NPs could serve as the 40 remarkable H2-evolution active sites with the decreased onset potential. The TEOA-oxidation performance of Ni₃C, CNi15 and g-C₃N₄ are shown in Figure 9D. At a potential of 1.2 V, the TEOA-oxidation current of Ni₃C, CNi15 and g-C₃N₄ are 3.1, 2.4 and 2.0 mA cm⁻², respectively. It can be seen clearly that Ni₃C 45 exhibits the lower onset potential for the oxidation of TEOA than the CNi15 and g-C₃N₄. These results further confirm the excellent catalytic activitie of Ni₃C/g-C₃N₄ for both HER and the oxidation of TEOA.

Figure 10. (a) The (113) surface model of Ni₃C, (b)-(d) H adsorption on the Ni₃C(113) surface with adsorption energy: (b) TOP; (c) Hollow; (d) Bridge (Bule: Ni; Dark: C; White: H).

- To further reveal the H₂-evolution activity of Ni₃C cocatalysts, ⁵ the well resolved density functional theory (DFT) calculation was performed. A schematic representation of the local structures of the (113) surface model of Ni₃C is shown in Figure 10a. Usually, the surface H adsorption energy at different locations of cocatalysts is employed as one basic factor to depict the H₂-¹⁰ evolution reaction activities. For the "TOP" (Figure 10b), "Hollow" (Figure 10c) and "Bridga" (Figure 10d) sites of
- "Hollow" (Figure 10c), and "Bridge" (Figure 10d) sites of Ni₃C(113), the H adsorption energies are -0.97, -0.54 and -0.27 eV, respectively. According to the calculated adsorption energy, one can see that the "TOP" site is more active than "Hollow" and ¹⁵ "Bridge" sites, implying that the "TOP" site of Ni₃C(113) is
- likely the dominant reaction sites for H_2 evolution. Moreover, the work function of Ni₃C(113) is calculated to be about 4.85 eV, which is much higher than the work function of g-C₃N₄ 4.31 eV.⁸³ Considering to the standard hydrogen electrode energy is
- ²⁰ 4.5 eV, one can see that the photo-generated electrons could be readily injected into Ni₃C(113) and then achieve the efficient Fermi-level upshifting and finally drive the H₂ evolution reactions over Ni₃C(113) similar to electrocatalysis.⁸⁴ The calculation results further confirm the aforementioned ²⁵ experimental enhancement in the photocatalytic H₂ evolution
- over Ni₃C/g-C₃N₄ photocatalyst under visible-light irradiation.

Based on these above results, the photo-induced charge transfer mechanism of Ni₃C/g-C₃N₄ photocatalyst under visiblelight irradiation is proposed, as shown in Scheme 2. It is proposed

- ³⁰ that Ni₃C nanoparticles could mainly act as cocatalysts to significantly improve the photocatalytic H₂-evolution over g-C₃N₄. Clearly, under visible-light irradiation, g-C₃N₄ is readily excited to generate the effective photo-generated electron-hole pairs due to its suitable band gap of 2.7 eV. Owing to suitable
- ³⁵ Fermi level and high electrical conductivity of Ni₃C, the photogenerated electrons are readily transferred from the conduction band of g-C₃N₄ to the Ni₃C nanoparticles, thus achieving that the

photocatalytic H₂-evolution activity of g-C₃N₄ is enhanced by increasing the active sites of Ni₃C cocatalysts. The holes on the ⁴⁰ VB of g-C₃N₄ could also migrate to partial Ni₃C cocatalysts, lead to the enhanced oxidation of "TEOA" at the same time under visible light irradiation. Therefore, the loading of multi-functional Ni₃C cocatalysts onto g-C₃N₄ can promote the steady chargecarrier separation and decrease the overpotentials of H₂ evolution ⁴⁵ and TEOA oxidation, thus enhancing the photocatalytic H₂evolution activity of g-C₃N₄. At this point, constructing the ultrafine/ultrasmall Ni₃C nanoparticles/quantum dots^{85, 86} or the ultrathin Ni₃C nanosheets should be a promising strategy to further boost the their cocatalyst functions for achieving the much ⁵⁰ higher photocatalytic H₂ evolution activity, which should be paid more attention in the future studies.

Scheme 2. Schematic illustration of the photo-induced charge separation process in the Ni₃C/g-C₃N₄ composite photocatalysts.

55 4 Conclusions

In summary, the novel $Ni_3C/g-C_3N_4$ nanoheterojunctions were successfully synthesized through simply loading the high quality hexagonal Ni_3C nanoparticles onto $g-C_3N_4$. The multi-function roles of Ni_3C cocatalyst nanoparticles, including the improved 60 8.

65

electrocatalytic activity for HER, OER and oxidation of TEOA, have been thoroughly investigated by the polarization measurements. The maximum H2-production rate of 15.18 µmol h⁻¹, corresponding to an apparent quantum yield (AQY) of 0.40% 5 at 420 nm, is achieved by loading 15% Ni₃C nanoparticles on g-C₃N₄ under visible light irradiation using TEOA as a hole scavenger. The results demonstrated that is also larger than that of 0.5 wt% Pt/g-C₃N₄ sample. The results show that Ni₃C nanoparticles are the promising cocatalysts for photocatalytic H₂

- 10 evolution over g-C₃N₄, which are even better than the famous noble Pt cocatalysts. The well resolved density functional theory (DFT) calculation reveals that the "TOP" site of Ni₃C(113) with the H adsorption energy of -0.97 eV is likely the dominant reaction sites for H₂ evolution, rather than the Hollow and Bridge
- 15 sites. Therefore, the loading of multi-functional Ni₃C cocatalysts onto g-C₃N₄ can not only promote the charge-carrier separation, but also can simultaneously act as electron- and hole- cocatalysts to improve the kinetics for H₂ generation and oxidation of TEOA and water, thus fundamentally favoring the enhanced
- 20 photocatalytic activity. It is highly expected that this work will provide new ideas to fabricate noble-metal-free cocatalyst modified g-C₃N₄ photocatalysts for active and durable photocatalytic water splitting.

Acknowledgements

25 The work was supported by National Natural Science Foundation of China (51672089) and the State Key Laboratory of Advanced Technology for Material Synthesis and Processing (Wuhan University of Technology) (2015-KF-7) for their support.

Notes and references

30 ^a College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, PR China

^b College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China

- 35 ^c School of Chemistry and Chemical Engineering/ Guangzhou Key Laboratory for Environmentally Functional Materials and Technology/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China
- 40 ^d State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
- ^e Department of Chemistry, University of Missouri Kansas City, Kansas City, MO, 64110, USA.
- ^f School of Chemical Engineering, Northwest University, Xi'an 710069, P. 45 R. China
- *E-mail: Xinliscau@yahoo.com (X. Li); lineng@whut.edu.cn (N. Li).
- 1. X. Li, J. Yu, J. Low, Y. Fang, J. Xiao and X. Chen, J. Mater. Chem. A, 2015, 3, 2485-2534.
- X. Chen, C. Li, M. Gratzel, R. Kostecki and S. S. Mao, Chem. 50 2. Soc. Rev., 2012, 41, 7909-7937.
- 3. A. Fujishima and K. Honda, Nature, 1972, 238, 37-38.
- 4. X. Chen and S. S. Mao, Chem. Rev., 2007, 107, 2891-2959.
- 5. J. Wen, X. Li, W. Liu, Y. Fang, J. Xie and Y. Xu, Chinese
- Journal of Catalysis, 2015, 36, 2049-2070. 55

- G. Hitoki, A. Ishikawa, T. Takata, J. N. Kondo, M. Hara and 6. K. Domen, Chem. Lett., 2002, 31, 736-737. 7.
 - G. Hitoki, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi and K. Domen, Chem. Commun., 2002, 38, 1698-1699.
 - Q. Li, X. Li, S. Wageh, A. A. Al-Ghamdi and J. Yu, Adv. Energy Mater., 2015, 5, 1500010.
- 9. S. Ma, J. Xie, J. Wen, K. He, X. Li, W. Liu and X. Zhang, Appl. Surf. Sci., 2017, 391, 580-591.
- 10. J. Yuan, J. Wen, Q. Gao, S. Chen, J. Li, X. Li and Y. Fang, Dalton Trans., 2015, 44, 1680-1689.
- 11. S. Ma, Y. Deng, J. Xie, K. He, W. Liu, X. Chen and X. Li, Appl. Catal. B-Environ., 2018, 227, 218-228.
- 12. S. Ma, X. Xu, J. Xie and X. Li, Chinese. J. Catal., 2017, 38, 1970-1980.
- 70 13. X. Zhou, Q. Gao, X. Li, Y. Liu, S. Zhang, Y. Fang and J. Li, J. Mater. Chem. A, 2015, 3, 10999-11005.
 - 14. X. Chen, S. Shen, L. Guo and S. S. Mao, Chem. Rev., 2010, 110. 6503-6570.
 - X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. 15. Carlsson, K. Domen and M. Antonietti, Nat. Mater., 2009, 8, 76-80.
 - 16. J. Wen, J. Xie, X. Chen and X. Li, Appl. Surf. Sci., 2017, 391, 72-123.
 - S. Cao, J. Low, J. Yu and M. Jaroniec, Adv. Mater., 2015, 27, 17. 2150-2176.
 - 18. S. Ye, R. Wang, M. Z. Wu and Y. P. Yuan, Appl. Surf. Sci., 2015, 358, 15-27.
 - 19. J. Hong, S. Yin, Y. Pan, J. Han, T. Zhou and R. Xu, Nanoscale, 2014, 6, 14984-14990.
- Q. Han, B. Wang, J. Gao, Z. H. Cheng, Y. Zhao, Z. P. Zhang 85 20. and L. T. Qu, Acs Nano, 2016, 10, 2745-2751.
 - F. He, G. Chen, J. W. Miao, Z. X. Wang, D. M. Su, S. Liu, W. 21. Z. Cai, L. P. Zhang, S. Hao and B. Liu, Acs Energy Letters, 2016, 1, 969-975.
- 90 22. Y. X. Zeng, C. B. Liu, L. L. Wang, S. Q. Zhang, Y. B. Ding, Y. Z. Xu, Y. T. Liu and S. L. Luo, J. Mater. Chem. A, 2016, 4, 19003-19010.
 - Y. Guo, J. Li, Y. Yuan, L. Li, M. Zhang, C. Zhou and Z. Lin, Angewandte Chemie International Edition, 2016, 55, 14693-14697.
 - 24. L. H. Lin, H. H. Ou, Y. F. Zhang and X. C. Wang, Acs Catal., 2016, 6, 3921-3931.
 - 25. Y. J. Zhou, L. X. Zhang, J. J. Liu, X. Q. Fan, B. Z. Wang, M. Wang, W. C. Ren, J. Wang, M. L. Li and J. L. Shi, J. Mater. Chem. A, 2015, 3, 3862-3867.
 - 26. L. Y. Li, W. Fang, P. Zhang, J. H. Bi, Y. H. He, J. Y. Wang and W. Y. Su, J. Mater. Chem. A, 2016, 4, 12402-12406.
 - J. W. Fang, H. Q. Fan, M. M. Li and C. B. Long, J. Mater. 27. Chem. A, 2015, 3, 13819-13826.
- S. W. Cao, Q. Huang, B. C. Zhu and J. G. Yu, J. Power. 105 28. Sources., 2017, 351, 151-159.
 - 29. J. Jiang, S. Cao, C. Hu and C. Chen, Chinese. J. Catal., 2017, 38. 1981-1989.
 - 30. J. Low, J. Yu, M. Jaroniec, S. Wageh and A. A. Al-Ghamdi, Adv. Mater., 2017, 29, 1601694.
 - F. He, G. Chen, Y. S. Zhou, Y. G. Yu, L. Q. Li, S. Hao and B. 31. Liu, J. Mater. Chem. A, 2016, 4, 3822-3827.
 - H. L. Hou, F. M. Gao, L. Wang, M. H. Shang, Z. B. Yang, J. J. 32. Zheng and W. Y. Yang, J. Mater. Chem. A, 2016, 4, 6276-6281.
- 115 33. K. He, J. Xie, X. Luo, J. Wen, S. Ma, X. Li, Y. Fang and X. Zhang, Chinese. J. Catal., 2017, 38, 240-252.
 - 34. X. Wang, J. Cheng, H. Yu and J. Yu, Dalton Trans., 2017, 46, 6417-6424.
 - 35. K. Li, F. Y. Su and W. D. Zhang, Appl. Surf. Sci., 2016, 375, 110-117
 - Q. L. Xu, B. Cheng, J. G. Yu and G. Liu, carbon, 2017, 118, 36. 241-249.
 - 37. X. H. Zhang, T. Y. Peng and S. S. Song, J. Mater. Chem. A, 2016, 4, 2365-2402.
- 125 38. J. Jiang, J. Yu and S. Cao, J. Colloid. Interf. Sci., 2016, 461, 56-63.
 - J. G. Yu, S. H. Wang, B. Cheng, Z. Lin and F. Huang, Catal. Sci. Technol., 2013, 3, 1782-1789.

23.

100

110

39.

	40	C C Han V Lu I I Zhang I Ge V I Li C E Chen V I	
	40.	Xin, L. E. Wu and S. M. Fang, J. Mater. Chem. A, 2015, 3 , 22274 23282	75 75.
	41	H Zhao, Y M, Dong, P, P, Jiang, H, Y, Miao, G, I. Wang and	
5	41.	I I Zhang I Mater Chem 4 2015 3 7375-7381	76
5	42	F Chen H Yang W Luo P Wang and H Yu Chinese J	70.
	12.	Catal 2017 38 1990-1998	»n 77
	43	V F Zhang F Mao H I Van K W Liu H M Cao I G Wu	80 77.
	ч.	and D \cap Xiao <i>I Mater Chem</i> 4 2015 3 109-115	78
10	11	L Kong V Dong P Liong G Wong H Zhong and N Zhoo	70.
10	44.	L. Kong, T. Dong, T. Jiang, G. Wang, TI. Zhang and W. Zhao, L. Matar Cham. A 2016 A 0008 10007	
	15	A Indra D W Manazas K Kailasam D Hallmann M	or 70
	45.	A. India, F. W. Menezes, K. Kanasani, D. Honniani, M.	85 / 9.
		Commun 2016 52 104 107	
10	16	L Wen I Yie P Shen Y Li Y Luo H Zhang A Zhang	80
15	40.	and G. Bi Dalton Trans. 2017. 16 , 1794 1802	80.
	47	P Ve X Liu L locozzia V Vuan L Gu G Xu and 7 Lin L	00.81
	47.	Matar Cham A 2017 5 8403 8408	90 01.
	19	S S Vi I M Van P P Wulan S I Li K H Liu and O	82
20	40.	Liang Appl Catal B-Environ 2017 200 477-483	62.
20	10	P. Shen I. Yie H. Zhang A. Zhang Y. Chen and Y. Li Acc.	
	49.	Sustain Cham Eng. 2018 6 816 826	05 83
	50	P Shen I Yie Y Lu Y Chen and Y Li Acc Sustain Cham	95 05.
	50.	$E_{ng} = 2018 \ 6 \ 4026-4036$	84
25	51	G Bi I Wen X I i W Liu I Xie V Fang and W Zhang	04.
23	51.	R_{sc} Adv 2016 6 31497-31506	85
	52	I Wen I Xie H Zhang A Zhang Y Liu X Chen and X Li	100
	52.	Acs Appl Mater Inter 2017 9 14031-14042	86
	53	I Wen I Xie Z Yang R Shen H Li X Luo X Chen and	00.
20	00.	X Li Acs Sustain Chem Eng. 2017 5 2224-2236	
50	54	K He I Xie M Li and X Li Appl Surf Sci 2018 430	
	0.11	208-217	
	55.	J. W. Fu, C. B. Bie, B. Cheng, C. J. Jiang and J. G. Yu. Acs.	
		Sustain Chem Eng. 2018. 6 2767-2779	
35	56.	H. G. Yu, P. A. Xiao, P. Wang and J. G. Yu, Appl. Catal. B-	
		Environ 2016 193 217-225	
	57.	O. Gu, H. M. Sun, Z. Y. Xie, Z. W. Gao and C. Xue, Appl.	
		Surf. Sci., 2017, 396 , 1808-1815.	
	58.	M. S. Akple, J. X. Low, S. Wageh, A. A. Al-Ghamdi, J. G. Yu	
40		and J. Zhang, Appl. Surf. Sci., 2015, 358, 196-203.	
	59.	G. Zhang, G. Li and X. Wang, <i>Chemcatchem</i> , 2015, 7 , 2864-	
		2870.	
	60.	K. He, J. Xie, Z. Yang, R. Shen, Y. Fang, S. Ma. X. Chen and	
	-	X. Li, Catal. Sci. Technol., 2017, 7, 1193-1202.	
45	61.	Yx. Pan, T. Zhou, J. Han, J. Hong, Y. Wang, W. Zhang and R.	

- Xu, *Catal. Sci. Technol.*, 2016, **6**, 2206-2213.
 J. S. Jang, D. J. Ham, N. Lakshminarasimhan, W. Y. Choi and L. S. J. *Letter and Computer Vision* **20**(2), 140-154.
- J. S. Lee, *Appl. Catal. A-Gen.*, 2008, **346**, 149-154.
 63. J. R. Ran, G. P. Gao, F. T. Li, T. Y. Ma, A. J. Du and S. Z. Qiao, *Nat. Commun.*, 2017, **8**.
- 64. B. J. Ma, H. J. Xu, K. Y. Lin, J. Li, H. J. Zhan, W. Y. Liu and C. Li, *Chemsuschem*, 2016, **9**, 820-824.
- C. G. Morales-Guio, K. Thorwarth, B. Niesen, L. Liardet, J. Patscheider, C. Ballif and X. L. Hu, *J. Am. Chem. Soc.*, 2015, 137, 7035-7038.
- 66. M. Zeng and Y. G. Li, J. Mater. Chem. A, 2015, 3, 14942-14962.
- 67. X. M. Li, X. G. Hao, A. Abudula and G. Q. Guan, J. Mater. Chem. A, 2016, 4, 11973-12000.
- 60 68. H. L. Lin, Z. P. Shi, S. N. He, X. Yu, S. N. Wang, Q. S. Gao and Y. Tang, *Chem. Sci.*, 2016, 7, 3399-3405.
- X. J. Yang, X. J. Feng, H. Q. Tan, H. Y. Zang, X. L. Wang, Y. H. Wang, E. B. Wang and Y. G. Li, *J. Mater. Chem. A*, 2016, 4, 3947-3954.
- 65 70. Y. Zhou, R. G. Ma, P. X. Li, Y. F. Chen, Q. Liu, G. Z. Cao and J. C. Wang, J. Mater. Chem. A, 2016, 4, 8204-8210.
 - G. Yan, C. X. Wu, H. Q. Tan, X. J. Feng, L. K. Yan, H. Y. Zang and Y. G. Li, *J. Mater. Chem. A*, 2017, 5, 765-772.
- 72. H. Wang, Y. J. Cao, G. F. Zou, Q. H. Yi, J. Guo and L. J. Gao, 70 *Acs Appl. Mater. Inter.*, 2017, **9**, 60-64.
- 73. X. Fan, Z. Peng, R. Ye, H. Zhou and X. Guo, *Acs Nano*, 2015, **9**, 7407-7418.
- 74. H. Yang, S. Luo, X. Li, S. Li, J. Jin and J. Ma, J. Mater. Chem.

A, 2016, 4, 18499-18508.

- Y. Goto, K. Taniguchi, T. Omata, S. Otsuka-Yao-Matsuo, N. Ohashi, S. Ueda, H. Yoshikawa, Y. Yamashita, H. Oohashi and K. Kobayashi, *Chem. Mater.*, 2008, **20**, 4156-4160.
- Z. L. Schaefer, K. M. Weeber, R. Misra, P. Schiffer and R. E. Schaak, *Chem. Mater.*, 2011, 23, 2475-2480.
- Z. Zhou, J. Wang, W. Liu, C. Yu, B. Kong, Y. Sun, H. Yang, S. Yang and W. Wang, *Nanoscale*, 2014, 6, 12591-12600.
- Y. Zhang, Y. Zhu, Y. Cao, D. Li, Z. Zhang, K. Wang, F. Ding, X. Wang, D. Meng, L. Fan and J. Wu, *Rsc. Adv.*, 2016, 6, 81989-81994.
- M. B. Zakaria, C. Li, Q. Ji, B. Jiang, S. Tominaka, Y. Ide, J. P. Hill, K. Ariga and Y. Yamauchi, *Angewandte Chemie*, 2016, 128, 8566-8570.
- B. Zhu, P. Xia, W. Ho and J. Yu, *Appl. Surf. Sci.*, 2015, 344, 188-195.
- Q. Huang, J. Yu, S. Cao, C. Cui and B. Cheng, *Appl. Surf. Sci.*, 2015, **358**, 350-355.
- W. T. Wu, J. Q. Zhang, W. Y. Fan, Z. T. Li, L. Z. Wang, X. M. Li, Y. Wang, R. Q. Wang, J. T. Zheng, M. B. Wu and H. B. Zeng, *Acs Catal.*, 2016, 6, 3365-3371.
- S. Bai, X. Wang, C. Hu, M. Xie, J. Jiang and Y. Xiong, *Chem. Commun.*, 2014, **50**, 6094-6097.
- W. Bi, L. Zhang, Z. Sun, X. Li, T. Jin, X. Wu, Q. Zhang, Y. Luo, C. Wu and Y. Xie, Acs Catal., 2016, 6, 4253-4257.
- R. G. Ma, Y. Zhou, Y. F. Chen, P. X. Li, Q. Liu and J. C. Wang, Angew. Chem. Int. Edit., 2015, 54, 14723-14727.
- Y. T. Xu, X. F. Xiao, Z. M. Ye, S. L. Zhao, R. G. Shen, C. T. He, J. P. Zhang, Y. D. Li and X. M. Chen, *J. Am. Chem. Soc.*, 2017, **139**, 5285-5288.